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 ON TWO GENERALIZATIONS OF THE DARBOUX
 PROPERTY

 The study of those real functions which are the sum of a continuous function
 and a Darboux function has inspired two natural extensions of the Darboux prop-
 erty which have already been investigated in some aspects by Ellis [EL], Massera
 [MA], Radakovič [RD], Bruckner, Ceder and Weiss [BCW], etc. From the char-
 acterizations given in [BCW] the two classes of real functions seem to be related.
 We shall discuss some topics concerning this relationship, as well as others.

 0. Preliminaries.

 Definition 0. Let I C R be an interval (or R itself) and let / : I - »■ R. For
 x G I let:

 Co(f, x) = {yeŘ:VNeV(y)yMe V (x) f~ 1 (N) D M ¿ <ļ> }

 C(/,x) = {y G Ř: ViV e V (y), V M G V{x) card (f~'N) D M) = c]

 where V (y) is the set of the neighborhoods of y.
 The one sided cluster sets x), Cq"(/, x), C~(f, x), C+(f,x) are defined

 similarly, working with one sided neighborhoods M.
 A function / : I - ► R is called generalized Darboux if for every interval J C I

 the set /(«/) is dense in the interval [inf{/(x) : x G J},sup{/(x) : x 6 J}]
 and uniformly generalized Darboux if for every interval J G I and every set A of
 cardinality less than c the set f(J ' A) is dense in [inf{/(x) : x G J};sup{/(x) :
 x G i}].

 As in [BCW], the classes of generalized (respectively uniformly generalized)
 Darboux functions will be denoted by Uq (respectively U). In [BCW] it is shown
 that U is the closure of D, the class of Darboux functions, under uniform conver-
 gence. Also the following two lemmas are proved which yield complete character-
 izations for the classes U and Uo'.

 Lemma 1. Let f : I - » R. The following conditions are equivalent:
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 (¡) / € Ve,

 (ii) any one sided cluster set C^f^x), e G {db} is a closed interval (in R).

 (iii) for any a,b G /, a < b we have:

 (J{C0(/*,a:) : z[a,&]} = [inf{/(x) : x G [a, 6]}, sup{/(x) : x G [a,6]}]-

 where f" = /|[a, 6]

 Lemma 2. Under the same assumptions the following assertions are equivalent:

 (i) feu

 (ii) for any a,b G I, a < b we have

 (J {C(f*,x) : x G [a, b]} = [inf{/(:r) : x G [a, &]}, sup{/(x) : x G [a, 6]}]

 (iii) / G Uq and f (i.e., the graph of f) is c-dense in itself

 (iv) / G Uo and for any open N, is empty or c-dense in itself.

 1. Results.

 A. A multiplicative analogue of a theorem of Sierpiński.
 A classical result due to Sierpiński asserts that every real function is the sum

 of two Darboux functions. However, as Solomon Marcus has pointed out in [MS
 1] there exists a real function which is not the product of two Darboux functions.
 Things are different with respect to the class U as is seen from the following:

 Theorem 1. Any function f : R - > R is the product of two uniform generalized
 Darboux functions.

 Proof: Let us consider the partition induced on R by congruence modulo Q
 (i.e. x = y iïï x - j/G Q). Let k = R/ =. Since each equivalence class is countable,
 (assuming the Continuum Hypothesis) k is of cardinality c. Hence we may write

 (1) R = U (Ca : A G R}

 where a : R - » k is a bijection and we write C' for a(A). We consider a partition
 k = LU H, LV' H = <f> with L ~ H ~ (R'{0}). Let b : R'{0} a~'L) and
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 c : R'{0} - ► a 1(H) be bijections. (Their existence is guaranteed by the fact that
 a is bijective.) Set

 g{x) = ' [rf( f(x)/s w ÎÎ if x£Cbļr) a: G and Ä(x) = ļ Í f(x)/r s if lf xeCh{r) IG Cc(s) ' f(x)/s w if a: G Cc(.) ļ s lf IG Cc(s)

 for any /,5 6 R'{0}. Clearly g and h are well defined and g • h = /. Since both
 classes Cb(r) and Cc(s) are dense in R, g and h take every nonnull real value in
 every interval. It follows immediately that g,h £ U.

 B. Preconnectivities and generalized Darboux functions.
 Throughout this paragraph we will identify a function and its graph. We recall

 the following definitions: f : X -* Y is said to be connected provided its graph is a
 connected subset of X x Y; f is a connectivity function provided that, whenever
 C is a connected subset of X, f'C is connected {X and Y are two topological
 spaces). It is well known that a function f : I -* R (where I is connected) is a
 connectivity function iff it is connected.

 Definition 1. A C X is called preconnected iff A is connected.

 Definition 2. A function / : X - > Y is said to be preconnected if its graph is
 a preconnected subset of A' x K.

 Definition 3. A function / : X - > Y is called a preconnectivity function
 provided, whenever C is a connected subset of X , f'C is preconnected.

 There is no analogue to the result quoted before (namely preconnectedness does
 not imply preconnectivity) as the following example shows. Let

 {sin 0 1 1/x if if if x x x<0. = > 0 0
 1 if x = 0

 0 if x<0.

 The following result offers characterizations of preconnectivity functions:

 Theorem 2. Let A be a nontrivial connected subset of R and f : A - > R.
 Then the following are equivalent:

 (Ī) / e Uo

 (ii) / is a preconnectivity function.
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 Proof: (i) - * (ii) Consider [a, 6] C A, a < b, and take /* = /|[a, &]. It is
 readily seen that (even for an arbitrary function) we have

 (2) Vf* = {(ar, y) : x G Ā and y G C0(/*,x)}.

 Let us consider the decomposition of T /» into connected components.

 (3) iy = UW : t 6 /}.

 Since projection on the x axis, 7Ti, is continuous, the sets = 7Ti (Ct) C R,
 are connected. Let us show that each Gì is closed. Let xq G Gì. Suppose,
 to the contrary that x0 £ G, and take (in)^.j C Gì with xn - > x0. Without
 loss of generality we may suppose (since x0 ^ xn, V n > 1) that (xn)^i1 is
 strictly monotone (for example, strictly increasing). Since xi,xn G Gì and since
 Gì is connected (hence convex), [xi,x„] C Gì V n > 1 and hence [xi,x0) =
 Un>i[si»sn] C Gì. It follows that {(x,/(x)) : x G [xx,x0)} C C,. Since Ci is closed
 (being a connected component) and since / G U0, (x0, /(x0)) G (/ being in
 Uo, we may find a strictly increasing sequence (yn)£Li C [xi,x0), Vn -* x0 and
 f(yn) -* fix o). Consequently x0 G Gì.) Thus G, is closed.

 Finally, for any y0 G A, the points of the set {y0} x C0(/, yo) lie in a single con-
 nected component. Indeed C0(f,y0 ) is either C¿(f,y0), cf(f,y0 ) or Cq (/, y0) U
 Cq (/, yo). Since / G Uo, Cq (/, yo) and Cq (/, yo) are closed intervals containing
 f(yo)- So, in any case, C0(f,y0) is connected. It follows that {j/0} x C0(/, y0) is
 connected. Hence all its points lie in a single connected component. This means
 that for i ^ j we have Gì fi G j = <f>. Since A is connected, since A = U {Gì : i G 1}
 and since the sets are closed an mutually disjoint, it follows that card (/) = 1; i.e.,
 r f connected.

 (ii) -*■ (i) We will show that / satisfies condition (iii) of Lemma 1. Take
 a < b G A and set /„ = /|ja, 6]. Then T/. = {(x, y) : y G Co(/», x), x G [a, 6]}.
 Denoting the projection of T/. on the y-axis by B, we have

 (4) B = ' J C0(/*,x) : x G [a, 6]}.

 Since F/, is connected and since projection on the y-axis is a continuous func-
 tion, B is connected and hence convex. It follows easily that inf f*(x), sup f*(x)
 (x in [a, 6]) are in B. (For example, let us show that inf{/(x) : x G [a, 6]} G R. For
 any n G N take xn G [a, 6] such that |/#(a;n) - inf {/(x) : x G [a, 6]} | < 1/n. The se-
 quence (sn)£Li has an accumulation point x0 G [a, b]. Hence inf{/(x) : x G [a, b] G
 Co(/.,x0) C B.) It follows that [inf /(x), sup /(x)] : (x G [a, 6]) C U{C0(/.,x) :
 x G [a, 6]}. The other inclusion is obvious. Hence V a < b G ^U{Co(/»,x) : x G
 [a, 6]} = [inf /*(x), sup /»(x)] which means that / G U0.
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 C. Quasiuniform Arzelá-Gagaeff-Alexandrov Convergence.
 It is known that the classes Uq and U are closed under uniform convergence. It

 is natural to ask if this statement is valid when we replace uniform convergence by
 a weaker type of convergence. Moreover, since the classes Uq and U are "related",
 it would be interesting to find a type of convergence so that, under this type of
 convergence, the closure of D is exactly Uq. (We recall that the closure of D under
 uniform convergence is U .) In what follows we offer a first glimpse, by studying the
 behavior of U and Uq under quasiuniform Arzelá-Gagaeff-Alexandrov convergence.

 Definition 4. Let (X,p) and (Y, a) be two metric spaces. The sequence
 (/n)£Ln/n : X - > Y converges quasiuniformly to / in the sense of Arzelá-Gagaeff-
 Alexandrov provided that /„ converges pointwise to / and, for each e > 0, there is
 a sequence (not necessarily infinite) of positive integers n' < riļ . . . < np < np+ 1 . . .
 and a corresponding sequence of open subsets of X , G', Gx . . . Gp, Gp+ 1 . . . such
 that X = U{G, : i > 1} and, for every i > 1 and x G Gì, we have a(f(x), fni(x)) <
 e.

 Clearly uniform convergence implies quasiuniform Arzelá-Gagaeff-Alexandrov
 convergence.

 Theorem 3. The class Uo is closed with respect to quasiuniform Arzelá-
 Gagaeff- Alexandrov (abbreviated AGA) convergence.

 Proof: Let (fn)%L i be a sequence in Uo with fn AGf f. Let xq G I. We will
 prove that each cluster set C¿"(/, x0), Co"(/, x0) is connected (and then we will
 apply Lemma 1). Let us prove C"¿"(/, aro) is connected. Let a = inf C¿"(/, xo) and
 ß = supCo (/, Xo). If ot = ß, there is nothing to prove. If a < ß, let z G (ot,ß)
 and set 7 = min{|z - a|, | z - ß'}. Take n > 1. Since /„ AGA /, we may find G¿n
 an open neighborhood of xo such that for any x G G,-„

 (*)!/.■»(*) -/0*01 < ļmin(7,l/n).

 For n G N let an = inf C¿"(/¿n,Xo) and ßn = sup C¿"(/,n, Xo). Let us prove that
 z G (a„,/?„). Since a = inf (/, x0), by the Definition 0, it is easy to see that
 there exists a sequence (xfî)™=1 such that

 (i) x£) G Gin, Vm > 1

 (ii) x^ < x0, V m > 1

 (iii) x^ - ► Xo (m - > 00) and /(x^) - > a.
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 Since I f(x$) - fin(x$) I < |min(7, 1/n) and f(x$) - > a, it follows easy
 (provided a G R) that the sequence (fin(x$)m> i is bounded. Hence we may
 find a convergent subsequence (fi„(x^ļļ))'^=ļ. Let u be its limit. It is clear that
 u > an. On the other hand from (*) it follows that u < a + | min(7, 1/n). Hence
 an < a + |min(7, 1/n). By the definition of 7, an < z. If a = -00, then (as is
 easily verified) an = -00. (The case a = +00 is not possible). We assumed that
 - 00 + c = -00.

 Analogously one proves that 2 < ßn. Hence z 6 (an,ßn). Since /,•„ G t/0, we
 may select yn G Gin with yn < x0 such that |yn - ^o| < 1 ļm and |/¿„(í/n) - z' < 1/n.
 It follows easily that yn - ► x0 and that fin(yn) -* z (n -> 00). Since | /¿„(y„) -

 it follows that limn/(yn) = 2. Thus z G Co(f,x0). But z G (oc,ß) was
 arbitrary. Hence C¿"(/, x 0) (and analogously Cņ(f, xo)) is connected. By Lemma
 1 it follows that / G Uo. q.e.d.

 The corresponding result for uniformly generalized Darboux functions is as
 follows:

 Theorem 4. The class U is closed under quasiuniform Arzelá-Gagaeff-
 Alexandrov convergence.

 Proof: Let fn G U with fn AGf f (n - ► 00). Since /„ G U C f/o, by Theorem
 3 / G Uo. Let N be an open interval such that /-1(iV) ^ <f> , let x0 G /-1(-N) and
 set y0 = f(x 0). Since x0 was chosen arbitrarily in /-1(-N), to prove that /-1(AT)
 is c-dense in itself, it suffices to show that for any neighborhood V of x0 card
 (/-1(iV) fi V) = c. Consider such a neighborhood V. Moreover set a = inf TV
 and ß = sup N . Then N = (a, ß). Put 7 = |min{|a - y0','ß - j/o|,l}, let
 M = (j/o - 7)î/o + 7)) an(l let £ = 7/3. There is an index n* G N and an open
 neighborhood Vnk G K(xo) such that V 1 G Vnk we have |/(x) - fnk(x)' < 6.
 Then fnk(x 0) G A/, and hence is c-dense in itself. Show that V H Vnk D
 fñkHM) CV n Let z G Z'1 (M) H Vfl Vnk. Then 'fnk(z) - y0| < 7. Since
 I f"-k(z) ~ f(z) I < 7/3, I f(z) - yo' < 7 + 7/3 < 27. Thus z G /_1(-/V) and hence
 2 £ /-1(-W) D V. Since V n Vnk is an open neighborhood of x0 and x0 G f~k(M),
 card (yr'Vnkr'f~*(M)) = c. Hence card ( V D /-1(TV)) = c. It follows that /_1( N )
 is c-dense in itself. Since / G Uo, by Lemma 2, / G U. q.e.d.

 Remark: Since D C U , (denoting by DAGA the closure of the class of Darboux
 function under AGA convergence) D C DAGA c UAGA. (The first inclusion holds
 because uniform convergence implies AGA convergence.) Since 17 = JJAGA =
 U, DAGA = U . Hence we fail to "reach" Uq from D by AGA convergence. During
 the revising of this paper we have found a type of convergence such that TJ = Uo.
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 D. Stationary sets for generalized Darboux (uniformly generalized
 Darboux) functions.

 Throughout this paragraph all the functions are defined on (0, 1). Following
 Boboc and Marcus [BM] we say that A C (0,1) is stationary for a class F of
 functions if any / G F is constant on (0, 1) when it is constant on A. In the same
 paper it is shown that the set A is stationary for the class D iff its complement is
 at most countable. (To obtain this result the Continuum Hypothesis is assumed.)
 Here we characterize the stationary sets for the classes U and Uq. We shall see
 assume the Continuum Hypothesis.

 To attain this goal we must recall the following:

 Lemma 3 [BM]. A real set contains a c-dense in itself subset iff it is of
 cardinality c.

 With these preliminaries we can prove the next result.

 Theorem 5. A C (0, 1) is stationary for the class U iff its complement is at
 most countable.

 Proof: (i) The condition is necessary: Suppose that A is stationary for the
 class U . Since D C U, A is stationary for the class D. By the results in [BM] it
 follows that its complement is at most countable.

 Remark: Since D C U C Uq , the condition is still necessary when replacing
 U by f/0.

 (ii) The condition is sufficient: Assume that A is not stationary for the class U .
 We will show that Ca has the power of continuum. We may assume without loss
 of generality that A is dense in (0,1) (otherwise Ca would contain an interval).
 Since A is not stationary for U , there is a constant k and a nonconstant function
 / G U such that f(x) = k V x G A. Let

 B = {x e (0,1) : f(x) Ź k}.

 Clearly B C Ca- We will show that B is c-dense in itself. Let x G B. Assume
 that f(x) < k (to make a choice) and let I be an interval containing x. Since A is
 dense in (0, 1), let y G I such that f(y) = k. From the fact that / G U it follows
 that C = {z G 'x,y] '• f(z) G (f(x),f(y))} is uncountable (otherwise it would
 contradict the definition of U). Since C C. Bf'[x,y] (Z Bf' I, B(~'I is uncountable.
 Hence B is c-dense in itself. By Lemma 3 Ca is uncountable.

 Let us pass to the study of the stationary sets for the class Uq.
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 Theorem 6. A C (0, 1) is stationary for the class Uq iff its complement does
 not contain a set which is bilaterally dense in itself.

 Proof: (i) The condition is necessary: Let A be stationary for Uo. It fol-
 lows that its complement is at most countable. Since the case when (0, 1)'A is
 finite is trivial, suppose (an)n>0 is an enumeration of (0, l)'/4. Let (rn)£l0 be an
 enumeration of Q'{0}. Suppose to the contrary that (0, 1)'j4 contains a count-
 able subset B bilaterally dense in itself. We will construct a nonnull function
 / : (0, 1) - » R, / G Uo such that / = 0 on A. For any x G (0, l)'ü? (hence
 also in A) put f(x ) = 0. Let (6n)£Ļ0 be an enumeration of B. We will define /
 inductively:

 Step n = 0. Put f(bo) = 1. Since B is bilaterally dense in itself, we may
 consider two subsequences of (6n), an<^ o such that for any k >
 0, 6? < b0< b°jk and lim* b°ik = lim* 6? = b0. Put

 /■/ io ^ _ r/io ' _ J rn iff k is a power of pn the n-th prime number
 mj ^ _ - J{Ojk) _ - ļ j otherwise.

 Step n + 1. Suppose f(bo),...,f(bn) have been already defined and for any
 0 < t < n we have chosen two sequences (6^ )£L0 and {tfJkL o just as in Step
 n = 0.

 If f(bn+ 1) has not yet been defined, put f(bn+1) = 1. Consider (as in Step
 n = 0) two subsequences: (6"fc+1)£Ļ0 an^ (&jfc+1)£Lo such that for any k > 0

 Kr < < w
 and

 limolimi»«

 Furthermore, just as for any 0 < i < n, lim ¿6^ = lim* b*k = bļ ^ 6n+1, we
 may suppose that for no k > 0 have /(¿"+1) and /(6"fc+1) been defined (by choosing
 them in an adequate neighborhood of bn+l). Put

 f(hn+1' = f(hn+1' - I Vt if k 1S a Power of Pt
 J'°ik ) = l'°3u > - ļ i otherwise.

 We have constructed / : (0, 1) - > R such that / = 0 on A. Moreover, since
 lim* b?k = lim* bjk = bn and for any k /(&"fc) = f(bjk) = rt and Q'{0} is dense

 . P*. P* P* Pt
 in R, it . is not hard to show that / G Uo.

 (ii) The condition is sufficient: Suppose A is not stationary for Uo- Then we
 may find k G R and f E U0 such that / = k on A but f ^ k. Let B = {x E (0, 1) :
 f(x) ^ &}. Since / G Uo, B is bilaterally dense in itself. But B C (0, 1)'A q.e.d.
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 E. Another characterization for the class Uq.
 We have seen that generalized Darboux functions do not preserve connectedness

 but have some "weaker" remarkable properties. In the sequel we will characterize
 them as the functions that "almost" preserve connectedness (in a sense it is given
 below).

 For A C R let

 i >(A) = sup{A (B) : B = B°, B C co (A)'A}

 where B° is the interior of B, A is Lebesgue measure, and co(A) is the convex hull
 of A. v(Ä) is a reasonable "measure" of the "holes" of the set A. Let / : R - ► R
 and let Iņ C R be an interval. Put

 tjjf(Io) = sup {¡/(f(I) : I C Io, I interval}

 and

 Uf(xo) = inf{u >j(I) : I interval, x0 G /°}.

 Uf(xo) is called the ^-oscillation of / at xq.
 Finally, say that / is ^-continuous at x0 iff u>y(x 0) = 0. It is easy to see

 that every generalized Darboux function defined on an interval Io is »/-continuous.
 (Indeed, for any interval I C Io, co /(/) = [inf{/(x) : x G /},sup{/(x) : x G /}].
 Hence the set /(/) is dense in co (/(/)). Thus i/(f(I)) = 0.

 Lemma 4. If u)j(xo) = 0, then the cluster sets Cõ(f,x o) and C¡j(f,x o) are
 connected.

 Proof: We shall prove the assertion only for C¿"(/, x0). Suppose that C¿" (/, io)
 is not connected. Since Cq (/, x0) is closed, there are y0 G co {Cq (/, xo)) and e > 0
 such that (yo - e, Vo + e) C co {Cq (/, ®o)) and ( y0 - e, y0 + e) D C¿" (/» ®o) = <t>-
 Then we find b < x0 such that V t € (b,x o), f(t) £ [y0 - e/2, yo + e/2]. Since
 yo + etco (Cq (/, aro)) = [inf Cq (/, x0), sup (/, ar0)], there are x', y' G Cq (/, xo)
 with x' > yo + e/2 and y' < y0 - e/2. Set a = min{|x' - y0 - e/2|, 'y' - y0 + e/2|}.
 Let p < b and V = [p, xo]. Since x', y' G C¿"(/, x o), there are x',y' G V with
 |/(xi) - x'| < a/2 and |/(î/i) - y' ' < a/2. It follows easily that f(yi) < yo - e/2 <
 yo + e/2 < /(xi). Consequently /(V) contains the "hole" [y0 - e/2, yo + e/2].
 Hence i /(/(V)) > e.

 Let I be an interval containing xo as an interior point. v{f{I D V)) > e implies
 wy(x o) > e. But this is a contradiction since uv¡{xo) = 0. Hence C¿"(/, x0) is
 connected.

 Theorem 7. Let / : R - » R be a real function. Then f is ¡/-continuous iff f is
 generalized Darboux.
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 Proof: The assertion follows directly from Lemma 4 and Lemma 1.

 Note: The kind help of many anonymous referees in rewriting this paper
 is gratefully acknowledged. Special thanks to Professor Solomon Marcus for his
 constant help and valuable advice.
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