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ON SIMPLE CONTINUITY POINTS

Throughout this paper we assume that X and Y are topological spaces. The
letters N, Q and R stand for the set of natural, rational and real numbers, respec-
tively.

N. Biswas in [1] introduced the following concept of simple continuity.

Definition 1. A function f : X — Y is said to be simply continuous if for
everyopen set V inY the set f~1(V') is a union of an open set in X and a nowhere
dense set in X.

The purpose of the present paper is to introduce a suitable pointwise definition
of that notion and to give a characterization of the set of all simple continuity
points.

Definition 2. We say that f : X — Y is simply continuous at a point z € X
if for each open neighborhood V of f(z) and for each neighborhood U of = the set
f~Y(V)\int f~3(V) is not dense in U. Denote by N; the set of all points at which
f is simply continuous.

REMARK 1. Let f : X —> Y. It is easy to verify that
(a) f is simply continuous in the sense of Biswas if and only if N; = X,
(B) Qs C Ny, where Q; denotes the set of all points at which f is quasicontinuous
(see [8]).
Lemma 1. Let f : X — Y. Then for each open set V in'Y the set Ny N
(f~Y(V)\ int f~1(V)) is nowhere dense in X.

PROOF. Let V bean opensetinY. Put W = f~1(V)\int f~}(V). It is easy to
see that W N int cl W C X — Ny. Hence the set NyNW C (N;NW)\intcl W C
W\ int c] W is nowhere dense in X.
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Proposition 1. Let f : X — Y, where Y is second countable. Then the set
Ny \ Cy (where Cj is the set of all continuity points of f) is of the first category
in X.

PROOF. Let {B, : n € N} be a countable base of open sets in Y. Since
X\C; = U, (ffY(Bn) = int f~1(B,)), by Lemma 1 the set Ny \ Cy =
U, (Ny N (f~1(B,)\ int f~1(B,))) is of the first category in X.

The following example shows that the set N;\ Cy may be dense in the domain
of f.

EXAMPLE 1. Let f : R = R, f(z) = r(z)+z, wherer : R — R is the Riemann
function defined by

1 _» . .
r(z)={ @ for z & (where p, g are relatively prime, ¢ > 0),
0 otherwise.
Then Ny \ C; = Q is dense in R.
Definition 3. (See [8]). Let f : X — Y, where Y is a metric space with a
metric d. We say that f is cliquish at a point ¢ € X if for each € > 0 and each
neighborhood U of « there is a nonempty open set G C U such that d(f(z), f(y)) <

¢ for each y,z € G. Denote by Ay the set of all points at which f is cliquish. If
As = X, then f is said to be cliquish.

REMARK 2. Let f : X — Y, where Y is a metric space. Then the set
Ay \ Ny C Aj \ Cy is of the first category (see [10]). If Y is separable, then
according to Proposition 1 the set Ny \ Ay is of the first category.

The following example shows that the set Ny \ Ay may be uncountable.

EXAMPLE 2. Let C be the Cantor discontinuum. Let x : R — R be the
Dirichlet functions (i.e. x(z) = 1 for z € Q and x(z) = 0 otherwise). Define
f: R — R on the contiguous intervals (a,b) of C as follows

1+ x(z), forz € (a,a+ i(b—a)),
f(z) =4 2x(z),  forz€(a+j(b—a),a+3(b—a)),
x(z), forz € (a + 2(b— a),b),
and f(z) = 0 otherwise.

Then Ny \ Ay = C\ {0,1} is uncountable.
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Theorem 1. Let f : X — Y, where Y is a metric space with a metric d. Let
at least one of the following conditions be satisfied:

(i) X is a Baire space and Y is a separable metric space,
(ii) Y is a totally bounded metric space.
Then the set Ny \ Ay is nowhere dense in X.

PROOF. Put G = int cl(N;\ Ay). We shall show that G = ¢. Suppose, by way
of contradiction, that G # ¢. Put K = G \ A;. Since the set Ay is closed (see[7])
the set K is open. We shall show that K # ¢. Since the set int Ay U (X \ Ay) is
dense in X and G N int Ay = int(cl(Ny\ Ay) N Ay) C int(Ay \ int Af) = ¢, we
get 6 #AGN(int AyU(X\ Af))=(GN int Aj))UK =K.

Let zo € K be arbitrary. Since o ¢ Ay, thereis € > 0 and L C K, an open
neighborhood of zq, such that

(*)  for every nonempty open set M C L there are y,2 € M such that
d(f(y), f(Z)) > 8e¢.

We shall show that there is v € Y such that f~1(S(v,¢€)) is not nowhere dense in
L (where S(a,n) = {t € Y : d(a,t) < n}). We distinguish two cases.

a) Suppose that X is a Bairespace and Y is separable. ThenY = U2, S(vn,¢),
where {v, : n € N} is countable dense set in Y. Since L = LN
FHUZ, S(vn,€) = U2, (LN f71(S(vn,€))), there is k € N such that

LN f~1(S(v,€)) is not nowhere dense in L.

b) Suppose that Y is totally bounded. Then there is a finite set {vq,vs,...,v,}
in Y such that Y = Ulr; S(vn,€). Since L = LN f~Y (UL, S(vn,€)) =

n=1
mey (L0 f72(S(vn,€))), there is k € N such that L N f~1(S(vk,€)) is not
nowhere dense in L.

Therefore there is a nonempty open set J C L such that f~1(S(v,¢)) is dense
in J. Put

D={yeJ:d(f(y),v) 2 4e}.

Then in view of (*) the set D is dense in J. In the following we distinguish two
cases.

a) Suppose that there is ¢ € J N Ny such that d(v, f(z)) > €. Put B =
{u € Y : d(u,v) > €}. Then B is an open neighborhood of f(z). Since
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f(D) C B, the set f~!(B) is dense in J. Since f~1(S(v,¢)) is dense in J
and f~1(S(v,e)) N f~1Y(B) = ¢, we have int f~}(B)NJ = ¢. Therefore
f~Y(B) — int f~1(B) is dense in J, which contradicts z € Ny.

B) Suppose that d(v, f(z)) < € for each £ € J N Ny. Since Ny is dense in J,
there is z € J N Ny. Then J is an open neighborhood of z and S(v,2¢) is
an open neighborhood of f(z). Put V = {u € Y : d(u,v) > 2¢}. Since
f(D) C V, the set f~1(V) is dense in J. Since f~!(S(v,2¢)) is dense in J
and f~1'(S(v,2¢)) N f~Y(V) = ¢, we have int f~1(S(v,2¢))NJ = ¢. Thus
f1(S(v,2¢)) \ int f~1(S(v,2¢)) is dense in J, which contradicts z € Ny.

REMARK 3. Under the assumptions of Theorem 1 every simply continuous
function f : X — Y is cliquish (see [9]). Example 1 in [3] shows that those
assumptions cannot be omitted.

Proposition 2. Under the assumptions of Theorem 1 the set cI Ny — Ny is of
the first category in X.

PROOF. According to Theorem 1, Remark 2 and the fact that Ay is closed (see
[7]), the set cl N_f\N_f C Cl((Nf\A}) UAf) \ Ny C Cl(Nf \ Af) U (Af \ Nj) is of
the first category in X.

The following example shows that the assumption “Y is a metric space” in
Proposition 2 cannot be omitted.

EXAMPLE 3. Let Y =R, T = {ACR:R\ Ais finiteor 0 ¢ A}. ThenY is
Ty-space. Define f : R = Y as follows

0, forz € Q,
z, otherwise.

) ={
Then the set cl Ny \ Ny is of the second category in R.
We recall that a subset A of X is almost closed (see [6]) if cl int A C A.
Proposition 3. Let f : X — Y. Then the set Ny is almost closed.

PROOF. Let z € clint Ny. Let U be an open neighborhood of z and V an
open neighborhood of f(z). We shall show that f~}(V) — int f~!(V) is not dense
in U, which yields £ € N;. We distinguish two cases.

a) Suppose that thereis y € NyNU N f~1(V). Since y € Ny, the set f~1(V)\
int f~1(V) is not dense in U.
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b) Suppose that f~1(V)NU N Ny = ¢. Since z € clint Ny, the set G =
UN int Ny is nonempty open, G C U and f~}(V)NG C f~(V)NUNN; = ¢.
Therefore f~}(V) \ int f~}(V) is not dense in U.

We recall that a topological space X is perfectly normal (see [4], p. 68) if it is
normal and each closed subset of X is Gs. A topological space is resolvable (see
[2]) if it is a union of two disjoint dense sets.

Theorem 2. Let X be a perfectly normal space such that X¢ is a resolvable
space (where Z? is the set of all accumulation points of Z). Let Y be a first
countable T} -space such that Y¢ # ¢. Suppose A C X is such that

(1) A contains all isolated points of X,
(2) A is almost closed,
(3) cl A\ A is of the first category in X.
Then there is a function f : X — Y such that Ny = A.

PROOF. Let yo € Y2 Let {y, : n € N} be a one-to-one sequence which
converges to yo,¥» # Yo for all n € N. Since X? is resolvable, we can write
X \cl A= BU D, where B and D are disjoint dense sets in X \ cl A. Since
X is perfectly normal, there is a decreasing sequence {H, : n € N} of open sets
such that cl A = N2, H, and cl Hyyy C H, for eachn € N. Put Go = ¢ and

Gn, = X\ cl H, for eachn € N. Let cl A\ A = U2, A, where A, are mutually
disjoint and nowhere dense in X. Define a function f: X — Y as follows

fle) = Yo, forz € AUD,
~ | 9n, forz € AnU((Gn\ Gn-1) N B).

We shall show that Ny = A. We distinguish four cases.

I) Suppose that zo € A. Then f(z¢) = yo. Let U be an open neighborhood of z,
and V an open neighborhood of f(zo). Then there is k¥ € N such that y, € V
for eachn > k. Put G = H,NU. Then G is an open neighborhood of z¢ and
G C U. Since GNG,, = ¢ for eachn < k, we have G\U:_, 4. C GNf~1(V).

Since A, are nowhere dense sets, we have int(G — U%_, A,) # #. Hence

¢ # int(GN f~Y(V)) = GN int f~(V). Therefore f~}(V)\ int f~1(V) is
not dense in U. Thus zo € Ny.

IT) Suppose that z, € (Gx \ Gk-1) N B for some k € N. Put U = X — cl A
and V =Y \ {yo}. Then U is an open neighborhood of zo and V is an open
neighborhood of f(zo) = yx. We have f~1(V)N U = B. Since B is dense in
U and int B = ¢, theset f~1(V)— int f~*(V) is dense in U. Thus z¢ ¢ Nj.
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III) Suppose that zo € D. Since zo € X \ cl A, there is £ € N such that
20 € Gk \ Gi—1. Pt U =Gy and V =Y \ {y1,¥2,.--,yx}. Then U is an
open neighborhood of zo and V' is an open neighborhood of f(z¢) = yo. Since
D c f~Y(V), the set f~!(V) is dense in U. Since U N B is dense in U and
UNBNf~Y(V) = ¢, wehave UN int f~}(V) = ¢. Hence f~1(V)\int f~1(V)
is dense in U. Thus zo € Ny.

IV) Suppose that zo € A for some £ € N. Put U = X \ clint A and
V =Y \{yo}. Since the set A is almost closed, we havezo € Ay C X\ACU.
Therefore U is an open neighborhood of zo and V is an open neighbor-
hood of f(zo) = ys. Since f~1(V) = BU (cl A\ A), int f~(V) = ¢ and
cd fFY(V)=(X\clA)U(clA— int A)=cl(X\ A). SoU =X \clint AC
c(X\ A) = c(f~Y(V)\int f~1(V)). Thus zo & Ny.

Theorem 3. Let X be a perfectly normal space such that X? is a resolvable
space. Let Y be a metric space such that Y? # ¢. Let us assume that (i) or (ii) is
satisfied. Let A C X. Then there is a function f : X — Y such that Ny = A if
and only if the set A has the properties (1), (2) and (3).

REMARK 4. Theorems 1 and 3 are true if instead of (i) or (ii) we require
(iii) X is a k-Baire space (see [5]) and Y is a metric space with weight (see [4, p.
27]) less than k.

REMARK 5. It was shown in [7] that a set A is Q; for some f if and only if int
cl A\ A is first category, which is stronger than condition (3). Whereas the sets
Ay are generally closed, and the sets Cy are generally G sets, the sets Q and Ny
don’t even have to be Lebesque measurable. However, they must have the Baire

property.

Theorem 4. Let f: X — Y, where X is a Baire space and Y is a separable
metric space. Then the following three statements are equivalent:

(u) X \ Ny is a set of the first category in X,
(v) Ny is a dense set in X,
(w) f is cliquish.

PROOF. (u) = (v): Obvious.
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(v) = (w): We have X \ Ay C (X \ Ny)U (Ny\ Af) = (cI Ny \ Ny)U (Ny \ Ay).
Therefore according to Theorem 1 and Proposition 2 X \ Ay is an open set of the
first category and hence X \ Ay = ¢.
(w) = (u): Follow’s from Remark 2.

The Riemann function shows that the assumption (v) in Theorem 4 cannot be
replaced by the assumption “Ny = X”.
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