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 Globally Small Riemann Sums and the
 Henstock Integral

 1 Introduction

 The concept of GSRG (globally small Riemann sums) was first defined by Lu
 [3; p. 114] in an attempt to characterize the Henstock integral. We recall that a
 measurable function / defined on [o, b] is said to have GSRS if for every e > 0
 there exists a positive integer N such that for every n > N there is £n(£) > 0 and
 for every ¿„-fine division D = {([«,t;],£)} of [a, 6] we have

 I H /(^)(w - w)| < e
 l/(Öl>»

 where the sum is taken over D for which |/(£)l > n • For the notation and the
 definition of ¿-fine divisions, see [3; p.5].

 Then we can prove [3; p.115].

 Theorem 1. A measurable function / has GSRS if and only if / is Henstock
 integrable to F(a , 6) on [a, 6] and Fn(a, b) - ► F(a , 6) as n - ► oo where Fn(a, b)
 denotes the integral of /„ on [a, 6] with fn(x) = f(x) when |/(z)| < n and 0
 otherwise.

 There is an example [3; p. 115] to show that a Henstock integrable function does
 not necessarily have GSRS. Also, every measurable function which is Lebesgue
 integrable has GSRS though not conversely.

 In this paper, we modify GSRS and achieve the characterization of the Henstock
 integral using modified GSRS.

 The following lemma due to Lu will be useful later.

 Lemma 2. If / is Henstock integrable on [a, 6] then there is a sequence {Xn} of
 closed subsets of [a, 6] such that Xn C Xn+i for all n, [a, 6] ' Xn is of measure
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 zero, / is absolutely Henstock integrable on each Xn and

 lim f f(x)dx = f f(x)dx.
 00 JXn Ja

 Proof. The proof resembles that of showing a conditionally convergent series
 can be rearranged to converge to any real number. Consider

 an = I f(x)dx and 6„ = / f(x)dx
 J An J Bn

 where An = {x; n - 1 < f(x) < n} and Bn - {x; -n < f(x) < -n + 1}
 for n = 1,2,... . Let I denote the integral of / on [a, 6]. Obviously, I is the
 sum of an's and 6n's in some order. Four cases may occur, namely, (i) J2an <

 > -00; (ii) = OO, £6 „ > -00; (iii) £an < OO, J2bn - -00;
 and (iv) J2an = 00, 51 6n = -00. In the first case, / is Lebesgue integrable and
 the result follows directly. In the second case, put fi(x) = f(x) when x G ö^=1An
 and 0 elsewhere, and /2(2) = f(x) when x G U£Li Bn and 0 elsewhere. Then /2 is
 Lebesgue integrable and hence Henstock integrable. It follows that /1 = / - /2 is
 also Henstock integrable and indeed it is Lebesgue integrable. But this is impossible
 for Ylan = -00. Similarly the third case does not occur. It remains to check the
 fourth case.

 First, let I > 0 and construct the following two sequences of positive integers.
 Define n( 1) so that

 n(l)- 1 n(l)

 E ai < I < E a»-
 «=i ť=i

 Next, define m(l) and n( 2) so that

 n(l) 7Ti(l) n(l) m(l)- 1

 E ai + E h < i < È ai + E bi,
 i= 1 t'=l »=1 i=l

 n( 2) - 1 m(l) n( 2) m(l)

 E a, + E 7 < E °« + E 6,.
 »=1 i=i «=i «=i

 Finally, define m(k) and n(k + 1) inductively for k = 2, 3, . . . , so that

 n(k) m(k) n(fc) m(k)- 1

 E a« + E 7 - E + E 6¿,
 t=i ¿= i «=i t=i

 n(fc+l) - 1 m(fc) n(fc+l) m(fc)

 E + È bi < I < E a« + E bi.
 t=l »=1 .=1 ¿=1
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 We shall use the fact that if

 Ja //</</ Jb / or Ja //>/>// Jb Ja Jb Ja Jb

 where A and B are measurable sets with A C 5, then there exists a measurable
 set X such that

 A C X C B and / / = I.
 Jx

 Therefore, in view of the above inequalities, we may choose a measurable set Xk
 so that

 (urii'A.) U (u D X2k.1 D (uä?A.) U (uSS^Bi)

 (u^+1)-Mt) u (u c x2k C (urii+1)A¿) u (u^s.)
 when k = 1, 2, 3, . . . and for each k

 jXk f{x)dx = L

 If Xk is not closed, we may choose a closed set Yk C Xk so that

 I / f(x)dx -I'< 2"fe.
 JYk

 We can verify that all the conditions in Lemma 2 are satisfied with Xk replaced
 by suitable Yk if necessary. The case when I < 0 is similar.

 We remark that in Lemma 2 we may choose Xn so that the primitive F oí f
 is AC*(Xn ) for each n. For definition of AC*(X ), see [3; p.27]. The proof is the
 same as that of Lemma 2 except that we put

 An = {*; |<7n-l(®)| < f(x) < Mx)|},

 Bn = {®;-|^n(a:)| < f(x) < - |^„-i (a:) | } ,

 where [a, 6] = U ^ĻļZn, F is AC*(Zn) for each n, ^o(^) = 0 for all x, and gn(x ) =
 f(x) when x G Zn, zero otherwise.

 2 Modified GSRS

 A measurable function / defined on [a, b] is said to have FSRS if for every
 e > 0 there exist a nonnegative function g which is Lebesgue integrable on [a, b]
 and <$(£) > 0 such that for every ¿-fine division D of [a, b] we have

 I £ f(0(v-u)'<e
 l/(Ć)l>s(Ć)
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 where the sum is taken over D which |/(£)| > <?(£)• Here FSRS stands for func-
 tionally small Riemann sums. Obviously, FSRS includes GSRS as a special case.

 Theorem 3. A measurable function / has FSRS if and only if / is Henstock
 integrable on [a, 6].

 Proof. Suppose / has FSRS. Given e > 0 there are Lebesgue integrable func-
 tion g and <$(£) > 0 such that the corresponding Riemann sums are small. Put

 f*(x) = f(x ) when |/(x)| < g(x),
 = 0 when |/(x)| > g(x).

 Then f* being measurable and dominated is also Lebesgue integrable on [a, 6]. We
 may assume that for the same 8(() > 0 and any two ¿-fine divisions Di and Dļ of
 [a, 6] we have

 l(£.)E /•(«(» - - WEf'ttX* - ")l < e-
 Consequently, using the FSRS property and the above inequality we have

 KA) E /«)(» - «) - (A) E /(«)(" - «)l < 3e.

 Hence / is Henstock integrable on [a, 6].
 Conversely, if / is Henstock integrable on [a, 6] then by Lemma 2 given e >

 0 there is a measurable subset X C [a, b] such that / is absolutely Henstock
 integrable on X and

 I i f(x)dx - I' < e
 J X

 where I denotes the integral of / on [a, 6]. Also, given e > 0 there is S(£) > 0 such
 that for any ¿-fine division D of [a, 6] we have

 l(J>) E /(()(" I < «•

 Put g(x) = f(x) when x € X and zero otherwise. Then g is Lebesgue integrable
 on [a, 6], We may assume for the same S(£) > 0 and for any ¿-fine division D of
 [a, 6] we have

 '(D)J29(0(V~U)- Ja f g(x)dx'<e. Ja

 Consequently, using the above three inequalities we obtain

 I £ f(0(v-u) I = |(i>) E /(0(® -«)-(/>) E *(0(»-«)l
 l/«)l>WOI

 < 3e.
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 That is, / has FSRS.
 We remark that we cannot replace g by a constant in the proof of Theorem 3.

 That is why GSRS and FSRS are not equivalent. Further, in the proof we may
 choose X so that |[a, b] - X' is arbitrarily small. Also, as seen in the proof, in the
 difinition of FSRS instead of g we may say: for every e > 0 there exists a closed
 set X on which / is Lebesgue integrable and ¿(£) > 0 such that for every ¿-fine
 division K of [a, b] we have

 1 2 /(0(«-«)l < e
 it*

 where the sum is taken over D for which Ç $ X.
 In what follows, we give another version of modified GSRS. Ding [1] gives a

 Riemann-type definition to the Lebesgue integral, called the RL integral, using
 a constant S and a small open set G. A countable extension of the RL integral
 gives rise to the DL integral [2], which is equivalent to the Kunugi integral and not
 the Henstock integral. Here we give a version which is equivalent to the Henstock
 integral.

 Theorem 4. A function / is Henstock integrable on [a, 6] if and only if there
 is a number A such that for every e > 0 and tj > 0 there exist a constant So > 0
 and an open set G with |G| < r) such that for any division D = {([u, t>], £)} of [a, 6]
 with 0 < v - u < So and ( € [«, u] - G we have

 I E /«)(» - «) - ¿I <e
 ito

 and there exists £(£) > 0 satisfying (£ - £ + ^(0) C G when £ € G such that
 for any ¿-fine division D of [a, 6] we have

 I E /«)(» - <01 <e •
 feo

 Proof. Suppose / is Henstock integrable on [a, 6]. Given e > 0 there is ¿(£) > 0
 such that for any ¿-fine division D of [a, b] we have

 IU>)E/(fl(»-<0-4 <€•
 Given T] > 0 there are So > 0 and an open set G' such that |Gi| < r)/ 2 and

 Gi D {x; 0 < ¿(x) < ¿o}-

 This is possible since we may assume ¿(x) to be measurable [3; p.60]. Next, since /
 has FSRS by Theorem 3, we can choose g bounded by N and S(£) > 0 satisfying the
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 condition of FSRS. In view of the remarks at the end of the proof of Theorem 3, we
 can choose g bounded by N, G = {x; |/(x)| > </(x)} open since {x; |/(x)| < <7(®)}
 can be made closed, and further |Gf2 1 < f?/2. We may choose <5(£) here to be the
 same as above.

 Put G = Gì U Gì. Then |G| < r¡. Define 6*(£) = S0 when £ & G and
 (í - Č + ¿*(0) C (Č - £(0» í + ¿(0) H G when £ 6 G. For any ¿'-fine
 division D of [a, b] we have

 Y^'f(0(v~u)' ^ I E f(0(v - «)l + I /(0(u-«)l
 £çG tčGļ t£G-G 2

 < G +Ntļ.

 and consequently,

 I £ f(0(v - u) - A' < |(Z?)E/(0(®-«)-^l + lE/(0(®-«)l
 ÜG i€G

 < 2e + NT)

 Hence all the conditions are satisfied.

 Conversely, suppose the conditions are satisfied. We put 6*(£) = So when Í G
 and <$*(£) = £(£) when £ G G. Then / is Henstock integrable on [a, 6] using £*(£).

 3 Convergence theorems
 To illustrate the use of FSRS, we shall prove in the following a convergence

 theorem.

 Theorem 5. Let {/n} be a sequence of measurable functions such that /n(x) - ►
 /(x ) almost everywhere in [a, 6] as n - ► oo. If fn have FSRS uniformly in n, then
 / is Henstock integrable on [a, 6] and we have

 rb rb

 Jim J fn{x)dx = J f(x)dx.

 Proof. By assumption, for every e > 0 there exist a Lebesgue integrable func-
 tion g and ¿(£) > 0 such that for every 6-fine division D of [a, b] and for all n we
 have

 I ^2 fn(0(v - ")l < e»
 l/n(0l>i(0

 where g and 6(£) are independent of n. Hence we may replace /„ by / and therefore
 / has FSRS and is Henstock integrable on [a, 6]. Put /*( x ) = /n(x) when |/n (*)l ^
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 g(x ) and 0 otherwise. Also, f*(x ) = f(x ) when |/(x)| < g(x ) and 0 otherwise.
 Since fn and /* are all Henstock interable on [a, 6], there is ¿n(^) > 0 with Sn(0 <
 6(£) such that for any ¿„-fine division D we have

 IP) X! fn(0(V - U) - Ja [ fn(x)dx I < Ja

 IP) H fn(0(v ~U)~ Í fn(x)dx' < £.
 Ja

 Combining the three inequalities, we have

 I f f*(x)dx - f fn(x)dx I < 3 e.
 Ja Ja

 Also, the above holds with /* and /„ replaced by f* and /.
 It follows from Lebesgue's dominated convergence theorem that

 il™ / fn(x)dx = ja f*{x)dx.

 Thus for sufficiently large n we have

 I / fn(x)dx - f f(x)dx I < le. Ja Ja

 Hence the proof is complete.

 Corollary 6. Let /„(x) - ► f(x) almost everywhere in [a, 6] as n - ► oo. If
 g(x) < fn(x) < h(x) for almost all x in [a, 6] and all n where all functions are
 measurable and have FSRS, then / is Henstock integrable on [a, 6] and we have

 Jim J fn(x)dx = J f(x)dx.

 Proof. For every e > 0 there exist X' on which h is Lebesgue integrable and
 <§i(£) > 0 such that for every ¿i-fine division of [a, 6] we have

 I £ h(t)(v - u)' < e.
 itx j

 Also, there exist X 2 on which g is Lebesgue integrable and 6ļ(š) > 0 such that for
 every ¿2-fine division of [a, 6] we have

 I J2 9(0(v - «01 < e.
 itXi
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 Suppose the above holds with ¿i(£)>¿2(£) replaced by ¿(£) = min{¿i(£), ¿2(0) and
 Xi,Xļ by X. Then for any ¿-fine division of [a, 6] and for all n we have

 I E /»(0(v - u)' ^ 'Y,h(0(v ~u)'
 iix ux

 + 'Y,9{Ì){v -u)'
 a*

 < 2e.

 Hence /„ have FSRS uniformly in n and by Theorem 5 the result follows.
 It is easy to see that we may replace ¿1 (0)^(0 by £(£)• ^ remains to show

 that we may replace Xi,Xļ by X. Since h - g is Henstock integrable on [a, 6]
 and nonnegative, its primitive is absolutely continuous [3; p. 18]. Modify ¿(¿) if
 necessary and there exists 77 > 0 such that for Y C [a, b] with 'Y' < T] and for any
 ¿-fine division of [a, b] we have

 I £ {MO -««)}(» -«)l<2e.
 íěK

 Note that we may choose X' above so that |[a, 6] - X'' < tj. Then for any ¿-fine
 division of [a, 6] we have

 lX^(0(v-«)l < I 5Z{MO-0(OKv-«)l + l E
 Ì(Xi HXx HXi

 < 3e.

 Consequently, we may choose X = Xi , i.e. we may replace X2 above by X' with
 the corresponding Riemann sum less than 3e and the proof is complete.

 Corollary 6 can be proved easily by writing 0 < /„ - g < h - g and the use of the
 Lebesgue's dominated convergence theorem. It does not seem possible to deduce
 the generalized dominated convergence theorem [4] as a consequence of Theorem
 5.
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