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 The Density Topology is not Generated

 The density continuous functions, Cd, are the real functions fš. (R, r¿) - ►
 (R, r<¿) which are continuous when the density topology

 t<¿ = {A C R: every a € A is a density point of A}

 is used on both the domain and the range. (For more details on the density
 topology see [6] or [7].) It has recently been shown that the density continuous
 functions do not form a vector space and there are monotone, and even C°°
 functions which are not density continuous [2]. On the other hand, all locally
 convex functions are density continuous [2] and density continuous functions
 are in the class Baire*l [3].

 The purpose of this note is to answer a question posed by Krzysztof
 Ostaszewski [5] related to the properties of the set of density continuous
 functions, Cd, when viewed as a semigroup. This question is:

 Query Is the density topology generated?

 It turns out that this question can be answered negatively using a character-
 ization of the level sets of a density continuous function.

 A topological space (X, r) is generated if, whenever t' is another topology
 on X , with the property that the set of continuous selfmaps

 contains the set of continuous selfmaps / : {X, r)- >{X, r), then it is also
 true that t' D t. The generated spaces are characterized by the following
 theorem of Warndof [8]. (Compare also [4, Definition 2.2, p. 198].)
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 Theorem 1 A Hausdorff topological space (X, r) is generated if, and only if,
 the class of complements of level sets of its continuous selfmaps is a subbase
 for t.

 Therefore, to show that a topology is not generated, it suffices to show
 that the level sets of the continuous selfmaps under that topology do not
 form a subbase for the closed sets of that topology. Our argument is based
 upon the following facts [1].

 Theorem 2 Cd is a lattice.

 Theorem 3 The associated sets of density continuous functions, i.e., the
 sets in the form R' /_1(a) for f € Cd and oéR, are precisely the density
 open sets which are in fl G¿.

 In what follows int(A) and A stand for the interior and closure of A C R
 with respect to the ordinary topology on R.

 Lemmai If f G Cd and a E [-00,00), then int({/ > a}) is dense in
 {/ > a}-

 Proof. Let G = {/ > a}. Assume that int(Cr) is not dense in G. Then
 there is an open interval I such that IC'G ^ 0, but /flinty) = 0. Since both
 G and Gc are G 5 sets according to Theorem 3, the Baire category theorem
 implies that G must be nowhere dense in I. We see that I D (7 is a nowhere
 dense perfect subset of I. It is clear that G is dense in I fl ü.

 Let J be a component of I fl (( 7)c . Since G is density open, we see that
 J C Gc. Using the fact that U is nowhere dense in I, this implies that Gc is
 dense in (7 fl I.

 But, we have established that both G D I and Gc fl I are dense, dis-
 joint, G¿ subsets of G fl /, which violates the Baire category theorem. This
 contradiction proves Lemma 1.

 Theorem 4 The density topology on R is not generated.

 Proof. Let r = {R ' /-1(0) : / G Cd}- It suffices to show that r is not
 a subbase for the density topology. To do this, we note that since Theorem
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 2 shows Cd is a lattice, r is closed under finite intersections. Therefore, it
 suffices to show that r is not a basis for the density topology.

 Let E = R ' Q. It follows at once from Lemma 1 that E cannot be
 written as a union of elements from r because int(_E) = 0. But, E has full
 measure in R, so it is open in the density topology. This contradiction proves
 the theorem.

 By the above theorem the reals equipped with the density topology is
 an example of a completely regular not generated topological space whose
 semigroup of continuous selfmaps has the inner authomorphism property
 [5]. It is the only such example known to the authors. In particular, the
 implication in the following theorem of Magill [4]

 If a completely regular space X is generated, then X has the
 inner automorphism property.

 cannot be reversed.
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