Hung Hwan Lee, and In Soo Baek, Kyungpook National University, Taegu 702–701, Korea

The Relations of Hausdorff, *-Hausdorff, and Packing Measures

1. Introduction

We use several distinct outer measures to investigate the size of thin sets in \mathbf{R}^d . In this paper, we are interested in only three outer measures, ϕ -m (Hausdorff measure), ϕ - m^* (*-Hausdorff measure), and ϕ -p (packing measure), based on a monotone function ϕ .

In [5], it was shown that $\phi - m(E) \le \phi - m^*(E) \le \phi - p(E)$ for any set $E \subset \mathbf{R}^d$.

We will investigate some other relations of the aforementioned outer measures.

We adopt a new definition of *-regularity, and p-regularity by using *-Hausdorff and packing measures, as regularity is defined by using Hausdorff measure. We will show that the decomposition theorem holds for packing measure as it does for Hausdorff measure [1]. Further, every subset of a p-regular set has identical *-Hausdorff and packing measures, whereas every subset having positive packing measure of a p-irregular set cannot have identical *-Hausdorff and packing measures. Futhermore, the set of p-regular points of a given set is contained in the set of *-regular points of the given set ϕ -p.a.s., and their difference is of ϕ -m measure zero. A similar result is

Supported in part by TGRC-KOSEF and the Basic Science Research Institute program, Ministry of Education, Korea, 1990.

obtained for the set of p-regular points and the set of regular points of the given set. If E is ϕ -p-measurable and ϕ - $p(E) < \infty$ for $\phi(t) = t$, then we can characterize the maximal Y-set of E ϕ -p.a.s. by the set of p-regular points of E.

2. Preliminaries

Let $\phi:[0,1]\to \mathbf{R}$ be a function which is increasing, continuous with $\phi(0)=0,\ \phi(h)>0$ for h>0, and satisfies a smoothness condition. The smoothness condition is that there exists $c_{\phi}>0$ such that $\phi(2s)\leq c_{\phi}\phi(s)$ for $0\leq s\leq \frac{1}{2}$.

The Hausdorff measure of a set $E \subset \mathbf{R}^d$ is defined as

$$\phi - m(E) = \lim_{\delta \to 0} \inf \{ \sum_{n=1}^{\infty} \phi(\operatorname{diam} G_n) : E \subset \bigcup_{n=1}^{\infty} G_n, \operatorname{diam} G_n \leq \delta \}$$

The *-Hausdorff measure of a set $E\subset {\bf R}^d$ (see [5]) is defined as $\phi-m^*(E)=\sup\{\phi-M^*(F):F\subset E\}$, where

$$\phi - M^*(F) = \lim_{\delta \to 0} \inf \{ \sum_{n=1}^{\infty} \phi(\operatorname{diam} B_n) : F \subset \bigcup_{n=1}^{\infty} B_n, \operatorname{diam} B_n \leq \delta,$$

 B_n are open balls centered in F}

We note that $\phi - m(E) \le \phi - m^*(E) \le c \phi - m(E)$ for a suitable constant c > 0 [5].

We also note that an equivalent definition of *-Hausdorff measure is obtained if $\phi - m^*$ is defined for centered closed balls instead of centered open balls.

We recall the packing measure $\phi - p$ (see [9]) which is obtained by a two-stage definition using the pre-measure $\phi - \mathbf{P}$ defined for bounded sets

 $E \subset \mathbf{R}^d$ as follows:

$$\phi - \mathbf{P}(E) = \lim_{\delta \to 0} \sup \{ \sum_{n=1}^{\infty} \phi(\text{ diam } B_n) : B_n \text{ are disjoint open } \}$$

balls centered in E with diam $B_n \leq \delta$

It is immediate from the definition that $\phi - \mathbf{P}(E) = \phi - \mathbf{P}(\overline{E})$. We employ Method I by Munroe [3] to obtain the outer measure:

$$\phi - p(E) = \inf \{ \sum_{n=1}^{\infty} \phi - \mathbf{P}(E_n) : E_n \text{ are bounded }, E \subset \bigcup_{n=1}^{\infty} E_n \}$$

We note that $\phi - m$, $\phi - m^*$, and $\phi - p$ are metric outer measures ([1], [5], [8]); hence the corresponding classes of measurable sets include the Borel sets. Further, $\phi - m$ and $\phi - p$ are Borel regular and inner regular ([1], [8]). Also we see that if E is $\phi - p$ measurable, then E is $\phi - m$ measurable and $\phi - m^*$ measurable. Using the fact that $\phi - p$ is Borel regular, Borel sets are $\phi - m$ measurable and $\phi - m^*$ measurable, and $\phi - m \le \phi - m^* \le \phi - p$, we easily obtain the above result.

3. Density behaviour for a general measure μ

Throughout this section we assume that μ is a finite measure defined on the Borel subsets of \mathbb{R}^d . This implies that μ is inner regular.

If $B_r(x)$ denotes the closed ball centered at x with radius r, we define ϕ -densities by

$$\underline{D}_{\mu}^{\phi}(x) = \lim_{r \downarrow 0} \inf \mu(B_r(x)) / \phi(2r)$$

$$\overline{D}_{\mu}^{\ \phi}(x) = \lim_{r\downarrow 0} \sup \mu(B_r(x))/\phi(2r)$$

We obtain equivalent ϕ -densities using $B_r(x)^0$ instead of $B_r(x)$. Now, we state four lemmas due to Raymond and Tricot (see Theorem 1.1 of [5]).

Lemma 3.1. For any Borel set E with $\phi - m^*(E) < \infty$,

$$\mu(E) \ge \phi - m^*(E) \inf\{\overline{D}_{\mu}{}^{\phi}(x) : x \in E\}.$$

Lemma 3.2. For any Borel set E,

$$\mu(E) \le \phi - m^*(E) \sup\{\overline{D}_{\mu}{}^{\phi}(x) : x \in E\}.$$

Lemma 3.3. For any Borel set E with $\phi - p(E) < \infty$,

$$\mu(E) \ge \phi - p(E)\inf\{\underline{D}_{\mu}^{\phi}(x) : x \in E\}.$$

Lemma 3.4. For any Borel set E,

$$\mu(E) \le \phi - p(E) \sup\{\underline{D}_{\mu}^{\phi}(x) : x \in E\}.$$

In the sequal, we will often apply the above lemmas to the measures $\mu(F) = \phi - m(E \cap F), \phi - m^*(E \cap F),$ and $\phi - p(E \cap F),$ so we introduce some notations for these cases. If $\phi - p(E) < \infty$ and $\mu(F) = \phi - p(E \cap F),$ put

$$\overline{D}_{\mu}^{\phi}(x) = \overline{\Delta}_{\phi}(x, E) = \lim_{r \downarrow 0} \sup \phi - p(B_r(x) \cap E)/\phi(2r)$$

$$\underline{D}_{\mu}^{\phi}(x) = \underline{\triangle}_{\phi}(x, E) = \lim_{r \downarrow 0} \inf \phi - p(B_r(x) \cap E) / \phi(2r)$$

Similarly, if $\phi - m(E) < \infty$ and $\mu(F) = \phi - m(E \cap F)$, put

$$\overline{D}_{\mu}^{\ \phi}(x) = \overline{D}_{\phi}(x, E) \text{ and } \underline{D}_{\mu}^{\ \phi}(x) = \underline{D}_{\phi}(x, E)$$

If $\phi - m^*(E) < \infty$ and $\mu(F) = \phi - m^*(E \cap F)$, in a similar manner, we can define $\overline{D}^*_{\phi}(x, E)$ and $\underline{D}^*_{\phi}(x, E)$.

If $\overline{\triangle}_{\phi}(x,E) = \underline{\triangle}_{\phi}(x,E)$, we write $\Delta_{\phi}(x,E)$ for the common value. Similarly, we write $D_{\phi}(x,E)$ and $D^*_{\phi}(x,E)$. In particular, when $0 < \phi - p(E) < \infty$ for $\phi - p$ measurable set E, a point $x \in E$ is called a p-regular point of E if $\underline{\triangle}_{\phi}(x,E) = \overline{\triangle}_{\phi}(x,E) = 1$; otherwise x is a p-irregular point. When $0 < \phi - p(E) < \infty$ for $\phi - p$ measurable set E, E is said to be p-regular if $\phi - p$ -almost all of its points are p-regular, and p-irregular if almost all of its points are p-irregular. Similarly, we can define regularity and *-regularity for $\phi - m$ and $\phi - m^*$.

Next, we introduce two useful propositions which we shall require to prove the decomposition theorem for packing measures.

Proposition 3.5. Suppose that E is $\phi-p$ measurable and $\phi-p(E)<\infty$. Then $\overline{\Delta}_{\phi}(x,E\backslash F)=0$ $\phi-m.a.s.$ on F for $\phi-p$ measurable set $F\subset E$.

Further, $\overline{\triangle}_{\phi}(x,F) = \overline{\triangle}_{\phi}(x,E) \ \phi$ -m.a.s. on F.

Proof. See Corollary 7.4 of [4].

Proposition 3.6. Let $G = \{x \in E : \overline{\Delta}_{\phi}(x, E) < k\}$, where E is $\phi - p$ measurable and $\phi - p(E) < \infty$, and k is a positive constant. For any $\phi - p$ measureble set $F \subset G$, if $\phi - m(F) = 0$, then $\phi - p(F) = 0$.

Proof. As in the proof of Proposition 3.5, let E and F be Borel sets. Using Lemma 3.2 with $\mu(E) = \phi - p(E \cap F)$, we obtain $\phi - p(F) \leq \phi - m^*(F) \sup_{x \in F} \overline{\Delta}_{\phi}(x, E) \leq \phi - m^*(F) k \leq c_{\phi} k \phi - m(E)$. Hence, if $\phi - m(F) = 0$, then $\phi - p(F) = 0$.

Remark 3.7. It is easy to show that the above statement is true for

 $G=\{x\in E:\overline{\Delta}_\phi(x,E)<\infty\}$; hence Corollary 4.6 of [9] is a special case of Proposition 3.6.

4. Main theorems

A subset $E \subset \mathbf{R}^d$ is said to be *-strongly ϕ -regular (strongly ϕ -regular) if E is $\phi - p$ measurable and $0 < \phi - m^*(E) = \phi - p(E) < \infty$ (if E is $\phi - p$ measurable and $0 < \phi - m(E) = \phi - p(E) < \infty$).

We list the next six lemmas essentially due to Raymond and Tricot (see Corollaries 7.1, 7.2, and 8.1, Propositions 9.1 and 9.2, and Corollary 9.5 of [5]).

Lemma 4.1. If E is $\phi - p$ measurable and $\phi - p(E) < \infty$, then $\triangle_{\phi}(x, E) = 1$ ϕ -p.a.s. on E.

Lemma 4.2. If E is $\phi - p$ measurable and $\phi - p(E) < \infty$, then $\overline{D}^*_{\phi}(x, E) = 1 \phi - m^*.a.s. (\phi - m.a.s.)$ on E.

Lemma 4.3. If E is $\phi - p$ measurable and $0 < \phi - p(E) < \infty$, then $\phi - m(E) = 0$ if and only if $\overline{\triangle}_{\phi}(x, E) = \infty$ $\phi - p.a.s.$ on E.

Lemma 4.4. If E is $\phi - p$ measurable and $\phi - p(E) < \infty$, the following statements are equivalent:

- 1) $\phi m^*(E) = \phi p(E)$.
- 2) $\overline{\triangle}_{\phi}(x,E) = 1 \ \phi p.a.s. \ on E.$
- 3) $\triangle_{\phi}(x,E) = 1 \ \phi$ -p.a.s. on E.

Lemma 4.5. If E is $\phi - p$ measurable and $\phi - p(E) < \infty$, the following statements are equivalent:

- 1) $\phi m(E) = \phi p(E)$.
- 2) $D_{\phi}(x, E) = 1 \ \phi p.a.s.$ on E.

Lemma 4.6. Let $\phi(t) = t^k$ where $k \in \mathbb{N}$. If E is $\phi - p$ measurable and $\phi - p(E) < \infty$, the following statements are equivalent:

- 1) $\phi m(E) = \phi p(E)$.
- 2) $\phi m^*(E) = \phi p(E)$.

The proofs of the next two lemmas are similar to those of Theorem 6.2 and Corollary 6.3 of [9], with the use of Lemmas 3.3 and 3.4.

Lemma 4.7. If E is $\phi - p$ measurable and $\phi - p(E) < \infty$, then E is *-strongly ϕ -regular if and only if $\underline{D}^*_{\phi}(x, E) = 1$ ϕ -p.a.s. on E.

Lemma 4.8. If E is ϕ -p measurable, ϕ -p(E) $< \infty$, and $\overline{\triangle}_{\phi}(x, E) < \infty$ ϕ -p.a.s. on E, then E is *-strongly ϕ -regular if and only if it is *-regular.

Now we state a decomposition theorem of Besicovitch type for packing measures.

Theorem 4.9. (Decomposition theorem) If E is $\phi - p$ measurable and $\phi - p(E) < \infty$, then the set of p-regular points of E is a p-regular set, and the set of p-irregular points of E is a p-irregular set.

Proof. First, by lemma 4.1, we only need to show that

$$\overline{\triangle}_{\phi}(x, \triangle) = 1 \text{ ϕ-p.a.s. on } \triangle, \text{ where } \triangle = \{x \in E : \triangle_{\phi}(x, E) = 1\}.$$

By Proposition 3.5, $\overline{\Delta}_{\phi}(x, \Delta) = \overline{\Delta}_{\phi}(x, E) \phi$ -m.a.s. on Δ .

By Proposition 3,6, $\overline{\Delta}_{\phi}(x, \Delta) = \overline{\Delta}_{\phi}(x, E) \phi$ -p.a.s. on Δ .

Second, we must show that it is not ϕ -p.a.s. on $E \setminus \Delta$ that $\Delta_{\phi}(x, E \setminus \Delta) = 1$.

By Proposition 3.5, on $E \setminus \Delta$ it is not ϕ -m.a.s. that $\Delta_{\phi}(x, E \setminus \Delta) = 1$. Therefore, by Proposition 3.6 that $\phi - p(\{x \in E \setminus \Delta : \Delta_{\phi}(x, E \setminus \Delta) = 1\}) = 0$.

Theorem 4.10 (Propositions 11.1 and 11.2 of [4]) Let E be any set in \mathbf{R}^d . If $\phi - m^*(E) = \phi - p(E) < \infty$, then $\phi - m^*(A) = \phi - p(A)$ for any $\phi - m^*$ measurable set $A \subset E$. Further, if $\phi - m(E) = \phi - p(E) < \infty$, then $\phi - m(A) = \phi - p(A)$ for any set $A \subset E$.

Proof. It is immediate from the fact that $\phi - m$ and $\phi - p$ are Borel regular.

We remark that, if $\phi - m^*$ measurable $A \subset \Delta \phi$ -p.a.s., then $\phi - m^*(A) = \phi - p(A)$. The following theorem is the converse of this remark.

Theorem 4.11. Let E be $\phi - p$ measurable and $\phi - p(E) < \infty$. If $\phi - m^*(A) = \phi - p(A)$, where $A \subset E$, then $A \subset \{x \in E : \Delta_{\phi}(x, E) = 1\}$ ϕ -p.a.s.

Proof. We may assume that A is a Borel set. Suppose that $\phi - p(A \setminus \Delta) > 0$, where $\Delta = \{x \in E : \Delta_{\phi}(x, E) = 1\}$.

Then $\phi - p(A \setminus \Delta) = \phi - m^*(A \setminus \Delta)$ by Theorem 4.10, and $\overline{\Delta}_{\phi}(x, A \setminus \Delta) = 1$ ϕ -p.a.s. on $A \setminus \Delta$ by Lemma 4.4. By Proposition 3.5, $\overline{\Delta}_{\phi}(x, E) = 1$ ϕ -m.a.s. on $A \setminus \Delta$. Combining this with Lemma 4.1, we obtain that $\Delta_{\phi}(x, E) = 1$ ϕ -m.a.s. on $A \setminus \Delta$. Proposition 3.6 then yields $\Delta_{\phi}(x, E) = 1$ ϕ -p.a.s. on $A \setminus \Delta$, which is a contradiction.

Remark 4.12. If $\phi - p(A) > 0$ for a subset A of a p-irregular set, then $\phi - m^*(A) < \phi - p(A)$.

Theorem 4.13. If E is $\phi - p$ measurable and $\phi - p(E) < \infty$, then $\{x \in E : \Delta_{\phi}(x, E) = 1\} \subset \{x \in E : D^*_{\phi}(x, E) = 1\}$ ϕ -p.a.s..(i.e., the set of

p-regular points of E is contained in the set of *-regular points of E ϕ -p.a.s.)

Proof. We may assume that E is a Borel set. Let $\Delta = \{x \in E : \Delta_{\phi}(x, E) = 1\}$ and $D^* = \{x \in E : D^*_{\phi}(x, E) = 1\}$

By the decomposition theorem (Theorem 4.9), \triangle is a p-regular set; hence *-strongly ϕ -regular by Lemma 4.4. Since \triangle is $\phi - p$ measurable, we have $\underline{D}^*_{\phi}(x, \triangle) = 1$ ϕ -p.a.s. on \triangle , by Lemma 4.7. Thus, $\underline{D}^*_{\phi}(x, E) \geq 1$ ϕ -p.a.s. on \triangle . Together with Lemma 4.2 and Proposition 3.6, we obtain that $D^*_{\phi}(x, E) = 1$ ϕ -p.a.s. on \triangle .

Theorem 4.14. If E is $\phi - p$ measurable and $\phi - p(E) < \infty$, then $\phi - m(D^* \backslash \Delta) = 0$, where D^* is the set of *-regular points of E, and Δ is the set of p-regular points of E.

Proof. We may assume that E is a Borel set. Let $X = D^* \setminus \Delta$. Then X is *-regular, since D^* is *-regular and Δ is a Borel set. Suppose that $\phi - m(X) > 0$. Then X is not *-strongly ϕ -regular by Remark 4.12. By Lemma 4.8, it is not true that $\overline{\Delta}_{\phi}(x,X) < \infty$ ϕ -p.a.s on X. In fact, $\overline{\Delta}_{\phi}(x,X) = \infty$, ϕ -p.a.s., on X using again Lemma 4.8. For, let $X_1 = \{x \in X : \overline{\Delta}_{\phi}(x,X) < \infty\}$. Then $\phi - p(X_1) = 0$, since X_1 is *-regular and $\overline{\Delta}_{\phi}(x,X_1) \leq \overline{\Delta}_{\phi}(x,X) < \infty$ on X_1 . By Lemma 4.3, $\phi - m(X) = 0$. This is a contradiction.

Corollary 4.15. If E is $\phi - p$ measurable and $\phi - p(E) < \infty$, then $\phi - m(D \setminus \Delta) = 0$, where D is the set of regular points of E, and Δ is the set of p-regular points of E.

Proof. Clearly, D is a subset of $D^*\phi$ -m.a.s.. From Theorem 4.13 and Theorem 4.14 follows our result.

Theorem 4.16. Let $\phi(t) = t^k$, where $k \in \mathbb{N}$. If E is $\phi - p$ measurable with $\phi - p(E) < \infty$, then $\Delta \subset D \phi$ -p.a.s. and $D = D^* \phi$ -m.a.s., where

 \triangle , D, and D* are the set of p-regular, regular, and *-regular points of E respectively.

Proof. First, \triangle is p-regular; hence $\phi - m(\triangle) = \phi - p(\triangle)$, by Lemma 4.4 and Lemma 4.6. By Lemma 4.5, \triangle is regular. Thus $D_{\phi}(x, \triangle) = 1$ ϕ -m.a.s. on \triangle . Since $D_{\phi}(x, E \setminus \triangle) = 0$ on \triangle (Corollary 2.4 of [1]), $D_{\phi}(x, E) = 1$ ϕ -m.a.s. on \triangle . By Proposition 3.6, it follows that $D_{\phi}(x, E) = 1$ ϕ -p.a.s. on \triangle . That is, $\triangle \subset D\phi$ -p.a.s..

Second, trivially $D \subset D^*$ ϕ -m.a.s.. Noting that $\phi - m(D^* \setminus \Delta) = 0$ by Theorem 4.14 and $\Delta \subset D$ ϕ -m.a.s., we conclude that $\phi - m(D^* \setminus D) = 0$.

We define E to be a Y-set if it is included in a countable union of rectifiable arcs [9].

Theorem 4.17. If E is $\phi - p$ measurable and $\phi - p(E) < \infty$ for $\phi(t) = t$, then \triangle , the set of p-regular points of E, is the maximal Y-set of E ϕ -p.a.s.

Proof. Since \triangle is $\phi - p$ measurable, \triangle is $\phi - m$ measurable. By Corollary 6.4 of [9], $\triangle = \triangle_1 \cup \triangle_2$, where \triangle_1 is a Y-set and $\phi - p(\triangle_2) = 0$. We easily show that \triangle_1 is strongly regular.

By Remark 4.12, we see that there is no strongly regular set A such that $A \subset E \setminus \Delta$ and $\phi - p(A) > 0$.

Hence \triangle is the maximal Y-set of E ϕ -p.a.s.

REFERENCES

- [1] K.J. Falconer, The Geometry of Fractal Sets (Cambridge University Press, 1985).
- [2] M.de Guzmán, Differentiation of Integrals in \mathbb{R}^n . (Springer Lecture

- Note in Mathematics 481, 1975).
- [3] M. Munroe, Measure and Integration (Addison-Wesley, 1971).
- [4] X.S. Raymond and C. Tricot, Packing regularity of sets in N-space, Centre de Recherches Mathematiques-1413, Octobre 1986, Université de Montreal.
- [5] X.S. Raymond and C. Tricot, Packing regularity of sets in n-space, Math. Proc. Camb. Phil. Soc. 103(1988), 133-145.
- [6] C.A. Rogers, The Hausdorff measures (Cambridge University Press, 1970).
- [7] S.J. Taylor and C. Tricot, The packing measure of rectifiable sets, *Real Analysis Exchange*, Vol.10, No. 1 (1984-85), 58-67.
- [8] S.J. Taylor and C. Tricot, Packing measure, and it evaluation for a Brownian path. Trans. Amer. Math. Soc. 288(1985), 679-699.
- [9] S.J. Taylor and C. Tricot, The packing measure of recitifiable subsets of the plane, *Math. Proc. Camb. Phil. Soc.*, 99(1986), 285-296.
- [10] C. Tricot, Two definitions of fractional dimension, Math. Proc. Camb. Phil. Soc., 91(1982), 57-74.

Received June 14, 1990