
 Real Analysis Exchange Vol.16 (1990-91 )
 F.S. Cater, Department of Mathematics, Portland State University, Portland, Ore-
 gon 97207.

 A BERNSTEIN PARTING OF A
 SPACE OF MEASURABLE SETS

 Let E be a Lebesgue measurable subset of the real line R such that 0 < m(E) <
 oo. Let X denote the family of measurable subsets of E modulo sets of measure
 zero; that is, subsets A and B of E are the same element in X if m(A ' B) =
 m(B ' A) = 0. For sets B and C in X, let the distance between B and C be
 m(B ' C) + m(C ' B ). The resulting metric space X is separable. (Consider all
 sets of the form U fi E where U is the union of finitely many intervals with rational
 endpoints.)

 Definition. By a Bernstein parting of a separable metric space Y, we mean a
 partition of Y into two disjoint connected dense subsets.

 It is known [SS] that the plane R2 has a Bernstein parting. In this note we prove
 that certain other separable metric spaces have Bernstein partings. In particular,
 the metric space X defined above has a Bernstein parting. It will be easier to
 prove that the Hilbert cube (see [HS]), and any separable metric linear space of
 dimension > 2, have Bernstein partings (see Lemma 1). On the other hand, the
 circle in R2 and the real line R obviously do not have Bernstein partings. Any
 separable metric space that has a Bernstein parting is necessarily connected.

 Lemma 1. Let F be a separable metric space such that for any points a and b
 in Y, there is a subspace P of Y containing a and b such that P is homeomorphic
 to the closed unit disc in R2. Then Y has a Bernstein parting.

 Proof. Let T denote the first ordinal number with cardinality of the continuum,
 c. Because Y is separable, there are at most c closed connected nondegenerate
 subsets of Y. Use the ordinal numbers a < T to index the closed connected

 nondegenerate subsets of Y, {Ca}a<r- Now each Ca has at least c points because
 Ca is connected and F is a metric space. (If t,s £ Ca then any ball with center t
 that does not contain s has a boundary that meets Ca .) By transfinite induction
 we choose two distinct elements aa and ba in Ca (a < T) such that the sets
 A - Ua<r{a<*} and B = U*<r{&cr} are disjoint.

 471



 We claim that A and B are dense in Y . Let y G U and U be an open subset
 of Y. By hypothesis there is a subspace Pi of Y such that y € Pi and P' is
 homeomorphic to the closed unit disc in R2. Then for some a < T, Ca C Pi D U
 because any open subset of R 2 contains a closed connected nondegenerate subset.
 Thus aa G Pi H U and ba G Pi fi U, and A and B are dense.

 We claim that A and B are connected. Let U and V be open sets meeting A
 such that A C V U V and U fi V D A is void. Let t G U fi A and s G V fi A. Let P

 be a subspace of Y containing s and t such that P is homeomorphic to the closed
 unit disc in R2. Then either t is in the boundary of V, or V H P is not dense in
 P and we can deduce from [N] that the boundary of V D P contains Cß and ap
 for some ß < T. In any case A meets the boundary of V. But A ' V C U, so
 U meets V. Because A is dense in Y , the set U D V fi A must be non void. This
 contradiction proves that A is connected. Likewise B is connected.

 Finally, A and Y ' A constitute a Bernstein parting of Y . □

 Observe that any Euclidean space, or more generally any separable metric
 vector space, of dimension > 2, satisfies the hypothesis of Lemma 1 and hence has
 a Bernstein parting. The same is true of any separable Banach space of dimension
 > 2, or of the unit ball of such a Banach space. In particular, the Hilbert cube has
 a Bernstein parting.

 We show that our space X satisfies the hypothesis of Lemma 1 .

 Lemma 2. Let A and B be two distinct elements of the space X. Then there
 is a subspace P of X containing A and B such that P is homeomorphic to the
 closed unit disc in R2.

 Proof. Let S be a measurable subset of E. If m(S) > 0, then for each real
 number t , 0 < t < 1, there is the largest number x(t ) such that m((-oo,x(t)) D
 S) = t m(S). Put (S)t = (-oo,x(*))n£ and (S)0 = 0, (S)i = 5. If m(S) = 0, let
 (5% = 0 for 0 < t < 1 and (5)i = S. In any case, ( S)t C (S), if t <q.

 Either m(A ' B) > 0 or m(B ' A) > 0. Without less of generality, we assume
 m(A ' B) > 0. We use the work of the preceding paragraph to partition A ' B
 into disjoint measurable subsets Sí,^ of equal measure; Si U Sļ = A ' B, and
 m(S') = m(S2) = m(A ' B)/ 2. Lelt S3 = An B and S4 = B ' A. (Of course S3
 and S4 might be null sets.) Let (5,)t (0 < t < 1) be as described in the preceding
 paragraph. Thus m(Si)t = t rn{Si), (5,)ť C Si, and (5,)t C if t < q. Put
 C = Si.

 By direct computation we find that in R 2,
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 {m{A fi Si), m(A n S2)) = ( m(A ' B)/ 2, m(A ' B)/2),

 (m(B H Sļ), m{B fi S2)) = (0, 0),

 (m(C fi Si), m(C D Sļ)) = ( m(A ' B)/ 2, 0),

 and these points are the vertices of a triangle in R 2. Let T denote the 2-simplex
 of R2 bounded by this triangle.

 For ( u,v ) € T, let ( a,b,c ) be the barycentric coordinates of (u,i>); that is,
 a > 0, 6 > 0, c > 0, a + 6 + c = 1, and

 (u, v) = a(m(i4n5i), m(.AnS2))+&(m(.BnSi), m(Br'S2))+c(m(CC'Si), m(Cn£2)).

 Define F(u,v) = (.i>i)a+c U (S,2)a U (S3)a+b U ( S4)b . Then

 F(m(A H 5"i), m(A D S2)) = Si U S2 U S3 = A,

 F(m(B D Si), m(B D S2)) = S3I) S4 = B,

 F{m(C D S1),m(C D S2)) = Ą = C.

 Observe that

 m(F(u, v)nĄ) = m(5í)a+c = am(Si) + cm(Si)

 = am(A D 5i) + bm(B fi Si) + cm(C D 5i) = u,

 m(F(u,v)n S2) = m(S2)a = am(S2)

 = am(A fi S2) + bm(B D S2) + cm(C D £2) = v.

 Thus F is a one-to-one mapping of T onto a subset F(T) of X that contains the
 points A, B and C.

 If (a', b', c') are the barycentric coordinates of another point (u', v ') G T, then
 the distance in X between the points F(u, u) and F(u', v') cannot exceed

 |m((Si)„+c ' (S1)al+C,)' + |m((Ą)a'+C ' (Sl)a+c)' +

 |m((Ą)0 ' (Ą)o0| + |m((S2)0, ' (S2)a)| +

 |»™((S3)0+¡, ' (^a'+ftOI + |m(('5,3)o'+ò' ' (S^a+ò)! +

 |m((S4)6 ' (SA)V)' + H(54v ' (54)0)1 <

 I a + c - a' - c'ļm^i) + |a - a'|m(52) + ļa + b - a' - b''m(S3 ) + 16 - &'|m(S4).

 It follows that F is a continuous one-to-one function mapping T into X. But T
 is compact, so F is a homeomorphism. Also A,B G F(T). Finally, T is also
 homeomorphic to the closed unit disc in R2. □
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 Theorem. X has a Bernstein parting.

 Proof. Lemmas 1 and 2. □
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