Real Analysis Exchange Vol.16 (1990–91) F.S. Cater, Department of Mathematics, Portland State University, Portland, Oregon 97207.

A BERNSTEIN PARTING OF A SPACE OF MEASURABLE SETS

Let E be a Lebesgue measurable subset of the real line R such that $0 < m(E) < \infty$. Let X denote the family of measurable subsets of E modulo sets of measure zero; that is, subsets A and B of E are the same element in X if $m(A \setminus B) = m(B \setminus A) = 0$. For sets B and C in X, let the distance between B and C be $m(B \setminus C) + m(C \setminus B)$. The resulting metric space X is separable. (Consider all sets of the form $U \cap E$ where U is the union of finitely many intervals with rational endpoints.)

Definition. By a <u>Bernstein parting</u> of a separable metric space Y, we mean a partition of Y into two disjoint connected dense subsets.

It is known [SS] that the plane R^2 has a Bernstein parting. In this note we prove that certain other separable metric spaces have Bernstein partings. In particular, the metric space X defined above has a Bernstein parting. It will be easier to prove that the Hilbert cube (see [HS]), and any separable metric linear space of dimension ≥ 2 , have Bernstein partings (see Lemma 1). On the other hand, the circle in R^2 and the real line R obviously do not have Bernstein partings. Any separable metric space that has a Bernstein parting is necessarily connected.

Lemma 1. Let Y be a separable metric space such that for any points a and b in Y, there is a subspace P of Y containing a and b such that P is homeomorphic to the closed unit disc in R^2 . Then Y has a Bernstein parting.

Proof. Let Γ denote the first ordinal number with cardinality of the continuum, c. Because Y is separable, there are at most c closed connected nondegenerate subsets of Y. Use the ordinal numbers $\alpha < \Gamma$ to index the closed connected nondegenerate subsets of Y, $\{C_{\alpha}\}_{\alpha < \Gamma}$. Now each C_{α} has at least c points because C_{α} is connected and Y is a metric space. (If $t, s \in C_{\alpha}$ then any ball with center t that does not contain s has a boundary that meets C_{α} .) By transfinite induction we choose two distinct elements a_{α} and b_{α} in C_{α} ($\alpha < \Gamma$) such that the sets $A = \bigcup_{\alpha < \Gamma} \{a_{\alpha}\}$ and $B = \bigcup_{\alpha < \Gamma} \{b_{\alpha}\}$ are disjoint. We claim that A and B are dense in Y. Let $y \in U$ and U be an open subset of Y. By hypothesis there is a subspace P_1 of Y such that $y \in P_1$ and P_1 is homeomorphic to the closed unit disc in \mathbb{R}^2 . Then for some $\alpha < \Gamma$, $C_{\alpha} \subset P_1 \cap U$ because any open subset of \mathbb{R}^2 contains a closed connected nondegenerate subset. Thus $a_{\alpha} \in P_1 \cap U$ and $b_{\alpha} \in P_1 \cap U$, and A and B are dense.

We claim that A and B are connected. Let U and V be open sets meeting A such that $A \subset V \cup V$ and $U \cap V \cap A$ is void. Let $t \in U \cap A$ and $s \in V \cap A$. Let P be a subspace of Y containing s and t such that P is homeomorphic to the closed unit disc in \mathbb{R}^2 . Then either t is in the boundary of V, or $V \cap P$ is not dense in P and we can deduce from [N] that the boundary of $V \cap P$ contains C_{β} and a_{β} for some $\beta < \Gamma$. In any case A meets the boundary of V. But $A \setminus V \subset U$, so U meets V. Because A is dense in Y, the set $U \cap V \cap A$ must be nonvoid. This contradiction proves that A is connected. Likewise B is connected.

Finally, A and $Y \setminus A$ constitute a Bernstein parting of Y. \Box

Observe that any Euclidean space, or more generally any separable metric vector space, of dimension ≥ 2 , satisfies the hypothesis of Lemma 1 and hence has a Bernstein parting. The same is true of any separable Banach space of dimension ≥ 2 , or of the unit ball of such a Banach space. In particular, the Hilbert cube has a Bernstein parting.

We show that our space X satisfies the hypothesis of Lemma 1.

Lemma 2. Let A and B be two distinct elements of the space X. Then there is a subspace P of X containing A and B such that P is homeomorphic to the closed unit disc in \mathbb{R}^2 .

Proof. Let S be a measurable subset of E. If m(S) > 0, then for each real number t, 0 < t < 1, there is the largest number x(t) such that $m((-\infty, x(t)) \cap S) = t m(S)$. Put $(S)_t = (-\infty, x(t)) \cap S$ and $(S)_0 = \emptyset$, $(S)_1 = S$. If m(S) = 0, let $(S)_t = \emptyset$ for $0 \le t < 1$ and $(S)_1 = S$. In any case, $(S)_t \subset (S)_q$ if $t \le q$.

Either $m(A \setminus B) > 0$ or $m(B \setminus A) > 0$. Without less of generality, we assume $m(A \setminus B) > 0$. We use the work of the preceding paragraph to partition $A \setminus B$ into disjoint measurable subsets S_1, S_2 of equal measure; $S_1 \cup S_2 = A \setminus B$, and $m(S_1) = m(S_2) = m(A \setminus B)/2$. Let $S_3 = A \cap B$ and $S_4 = B \setminus A$. (Of course S_3 and S_4 might be null sets.) Let $(S_i)_t$ $(0 \le t \le 1)$ be as described in the preceding paragraph. Thus $m(S_i)_t = t m(S_i), (S_i)_t \subset S_i$, and $(S_i)_t \subset (S_i)_q$ if $t \le q$. Put $C = S_1$.

By direct computation we find that in R^2 ,

$$(m(A \cap S_1), m(A \cap S_2)) = (m(A \setminus B)/2, m(A \setminus B)/2),$$

$$(m(B \cap S_1), m(B \cap S_2)) = (0, 0),$$

$$(m(C \cap S_1), m(C \cap S_2)) = (m(A \setminus B)/2, 0),$$

and these points are the vertices of a triangle in \mathbb{R}^2 . Let T denote the 2-simplex of \mathbb{R}^2 bounded by this triangle.

For $(u, v) \in T$, let (a, b, c) be the barycentric coordinates of (u, v); that is, $a \ge 0, b \ge 0, c \ge 0, a + b + c = 1$, and

$$(u,v) = a(m(A \cap S_1), m(A \cap S_2)) + b(m(B \cap S_1), m(B \cap S_2)) + c(m(C \cap S_1), m(C \cap S_2)).$$

Define $F(u, v) = (S_1)_{a+c} \cup (S_2)_a \cup (S_3)_{a+b} \cup (S_4)_b$. Then

$$F(m(A \cap S_1), m(A \cap S_2)) = S_1 \cup S_2 \cup S_3 = A,$$

$$F(m(B \cap S_1), m(B \cap S_2)) = S_3 \cup S_4 = B,$$

$$F(m(C \cap S_1), m(C \cap S_2)) = S_1 = C.$$

Observe that

$$m(F(u,v) \cap S_1) = m(S_1)_{a+c} = am(S_1) + cm(S_1)$$

= $am(A \cap S_1) + bm(B \cap S_1) + cm(C \cap S_1) = u$,
 $m(F(u,v) \cap S_2) = m(S_2)_a = am(S_2)$
= $am(A \cap S_2) + bm(B \cap S_2) + cm(C \cap S_2) = v$.

Thus F is a one-to-one mapping of T onto a subset F(T) of X that contains the points A, B and C.

If (a', b', c') are the barycentric coordinates of another point $(u', v') \in T$, then the distance in X between the points F(u, v) and F(u', v') cannot exceed

$$\begin{aligned} |m((S_1)_{a+c} \setminus (S_1)_{a'+c'})| + |m((S_1)_{a'+c'} \setminus (S_1)_{a+c})| + \\ |m((S_2)_a \setminus (S_2)_{a'})| + |m((S_2)_{a'} \setminus (S_2)_{a})| + \\ |m((S_3)_{a+b} \setminus (S_3)_{a'+b'})| + |m((S_3)_{a'+b'} \setminus (S_3)_{a+b})| + \\ |m((S_4)_b \setminus (S_4)_{b'})| + |m((S_4)_{b'} \setminus (S_4)_{b})| \leq \\ |a+c-a'-c'|m(S_1) + |a-a'|m(S_2) + |a+b-a'-b'|m(S_3) + |b-b'|m(S_4). \end{aligned}$$

It follows that F is a continuous one-to-one function mapping T into X. But T is compact, so F is a homeomorphism. Also $A, B \in F(T)$. Finally, T is also homeomorphic to the closed unit disc in \mathbb{R}^2 . \Box

Theorem. X has a Bernstein parting.

Proof. Lemmas 1 and 2. \Box

References

- [HS] D.W. Hall & G.L Spencer II, Elementary Topology, John Wiley, New York, 1955, p. 147.
- [N] M.A.H. Newman, Topology of Plane Sets, Cambridge University Press, 1961, Theorem 14.2, p. 123.
- [SS] L.A. Steen & J.A. Seebach, Jr., Counterexamples in Topology, second edition, Springer-Verlag, New York, 1978, pp. 142, 225, 226.

Received November 29, 1990