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 Points of Almost Continuity of Real
 Functions

 Many authors considered the local property of Darboux or local connectivity of
 a real function and the sets of those points at which a real function of a real variable
 has the local Darboux property ([1]) or local connectivity property ([2]). The
 functions that are almost continuous are connected and hence have the Darboux

 property. There arises an interesting question whether it is possible to define a
 local property of almost continuity at a point and moreover to make sure that this
 property characterize the global almost continuity of a function. We give such a
 characterization in this article.

 Throughout the article we shall make use of the following notions and notations.
 Consider the following topological properties that a function / from one topo-

 logical space X to another one Y may have:

 C', f is continuous,

 T>: f is a Darboux function iff for every connected subset C of X, the set f(C) is
 a connected subset of Y.

 Con : f is a connectivity function iff for every connected subset C of X the set f'C
 (the graph of this function over C) is a connected subset of X x Y. In the
 sequel, we shall make no difference between a function and its graph.

 AC: f is almost continuous function (in the sense of Stallings [4]) iff for every open
 set G Ç X x Y containing / there exists a continuous function g : X - ► Y
 such that g Ç G.

 The functions we consider are real functions defined on an interval (open or
 closed). Recall that for those functions the following implications hold:

 C =>• AC =>• Con =>• T> ([4])
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 By L(f,x ), L+(f, x), L~(f,x) we shall denote: the set of all limit points, the set
 of all right-hand sided limit points, the set of all left-hand sided limit points of the
 function / at the point x, respectively.

 Definition 1. A function / : (a, 6) - ► R is said to be almost continuous at a
 point x G (a, b) from the right-hand side iff

 (1) f(x) e L+(f,x),

 (2) there is a positive e such that for any arbitrary neighborhood G of / | [x, oo),
 arbitrary y 6 ( lim inf f(t), lim sup /(<)), arbitrary neighborhood U of the

 t- »-X+ ť-

 point ( x,y ) and arbitrary t G (x, x + e) there exists a continuous function
 g : [x, X + e] - ► R such that g Ç G U U, g(x) = y and g(t) = f(t).

 In the analogous manner we define a function that is almost continuous at a
 point from the left-hand side. A function is called almost continuous at a point iff
 it is almost continuous at that point from both sides. For a function / : [a, 6] - ► R
 we can say that it is almost continuous at the points a and b if it is so from the
 right-hand side at a and from the left-hand side at b.
 One can easily observe that if a function is continuous at a point from any side

 then it is almost continuous at that point from the same side. Moreover:

 Property 1. If a function / : (a, b) - ► R is right-hand sided almost continuous
 at a point from (a, 6) then it is connected at that point from the same side.

 Proof. Suppose that / is right-hand sided almost continuous at a point x0 but
 is not connected at it from the right-hand side. Then there exists a continuum M
 contained in [xo, oo) x R such that

 (i) projvM Ç ( lim inf/(x), lim sup /(x)),
 X- ►Xq X- ►XQ

 (ii) projxAf is nondegenerate,

 (iii) M D / = 0 (see [2]).

 Then R2 ' M is a neighborhood of /. There exists a point

 y € ( lim inf /(x), lim sup/(x)) ' proj y(M n P(x0)),
 X- ►xj X- *x¿

 where V(x) = {x} x R.
 Let [mi, 7712] = projv(M D "P(xo)) and assume that y < m'. Then for every

 n € N there is xn such that xo < xn < xo + 1/n and /(x„) > m-i. There
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 is an open neighborhood U of the point (xo, y) disjoint with M, so R 2 ' M is
 a neighborhood of / and each continuous function g : [xo, ®n] - ► R, for which
 g(x o) = y, g(x n) = /(x „) has common points with M, which contradicts to the
 almost continuity of / at the point xo from the right-hand side.

 As a corollary of Property 1 we get that a function is Darboux at a point if it
 is almost continuous at that point.

 Now we shall prove that the local and global properties of almost continuity
 are compatible.

 Theorem 1. If / : (a, 6) - ► R is almost continuous, then it is almost continuous
 at every point of the interval (a, b).

 Proof. If / is continuous at a point xo from the right-hand side then, of course,
 it is almost continuous at that point from the right-hand side. If not, then L+(f , xo)
 is a nondegenerate interval. Let y be an arbitrary point from the interval

 (inf X+(/, x0), sup L+(f, i0))

 and G be an arbitrary neighborhood of / | [xo, b), U - arbitrary neighborhood of
 (xo,y) and t - a point from (xo, b). There is a point of / contained in U, let it be
 (xx,/(xx)), and we can take that xj > x0. There is a function g i : [xo, xi] - ► R
 such that

 (a) g' is continuous,

 (b) 9lCU

 (c) $Ti(x0) = y and ^i(xi) = /(xi).

 The function / is almost continuous in (a, 6), then for its neighborhood G and the
 point t from [xi, 6) there is a function g2 : [xi, b) - ► R such that

 (a') (72 is continuous,

 (b') <72 Ç G,

 (c') 02(^1) = /(xx) and g2(t) = f(t).

 In this way the function g : [x0, b) - ► R given by

 {<7i(x) g2(x) for for xe(xx,6) x€[x0,xi], g2(x) for xe(xx,6)
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 is continuous and g Ç G U U. This proves that / is almost continuous at x<j from
 the right-hand side. Similarly one can prove that / is also almost continuous at
 xo from the left-hand side.

 Theorem 2. If a function / : [a, 6] - ► R is almost continuous at every point of
 the interval [a, 6], then / is almost continuous in [a, 6].

 Proof. Let G be any neighborhood of /. If / is continuous at xq, then there is a
 square U with the centre at (x<>, f(x o)) contained in G. Consider three possibilities:

 - / is continuous at xo,

 - f is not continuous at Xo but

 /(x o) € (inf L+(f, x0 ), sup L+(f , x0)) n (inf L~(f , x0), sup L~(f, x0)),

 - xo is a point of discontinuity of / and either

 /(x o) = supi"(/,x0) or f(xo) = inf L-(/,x0),

 or /(x0) = sup L+(f, x0), or f(x0) = inf L+(f,x0).

 In each possibility, for x Ç [a, 6] there is ex > 0 such that for every ti,tļ G
 (x - ex, x + ex ) for which t' < x < t2 there exists a continuous function gx,tut2 •
 [x - ex, x + ex] - ► R fulfilling all the conditions:

 (a) 9x0,tltt2(x0) = f(x o),

 iß) 9xQ,tutM = f{ti ), for i = 1,2,

 (7) 9xo,tu*2 S G-

 The family {(x - ex, x -f ex) : x € [a, 6]} is a cover of the interval [a, 6], so there
 exists a finite sequence of points and a sequence of continuous functions defined
 on those intervals, which joined together form a continuous function contained in
 G.

 It is obvious that if / : (a, ao] - ► R has the property that / | [an, ao] is almost
 continuous, where an G (a, a0) and an - ► a, then / is almost continuous in (a, a0].

 Now we are able to state the following:

 Theorem 2/. If / : (a, b) - * R is almost continuous at every point of the
 interval (a, 6), then it is almost continuous in (a, 6).
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 For the points of almost continuity of a function we can prove the analogue of
 the theorem on asymmetry.

 Theorem 3. The set of all points of the interval (a, 6), at which a function
 / : (a, b) - ► R is almost continuous from exactly one side is at most countable.

 Proof. Let A be the set of asymmetry of almost continuity of a function /.
 Let us denote by B the set of all points, at which / is almost continuous from the
 right-hand side and is not almost continuous from the left-hand side. By C we
 denote the set A'B. Let

 D2 = {xe (a, b) : f(x) & L+(f , x) D L~(f , x)},

 E = B ' (Dt U DÌ).
 The sets Di,D2 are countable ([5]). We shall show that the set E is also countable.

 Let En be the set of all points xo G E such that the diameter of the set
 L(f,x o) is greater than or equal to 1 /n and such that for: every neighborhood
 G of / I [xo, xo + 1/n], every t G (xo, xo + 1/n] and each y from the interval
 (inf L+(f, x0), sup L+(/, xo)) and every neighborhood U of (xo, y) there exists a
 continuous function g : [x0, x0 + 1/n] - ► R such that g Ç G U U, g(x o) = y and
 g(t) = f(t). One can prove that each of the sets En is countable, so is E. Similarly,
 C is countable and, of course, so is A.

 Theorem 4. The set of all points of almost continuity of an arbitrary function
 is of the type Gg.

 Proof. Let / : (a,b) - ► R be an arbitrary function. By ,4+(/) ( A~(f )) we
 shall denote the set of all points of (a, b) at which / is almost continuous from the
 right-hand side (left-hand side), and A(f) = A+(f) fl A~(f). Let An be the set of
 those points of A(f) for which the e from the definition 1 is greater than 1/n. We
 shall show that

 An Ç Int(i4„ U C(/)),

 where C(f) denotes the set of all points of continuity of the function /. Let xo G An
 and 8 = e - 1/n. We shall prove that

 (x0 - 6, x0 + 6) Ç An U C(f).

 If x G (xo- <5, xo+£)'C(x) and, for example, xo < x, G is an arbitrary neighborhood
 of /, y 6 (inf L(/, x),supL(/, x)) and U is a square neighborhood of (x,y), then
 there are t', t" such that

 t' < x < t", (ť,f(ť)) G U and (t", f(t")) G U.
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 Assume that U = (x - rļ, x + r¡) x (y - rļ, y + r)), and let t € (a; + rļ, xo + e)- Then

 G' = (G U U) ' ({ť, ť'} x ((-oo, y - r¡] U [y + r¡, oo)))

 is a neighborhood of / ļ [io, oo) and there exists a continuous function g such that
 g(xo) = f(x o) and g(t) = /(<). The function g meets the square U and then there
 is a continuous function h : [x,xo + £) ~ ^ ^ R such that h(x) = y, h(t) = f(t) and
 h Ç G' Ç G U U. Similarly, for t € (x - e, x) there exists a continuous function
 h' : [x - e, x' - ► R such that h' Ç G U U, h'{x) = y and h'(t ) = f(t). Thus if

 € An then xq € Int(A„ U C(f)). Since A(f) = |J An U C(f) and
 n€N

 (J An U C(f) = U MA„UC(/))UC(/),
 n€N n€N

 then A(f) is of the type G$.
 In the end of the article it is worth mentioning that Theorem 4 gives an exact

 characterization of the set of all points of almost continuity of a function. Indeed,
 J.S. Lipiński in [3] has proved that for a given set A of the type G s there is a
 function / for which C(f) = A and R ' A is the set of all points at which / does
 not have the Darboux property. Such a function fulfils also our requirements, i.e.
 A(f) = A.
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