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A Note on Continuity Points of Functions

§1.

Using the fact that R is locally connected and locally compact, it can be shown
that if f : R x R — R is a separately continuous function with a closed graph,
then f is continuous. Instead of proving this result, we will consider the question
of how it might be generalized. Specifically, what conditions on spaces X,Y, and
Z are necessary and sufficient to guarantee that a separately continuous function
f: X xY — Z with a closed graph is continuous? We give two examples that
show some limitations.

Example 1: Let X =Y = [0,1]— {1 : n € N} with the usual topology. Notice
that X is not locally connected since 0 does not have a connected neighborhood.
Define f: X xY — R by

1

n, ifz,y € (F5, %) for somen € N

flz,y) = {

0, otherwise.

It is easy to see that f is separately continuous, has a closed graph, but is not
continuous at (0, 0).

As we shall show, if X or Y is locally connected, then a function with the prop-
erties mentioned above will be continuous. In fact, we may replace the codomain
R by any locally compact space Z. But what if Z is not locally compact?

Example 2: Let I = [0,1] and let Z be a separable Hilbert space with or-
thonormal basis {e,}3%,. Let ¢ be defined by

l—z—9y? ifz?2+92<1
0, ifz2 +9y2>1

¢(z,y) = {

and let

Sn(z,y) = #(2n(n + 1)z — (2n + 1),2n(n + 1)y — (2n + 1)),
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for each n € N. Each function ¢, is 1 at the center (23&*_"}1), 2;‘:("1:_11)) of the circle
inscribed in the square

[_1_ l] x [L l]

n+1'n n+l'n

and vanishes outside of this circle. Define f : I x I — X by f(z,y) =
%) ¢n(z,y)en. Then on each square (F5,1) x (34,%) we have f(z,y) =

#n(z,y)e, and outside these squares f vanishes. It is easy to see that at each

(z,y) # (0,0) f is continuous, and since f(0,z) = f(z,0) =0 for eachz € I, f is
separately continuous at (0,0). In addition to this, f has a closed graph. However,
f is not continuous at (0,0) since

I 2n+1 2n +1
2n(n +1)’ 2n(n + 1)

) — FO,0) = lleall = 1

for every n € N.

§2.

As we have seen in the first section, we cannot guarantee that a separately
continuous function f : X x Y — Z with a closed graph will be continuous if
neither X nor Y is locally connected or if Z is not locally compact. However, we
have the following theorem.

Theorem 1. Let X and Y be topological spaces with Y locally connected. Let
Z be locally compact and suppose that f : X X Y — Z has continuous y-sections
and connected z-sections. If f has a closed graph, then f is continuous.

Proof: Let (a,b) € X XY and suppose f is not continuous at (a, b). Then there
is a neighborhood W of f(a, b) such that, for any neighborhood N of (a,b), f(N) ¢
W. Since Z is locally compact, we may assume that W is compact. Let D be the
set of all neighborhoods U x V of (a,b) such that f(U,b) C W and V is connected.
Because of the continuity of the y-sections of f and the local connectedness of Y,
the set D is a neighborhood basis at (a,b). Also D can be directed by containment
(that is, « < B if @ D B). Let a = U x V be an element of D. Since f(U x
V) ¢ W, there is a point (z,y) € U x V such that f(z,y) ¢ W, and since
fU,b) c W, f(z,b) € W. Theset f(z,V) is connected because z-sections of f are
connected. Hence there is a point (Z4,ya) € U x V such that f(z4,y.) € W —W.
Now (f(Za,¥a) : @ € D) is a net in the compact set W — W. Hence it contains
a convergent subnet (f(Tn(a),¥n(a)) : @ € D'), which converges to some point
c € W — W. Because D is a neighborhood basis at (a, b), the net

((mn(a)a Yn(a)s f(mn(a))) € D')
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converges to (a,b,c), which implies that ¢ = f(a,b) since f has a closed graph.
This is impossible since f(a,b) € W and ¢ € W — W. Therefore f is continuous.

Remark 1: As an immediate consequence of Theorem 1 we have that if X is
locally connected, Y is locally compact, and f : X — Y is a connected mapping
with a closed graph, then f is continuous. This can be easily seen by applying the
theorem to the function f : {0} x X — Y defined by f(0,z) = f(z).

§3.

The second part of this paper will deal with the problem of finding the weakest
assumptions on spaces X,Y and Z and the sections f,, f¥ of functions f : X xY —
Z such that f has at least one point of (joint) continuity.

One source of the results of this nature is the Baire-Lebesgue-Kuratowski-
Montgomery theorem which says that if X and Y are metricand if f : X xY — R
is continuous in = and is of class & in y, then f is of class (a + 1). Now, if a =0
and X x Y is Baire, then the set C(f) is a dense Gs subset of X x Y by Baire’s
Theorem, f being of 1°* class (see [P3] for further discussion on this topic).

Recently, G. Debs [De] has shown that if X is a special a-favorable pace (thus
Baire), Y is first countable, X x Y is Baire, and f : X x Y — M (M-metric) is
such that all of its z-sections f, are continuous and all of its y-sections f¥ are,
what he calls, of “first class”, then the set C'(f) is dense in X x Y. (This result
was unknown even in the case when X =Y = M = [0,1].)

Remark 2: The first-named author has obtained very similar results (see [P1]
and [P2]) using an actually larger class of spaces X (the entire class of Baire
spaces) and the somewhat unrelated class of functions f whose y-sections fv are
quasi-continuous! (instead of “first class”) together with a strengthened form of
the conclusion, namely:

If X is Baire, Y is first countable and Z is metric and if a function f : X x
Y — Z has all its z-sections f, continuous and has all of its y-sections f¥ quasi-
continuous, then for all y € Y, the set C(f) is a dense G5 subset in X x {y}.

Following N.F.G. Martin [Ma], a function f : X — Y is called quasi-continuous
if for every ¢ € X, for every open set U containing , and for every open set V
containing f(z), there is an open nonempty set U’ C U such that f(U’') C V.

A class of functions that is closely related to functions of first class of Baire is
the class of pointwise discontinuous functions (see [Ku]). f: X — Y is pointwise
discontinuous (or, shortly: PWD) if the set C(f) of points of continuity is dense

1This class of functions has been defined by V. Volterra in R. Baire’s paper [Ba] p. 75.
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in the domain of f2.
R. Baire showed the following result:

Theorem. (R. Baire) If f : R — R is of the first class of Baire, it is PWD.

The converse to this theorem is not true (!) — see J.C. Oxtoby [02].
For “nice” spaces, say X = Y = R, we have the following diagram (where

“—” denotes the inclusion):

QUASI-CONTINUITY
/ N\

CONTINUITY ¢ PWD
N 1ST CLASS /

The survey paper [Ne] contains proofs of the implications pertaining to quasi-
continuity in the above diagram.

In this section we strengthen the result of G. Debs and the just mentioned
result by the first-named author.

The following Lemma clearly follows from Baire Category Theorem.

Lemma: ([DS]), Theorem 1.1 and 1.2, p. 220).
Let X be a Baire space and let M be metric. Then f : X — M is PWD iff f
satisfies the following condition:

(*) for every z € X, for every € > 0, and for every neighborhood
U(z) of z there exists an open, nonempty set U,U C U(z), such that
d(f(2), f(y)) < € for any two points z,y € U.

A pseudo-base, or simply a 7-base, (see [01]) for a space (X,T) is a subset P
of T such that every nonempty element U of 7 contains a nonempty element G of

P.

Theorem 2. Let X be Baire and Y be locally of w-countable type (i.e., each
open nonempty subset of Y contains an open nonempty subset having a countable
w-base) such that X x Y is Baire. Further let (M,d) be a metric space. Let
f: X xY — M be a function such that all of its x-sections f, are PWD and all
of its y-sections fY are continuous. Then C(f) is a dense G5 subset of X x Y.

Proof: Givenan arbitrary (zo,y0) € X XY, let U and V be open neighborhoods
of o and yo, respectively. Fix € > 0. Further assume V contains an open subset
having a countable 7-base {G,}.

2This class of functions was defined by H. Hankel in 1870.
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Define the set A, by
A, ={z € U : there are open V, C V and G, C V, such that for each

V1,92 € Vr we have d(f(z’yl)7f(x’y2)) < 6/8}

For z € U, f, (being PWD) satisfies (), so there is a nonempty open set V,; C
V such that for each y;,y, € V, we have d(f(z,v1), f(z,y2)) < €/8. Since {G,} is
a m-base for an open nonempty subset of V, there is an index n such that G, C V,,
and it follows that U C UnenA,. Since by definition U D UpenAn, U = UpenAn.

X being Baire, U is of second category. So, there is an index n € N and a
nonempty open set U’ C U such that A, NU’ is dense in U’. Let (p,q) € U’ x G,.
Since f7 is continuous, there is an open nonempty subset U” C- U’ such that for
each z1,z, € U” we have d(f(z1,q), f(z2,9)) < §-

Now consider the set

S=(U"x {g})U((AnNU") x Gy).

It is easy to see that intS # 0.

Now, take (z,y) € U” x G, and (u,v) € S. By continuity of f¥, there is an
open set U, C U” such that for each z, € U, we have d(f(z,y), f(z1,¥)) < §.
Since A, N U" is dense in U” there is z* € U, N U" N A,. This gives (z*,y) € S.

Thus we get the following estimate:

d(f(z,y), f(u,v)) < d(f(z",y), f(z,y)) + d(f(z*,y), f(z", ) +

+duuzon@»+aﬂm@wa»<§+§+§+§

¢
5
This way for each (z°,y°), (z,y) € U"” x G, we get

d(f(z%4°), f(z,y)) <e.

Now, since U” x G, is an open, nonempty subset of U x V, we have proved
that f satisfies (%) at (zo,yo0) and hence, by the Lemma, C(f) is a dense G5, M
being metric and X x Y being Baire.

We shall now exhibit an example showing that the assumption that the y-
sections are continuous in the Theorem is real; that is, it can not be weakened to
the one that the y-sections are assumed to be (only) PWD.

Example 3: Let I = [0,1] and let R be the set of reals. Put D, = {(z,y) :
z = 2—",—;,y = £, where k and p are all odd numbers between 0 and 2"}. Let
D = U2, D,. 1t is easy to see that D = I?. Now, let us define f : I> - R by:
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f(z,y) =1 for (z,y) € D and f(z,y) = 0 if (z,y) € D. The function f is not
PWD as a function of two variables, however each section f, and f¥ is PWD —
every such section has finitely many “points of jump” of f.

Remark 3: Example 3 can be generalized to the following result, (see [P4],
pp. 77, 78):

Let X and Y be dense-in-themselves, separable spaces and let Z be a Hausdorft
space containing at least two points. Then there is a function f : X XY — Z such
that all the z-sections f, and all the y-sections f¥ are PWD, while f is not PWD.

Remark 4: The result mentioned in Remark 2 can be further generalized;
the assumption “Y is first countable” can be weakened to “Y contains a dense
subspace of points of first countability”.

Remark 5: Both Debs’s Theorem and our Theorem 4 are partial (positive)
answers to a spectacular problem of M. Talagrand [Ta]: Let X be Baire, Y be
compact and let f : X x Y — R be separately continuous. Is C(f) # 0?

References

[Ba] R. Baire, Sur les fonctions des variables reélles, Ann. Math. Pura Appl. 3
(1899), 1-122.

[Ch] J.P.R. Christensen, Joint continuity of separately continuous functions, Proc.
Amer. Math. Soc. 82 (1981), 455-461, MR82 #54012.

[De] G. Debs, Fonctions séparément continues et de premiere classe sur espace
produit, Math. Scand. 59 (1986), 122-130, MR88c #54014.

[DS] J. Dobos, T. Salat, Cliquish functions, Riemann integrable functions and
quasi-uniform convergence, Acta Math. Univ. Comen., XL-XLI (1982), 219-
223, MR84a #54003.

[Ku] K. Kuratowski, Topology, vol. I, Warsazawa, 1966.

[Ma] N.F.G.Martin, Quasi-continuous functions on product spaces, Duke J. Math.
28 (1961), 39-44.

[Ne] T. Neubrunn, Quasi-continuity, Real Analysis Exchange 14 (1988-89), 259-
306.

[01] J.C. Oxtoby, Cartesian products of Baire spaces, Fund. Math 49 (1961),
157-166.

413



[02]
[P1]

[P2]

[P3]

[P4]

[Ta]

, Measure and category, Springer, New York.

Z. Piotrowski, Quasi-continuity and product spaces, Proc. Intern. Conf.

Geom. Topology PWN, Warsaw (1980), 349-352.

, Continuity points in {z} x Y, Bull. Soc. Math. France 108 (1980),
113-115.

, Separate and joint continuity, Real Analysis Exchange, 11 (1985-
86), 293-322.

, Some remarks on almost continuous functions, Math. Slovaca,

39 (1989), 75-80.

M. Talagrand, Espaces de Baire et espaces de Namioka, Math. Ann. 270
(1985), 159-164.

Received January 29, 1990

414



	Contents
	p. 408
	p. 409
	p. 410
	p. 411
	p. 412
	p. 413
	p. 414

	Issue Table of Contents
	Real Analysis Exchange, Vol. 16, No. 2 (1990-91) pp. 378-565
	Front Matter
	EDITORIAL MESSAGE [pp. 380-380]
	CONFERENCE ANNOUNCEMANTS: The SIXTEENTH SUMMER SYMPOSIUM in REAL ANALYSIS [pp. 381-381]
	TOPICAL SURVEY
	Lusin's Theorem [pp. 382-392]
	ESSAYS ON THE ORLICZ—PETTIS THEOREM, I (THE TWO THEOREMS) [pp. 393-403]

	Research Articles
	Upper and Lower Bounds for the Packing Measure in Relation to the Hausdorff Measure [pp. 404-407]
	A Note on Continuity Points of Functions [pp. 408-414]
	Points of Almost Continuity of Real Functions [pp. 415-420]
	THE SETS WHERE A FUNCTION HAS INFINITE ONE-SIDED DERIVATIVES [pp. 421-424]
	Sets which are Well-Distributed and Invariant Relative to All Isometry Invariant Total Extensions of Lebesgue Measure [pp. 425-459]
	STOCHASTIC AND OTHER FUNCTIONAL INTEGRALS [pp. 460-470]
	A BERNSTEIN PARTING OF A SPACE OF MEASURABLE SETS [pp. 471-474]
	DERIVATIVES AND THE CARATHÉODORY SUPERPOSITION [pp. 475-480]
	ON UNIVERSALLY BAD DARBOUX FUNCTIONS [pp. 481-486]

	Inroads
	Measures With Prescribed Marginals, Extreme Points and Measure Preserving Transformations [pp. 487-489]
	A Fuge on Bernstein Sets [pp. 490-496]
	The Relations of Hausdorff, *-Hausdorff, and Packing Measures [pp. 497-507]
	Variation of f on E and Lebesgue Outer Measure of f E [pp. 508-515]
	Special Subsets of the Real Line [pp. 516-521]
	The Density Topology is not Generated [pp. 522-525]
	ON COMPLETENESS [pp. 526-536]
	Globally Small Riemann Sums and the Henstock Integral [pp. 537-545]
	INTEGRATION BY PARTS FOR THE PERRON INTEGRAL [pp. 546-548]
	An Elementary Proof of Freiling's Symmetric Covering Theorem [pp. 549-551]
	ON SIMPLE CONTINUITY POINTS [pp. 552-558]
	A Restricted Symmetric Derivative for Continuous Functions of Two Variables [pp. 559-565]

	Back Matter



