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 ESSAYS ON THE ORLICZ- PETTIS THEOREM, I

 (THE TWO THEOREMS)

 To the memory of W. Orlicz

 The purpose of this article that we plan to publish in a series of notes, is
 a presentation of the results that concentrate around (what is now usually
 called) "the Orlicz-Pettis Theorem" , in their historical perspective.

 This theorem is believed to be one of the great theorems of the classical
 period of functional analysis. In 1979 a conference was held in Chapel Hill,
 North Carolina, in memory of B. J. Pettis, and Kalton gave then a short
 survey [1980] of the theorem. As he put it in his talk, the theorem "during
 the course of its evolution has evolved almost beyond recognition, and the
 techniques developed for its study have themselves helped to illuminate a
 number of ideas in functional analysis" .

 Our ambition here is to give not only the full history but also a thorough
 discussion of the theorem. These are the reasons for doing so:

 1) The Orlicz-Pettis Theorem has been a source of misunderstandings
 since its very beginning. Most of the authors who write about it do not
 realize that in fact two theorems are dealt with and (for that reason or
 some other) when they decide to give historical comments, these comments
 are often inaccurate.

 2) We believe that the evolution of the Orlicz-Pettis Theorem is worth
 detailed presentation. As well, we try to compile an exhaustive list of
 papers directly concerned with the subject matter of this article.
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 3) Last but not least, the whole subject is not a closed chapter in
 mathematics. Some of the essays to follow will not only survey the existing
 material but will bring improvements into the area.

 In short, our undertaking is on a different scale than the above men-
 tioned talk by Kalton.

 We dedicate this article to the memory of WŁADYSŁAW ORLICZ who
 died on August 9, 1990 in Poznań, Poland, at the age of 87. He was the
 last survivor of the Banach School of Functional Analysis that flourished
 in Lwów between the two world wars.

 §1 The original result

 There must exist (as always) a prehistory for the subject since the
 notion of the unconditional convergence of a series in a Banach space must
 have been motivated by some earlier considerations in concrete function
 spaces. There is a footnote to this effect in Orlicz's paper. We leave any
 investigation of such matters to true historians and take as our starting
 point the following definition and theorem (Orlicz [1929], §2, Satz 2; see
 also [1988]).

 Definition 1.1. Let X be a Banach space. A formad series xn
 of elements in X is said to be unconditionally convergent ("unbedingt
 konvergent") if for every permutation ir of N, the series £*(„) is
 convergent.

 Theorem 1.2. Let X be a weakly sequentially complete Banach space.
 A series xn is unconditionally convergent in X if (and only if) for each
 continuous linear functional x* € X*

 ^'x*(xn)'

 is convergent.

 REMARK. Equivalently, the theorem says that if is weakly uncondi-
 tionally Cauchy in X (i.e. given a weak neighborhood V of 0 in X, there
 exists k € N such that for each finite subset e of {k + 1, k + 2, . . . }, we
 have YlnÇe x* € V ) , then it is (norm) unconditionally convergent. Of
 course, Orlicz knew that for scalar series unconditional convergence and
 absolute convergence are equivalent.
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 Here is the original proof of the theorem. The proof is translated from
 the German with modern ingredients introduced but without changing any
 essential point in the argument.

 Proof. It will be sufficient to prove the following lemma.

 Lemma. If a sequence ( un ) in X is such that

 (1.1) ||un|| < 1, n = l,2,... and

 (1.2) ^ |x*(un)| is convergent for each x* € X *,
 then

 Um ||m„|| = 0.
 fl- ►OO

 Suppose for the moment that the lemma has been shown. If our series
 were not unconditionally convergent, there would exist a sequence (v,) ,

 Vi = ®ir(n,) + ®ir(n, + l) ^

 such that

 (1.3) IHI > c0 > 0.

 Setting Ui = u,-/ ||t>¿||, the condition (1.2) would be still satisfied and ||u, || =
 1 which contradicts the lemma.

 The proof of the lemma. Let E be the closed linear span of (un). Since
 the weak topology in E is induced from the weak topology of X (Orlicz
 knew the Hahn-Banach Theorem; Banach published his version of it in the
 same first issue of Studia Mathematica) it can be assumed that X = E
 and consequently that X is separable. We now show that:

 For each e > 0 there exists N € N such that for each x* € B* (the unit
 ball of X*)

 (1.4) ¿ k*(«n)| < e.
 n=N

 If not, there would exist Co > 0, iV¿ - ► oo, and a sequence (x*) in B*
 such that

 (1.5) |x^(«n)| > e0.
 n=Ni
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 Since X is separable, B* is compact and metrizable in the weak* topol-
 ogy and so we can assume, by passing to a subsequence, that (x*) is weak*
 convergent in B*.

 Let (a¿) be a bounded sequence (i.e. (a,) = a € £°°). For each x* € X*

 (1.6) OnX*(un) = X* ( ^2 = «*(«)
 n=l "^00 'n=l /

 (here the weak sequential completeness of X is used; the weak limit

 k

 u = lim 7 anun
 k-too 1

 n= 1

 could otherwise fail to be in X).
 Since (x*) is weak* convergent, one can treat the linear transformation

 £^lan*î("n) = X'(U )

 XT=1 a»a;;(«n) = X*p(u )

 with the matrix {x*(ug)} as a coercive summability method ("lineare
 konvergenzerzeugende Limitierungsmethode") which to every bounded se-
 quence (an) associates the limit (i.e. x*(u)). By a theorem of Schur
 ([1921] Satz 3) the matrix {x*(tx?)} must have the following property:
 For each e > 0 there exists N € N such that for each p = 1,2,...

 OO

 (1-7) ^ e-
 n=N

 This contradicts (1.5). Then (1.4) holds, which implies the lemma.

 §2 The Orlicz-Pettis Theorem

 According to Orlicz [1955] and [1971], it was an analysis of the above
 proof of Theorem 1.2 that motivated the introduction of the notion of
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 subseries convergence. By assuming in Theorem 1.2 weak subseries con-
 vergence instead of the weak unconditional Cauchy condition, essentially
 the same proof gives another theorem. The new theorem was presented
 during a meeting of the Scientific Associations of Students of Mathematics
 and Physics, Lwów 1931 (Orlicz [1955], footnotes 2 and 51; [1988]), and
 is recorded in Banach's "Théorie des operations linéaires" in the last sec-
 tion of "Remarques". We stress that the theorem is there openly credited
 to Orlicz, although no proofs were given for the results discussed in the
 "Remarques" .

 Theorem 2.1 ([1932], p. 240). In a Banach space X the following are
 equivalent :

 1. The series ^ xn is unconditionally convergent.
 2. The senes ^ xn subseries convergent.
 3. The series ^ xn is weakly subseries convergent.

 Here subseries convergence of ^2 xn means that for each subsequence
 (xni) of (xn) the series ^2 xn¡ is convergent. As Orlicz says [1971], the
 theorem was never published separately with a proof since the old proof
 worked fine.

 Let us examine the last statement more closely: When one analizēs the
 original proof of Theorem 1.2, one can notice immediately that the proof
 can actually be simplified. Instead of formulating the lemma, it is sufficient
 to proceed by contradiction only once and show that ((1.3) above)

 INI > Co > 0

 cannot happen. For this purpose the proof of the lemma as given above
 can be repeated (with un = vn) assuming presently that ^ vn is weakly
 subseries convergent The Theorem of Schur must now be used with its

 1 [1955] (translated from the Polish):
 footnote 2. Unconditionally convergent series in Banach spaces appear first in

 Orlicz [1929]. The equivalent notion of subseries convergent series was introduced by
 the author in a Communication done during a meeting of the Scientific Associations of
 Students of Mathematics and Physics in Lwów in 1931; compare also Banach [1932], p.
 240.

 footnote 5. Theorem 3B was first published in author's paper [1929]; part A of
 the theorem was contained in author's Communication during a meeting . . . (compare
 footnote 2). S. Banach gave the main theorems of this Communication without proof
 in his monograph [1932], p. 240.
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 full force (see Schur [1921], Remark after the proof on p. 90), that is,
 taking into account that (1.5) already works when a = ( an ) is such that
 a„ = +1, -1, or 0 (and not all a € £°° as previously). Then the analogue of
 (1.5) still holds in view of the weak subseries convergence of xn (and so
 X need no longer be assumed weakly sequentially complete). The Theorem
 of Schur (in its strong form) shows that (1.3) holds, i.e. that

 £ IKII < e
 n=N

 and this ends the proof of Theorem 2.1.
 It is thus beyond any doubt for us (and we believe for any mathemati-

 cian reading these words) that indeed "the old proof worked fine" once the
 assumption of weak subseries convergence replaced the weak unconditional
 Cauchy condition in the original Theorem 1.2.

 Let us add immediately that there is a similar remark in Bessaga and
 Pełczyński ([1958], footnote 10).

 §3 The Pettis' Contribution

 Let us start by comparing the two theorems. As already noticed by
 Orlicz in [1929] (example after Satz 3) his Theorem 1.2 does not hold in
 every Banach space. The most familiar example nowadays is provided by
 ^2 en in Co (where en = (0, 0, . . . , 0, 1,0, 0, . . . ) with the "1" in the n-th
 position). It is clear that ^ en is weakly unconditionally Cauchy but not
 norm convergent therein.

 On the other hand if X is weakly sequentially complete, weakly uncon-
 ditionally Cauchy series concide with weakly subseries convergent series.
 Thus not only does Theorem 1.2 imply Theorem 2.1 but also vice versa.

 The difference between the two theorems becomes striking when they
 are properly formulated in the language of vector measures.

 First we observe that Theorem 1.2 is equivalent to (Orlicz [1929], Satz
 3)

 Theorem 1.3. Let X be a weakly sequentially complete Bemach space
 and suppose that xn is perfectly bounded in X (i.e. the set {^n€e xn :
 e G ^"(N)} of all unordered fìnite partial sums is a bounded set in X).
 Then ^2 xn is convergent in X.

 Its vector measure formulation is as follows:
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 Theorem 1.3'. Let X be a weakly sequentially complete Banach space,
 % a ring of sets and fi : H -* X an additive set function. Then fi is
 bounded if and only if it is exhaustive.

 We recall that fi is said to be bounded if its range fi{TV) is a bounded
 set in X , and is said to be exhaustive if for each disjoint sequence (E¡) of
 sets in

 lim ||/í(£¿)II = 0.
 • - ► <»

 An equivalent formulation of 1.3', even closer to 1.2, would be that
 weak exhaustivity of fi implies its exhaustivity.

 On the other hand, the vector measure form of Theorem 2.1 is:

 Theorem 2.1'. Let X be a Banach space, Ti a a-ring of sets and fi : 72. - ►
 X a weakly countably additive set function. Then fi is (norm ) countably
 additive.

 Pettis, writing [1938], knew Orlicz's [1929] paper, and he knew Theo-
 rem 2.1 from Banach's book. However he did not realize that the original
 proof of Theorem 1.2 works for Theorem 2.1. He writes (Pettis [1938],
 p. 231):

 "The next lemma and theorem were proved by Orlicz ([1929], Theo-
 rem 2) for the case X weakly sequentially complete; the general theorem
 is credited by Banach ([1932], p. 240) to the same author without proof
 or reference. Since we know no published proof to which to refer, and
 since the lemma is fundamental for our purposes, we include the following
 demonstration."

 Orlicz Lemma (Pettis [1938], Lemma 2.31). If^Xn is weakly subseries
 convergent in a Banach space X, then given e > 0 there exists Ne such
 that X * G X* and jļ ar* ļļ = 1 implies

 ¿ k*(*n)| < e;
 n=Nt

 hence ||xn|| - ► 0.

 Theorem (Pettis [1938], Theorem 2.32). In a Banach space X weak and
 norm subseries convergence are equivalent.

 The derivation of the Theorem from Orlicz Lemma is standard; it is
 clear that the lemma corresponds to (1.7) in our version of Orlicz's proof
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 of Theorem 1.2. What was its proof by Pettis? Here is the surprise (or is
 it?):

 The proof is nothing more than a polished Banach
 space version of Orlicz's original proof.

 Let us explain. In the language of Banach space theory, an interpretation
 of the Theorem of Schur that was invoked by Orlicz is that weak and
 norm convergences of sequences are the saine in i1 . (Today this is called
 the Schur property of tl.) Banach ([1932], pp. 138-139) gives a direct
 proof of the latter result (referring to Schur on p. 239 of [1932]) and, as one
 can guess, the proof in Banach's book also makes it clear that, to get the
 result, instead of the whole dual £°° of tl, one can use sequences taking
 only the values +1, -1, 0. (Compare with Schur's remark in [1921] referred
 to in §2.) Pettis, using the proof by Banach (he refers to the proof and
 not the statement of the "Schur property"), gives an elegant derivation of
 the "Orlicz Lemma" that is entirely in the spirit of the modified proof of
 Orlicz.

 §4 Finale

 For further reference, we will give the schematic name The First Orlicz
 Theorem to Theorem 1.2 and its equivalent form in Theorem 1.3

 When looking back at The First Orlicz Theorem and knowing the sub-
 sequent research that has been motivated by this theorem, the statement
 under 1.3 appears to be more important than 1.2; the Revisited Theorem
 (1.3) goes more visibly into the "heart of the matter" in the sense that
 its formulation requires only the linear topological notion of boundedness
 and thus is suitable for further generalizations. On the other hand, the
 statement of The First Orlicz Theorem (1 .2), though rather accidental in
 the sense that its form is made possible by the "accidental" existence of
 the separating dual (= weak topology) on the space, has the merit of pro-
 voking the "right" statement in the form of The Second Orlicz Theorem
 (Theorem 2.1) or, as it is called today, The Orlicz-Pettis Theorem.

 CONCLUSION. We can now pinpoint the source of misunderstandings
 concerning the history of The Orlicz-Pettis Theorem as follows.

 Orlicz proved in [1929] a general theorem (The First Orlicz Theorem)
 which happens to be equivalent in weakly sequentially complete Banach
 spaces to another statement that, in turn, in this new form generalizes to
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 arbitrary Banach spaces (The Second Orlicz Theorem or The Orlicz-Pettis
 Theorem).

 Perhaps Pettis was being overly cautious in his remarks concerning
 The First Orlicz Theorem, or perhaps he was unaware of the essential
 generality of Orlicz's proof. In any case there is a natural tendency to
 interpret Pettis' comment quoted above as saying that Orlicz proved in
 [1929] exactly (as opposed to in particular) "The Orlicz-Pettis Theorem
 in weakly sequentially complete Banach spaces"; cf., e.g., McArthur [1967]
 (and many other authors following him) who had fallen into this trap. Had
 Pettis added the innocent "in particular" in a proper place, the misunder-
 standings in question, most probably, would have been avoided.

 Let us add immediately that although The Orlicz-Pettis Theorem was
 formulated and proved in full generality by Orlicz himself, we do feel that
 the name "Orlicz-Pettis Theorem" is not only convenient, but there is a
 genuine reason to keep it the way it is: Today The Orlicz-Pettis Theorem
 appears most often as a theorem about vector measures (2.1'), and Pettis
 was the first to state it in this form.

 We finish by mentioning a natural problem connected with this early
 stage of our discussion of The First Orlicz Theorem and The Orlicz-Pettis
 Theorem. The answer to this problem, although contained in Bessaga-
 Pelczyński ([1958], C.14), seems to remain largely ignored by the general
 public. In order to clear the air before stating the problem let us recall
 a few facts about the interdependence between subseries convergence and
 unconditional convergence.

 In a Hausdorff topological Abelian group X , the subseries convergence
 of ^2 x„ implies its unconditional convergence. To see this, it suffices to
 consider ^2 xn in the completion X of X and apply the Cauchy condition
 for summability.

 If X is sequentially complete, the unconditional convergence of xn
 implies its subseries convergence, but there is no reason to expect this
 implication to remain valid without any completeness condition on X. An
 easy confirmation of that feeling (communicated to us by Z. Lipecki) can
 be obtained this way:

 Let (X, II • D) be an F-space and let (xn) be an arbitrary sequence
 of independent vectors in X such that £„-►(). Choose a subsequence
 (y*) of (xn) such that ^ ||yjt|| < oo . Then is subseries conver-
 gent. Let Y be the No -dimensional subspace of X generated by the vec-
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 tors ykì Vii V2ì- • •} • Then ^ y* is unconditionally convergent in
 Y. However, it cannot be subseries convergent in Y in view of Corollary
 1 in Labuda-Lipecki [1982].

 Now let X be again a Banach space. It could still be possible, per-
 haps, that the weak unconditional convergence of ^ xn in X would imply
 its norm unconditional (whence subseries) convergence. Of course, this
 implication is valid in an X in which The First Orlicz Theorem holds.
 Such Banach spaces axe characterized by Pełczyński [1957] (see Bessaga-
 Pełczyński [1958], Theorem 5, for the first published proof) as those which
 do not contain Co.

 Here is an example which disproves the above guess in cqi Consider
 again the standard basis (en), and set xn := en - en+i . Then ^ xn is not
 norm convergent in Co, but for every permutation w of N, ^ x*(n) = ei
 holds with respect to the weak topology.

 Thus the class of Banach spaces in which weak unconditional conver-
 gence implies unconditional convergence is contained in the class of Banach
 spaces which do not contain cq , and is therefore equal to the class of Ba-
 nach spaces in which the weak unconditional Cauchy condition is sufficient
 to guarantee unconditional convergence. This result remains true in se-
 quentially complete locally convex spaces.
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