Allan deCamp, Department of Mathematics, Wesleyan University, Middle town, CT 06457

THE CONSTRUCTION OF A LEBESGUE MEASURABLE SET WITH EVERY DENSITY

The question of the existence of a Lebesgue measurable set $E\subseteq\mathbf{R}$ such that each density $t \in [0, 1]$ occurs, was posed by R.M. Shortt. The following is the construction of such a set E .

Definition. Given a Lebesgue measurable set $E \subseteq \mathbb{R}$ and $t \in [0,1]$, $x \in \mathbb{R}$ is said to have density t with respect to E, denoted $d_E(x) = t$, if given $\epsilon > 0$ there is a $\delta > 0$ such that for all intervals I containing x with $\lambda I < \delta$,

$$
\left|\frac{\lambda(I\cap E)}{\lambda I}-t\right|<\epsilon.
$$

 Theorem (Lebesgue Density Theorem) [1]. Given a Lebesgue measur able set $E \subseteq \mathbb{R}$, almost every point in R has density 0 or 1 with respect to E.

So the set of points $x \in \mathbb{R}$ where $d_E(x) \in (0,1)$ is a set of measure zero. In the following construction, for each $t \in (0,1)$ there will be an $x \in K$, the Cantor set, such that $d_E(x) = t$.

Proposition 1. Given $0 \leq \alpha \leq 1$, $\epsilon > 0$, and (a, b) , there exists a measurable set $A \subseteq (a, b)$ such that $\lambda A = \alpha(b - a)$ and for every $c \in (a, b)$,

$$
\left|\frac{\lambda(A\cap(a,c))}{c-a}-\alpha\right|<\epsilon\tag{1}
$$

and

$$
\left|\frac{\lambda(A\cap(c,b))}{b-c}-\alpha\right|<\epsilon.
$$
\n(2)

<u>Proof</u>. Fix $n \in \mathbb{N}$. Let $m = \frac{b-a}{2}$ and put

$$
\left|\frac{b-c}{b-c} - \alpha\right| < \epsilon. \tag{2}
$$
\nFix $n \in \mathbb{N}$. Let $m = \frac{b-a}{2}$ and put

\n
$$
A_n = \bigcup_{r=1}^{\infty} \left(a + \frac{nm}{n+r}, a + \frac{nm}{n+r} + \frac{\alpha nm}{(n+r)(n+r-1)}\right).
$$
\nat $A_n \subseteq (a, a+m]$ and that the constituent intervals of A_n are

Proof. Fix $n \in \mathbb{N}$. Let $m = \frac{b-a}{2}$ and put
 $A_n = \bigcup_{r=1}^{\infty} \left(a + \frac{nm}{n+r}, a + \frac{nm}{n+r} + \frac{\alpha nm}{(n+r)(n+r-1)} \right)$.

Notice that $A_n \subseteq (a, a+m]$ and that the constitutent intervals of A_n are disjoint. For any positive integer $A_n = \bigcup_{r=1}^{\infty} \left(a + \frac{nm}{n+r}, a + \frac{nm}{n+r} + \frac{\alpha nm}{(n+r)(n+r-1)} \right).$
Notice that $A_n \subseteq (a, a+m]$ and that the constitutent intervals of A_n are disjoint. For any positive integer N,
 $\left(\bigcap_{r=1}^{\infty} \binom{n}{r} \frac{nm}{r-r} + \frac{nm}{(nm-r)} \right)$

$$
\lambda \left(\bigcup_{r=N}^{\infty} \left(a + \frac{nm}{n+r}, a + \frac{nm}{n+r} + \frac{\alpha nm}{(n+r)(n+r-1)} \right) \right)
$$

$$
= \sum_{r=N}^{\infty} \left(\left(a + \frac{nm}{n+r} + \frac{\alpha nm}{(n+r)(n+r-1)} \right) - \left(a + \frac{nm}{n+r} \right) \right)
$$

= $\alpha \left(\sum_{r=N}^{\infty} \left(\frac{nm}{n+r-1} - \frac{nm}{n+r} \right) \right) = \alpha \left(\frac{nm}{n+N-1} \right).$

In particular, for $N = 1$, $\lambda(A_n) = \alpha m$. Now take $c \in (a, a + m]$ then $c \in (a + \frac{nm}{n+s+1}, a + \frac{nm}{n+s}]$ for some integer $s \ge 0$, so

$$
\frac{\alpha nm}{n+s+1}\leq \lambda(A_n\cap(a,c))\leq \frac{\alpha nm}{n+s}
$$

and

$$
\frac{nm}{n+s+1}\leq (c-a)\leq \frac{nm}{n+s}.
$$

Thus,

$$
\frac{\alpha(n+s)}{n+s+1}\leq \frac{\lambda(A_n\cap(a,c))}{c-a}\leq \frac{\alpha(n+s+1)}{n+s}.\tag{3}
$$

So for any $c \in (a, a+m]$,

$$
\alpha\left(\frac{n}{n+1}\right)\leq \frac{\lambda(A_n\cap(a,c))}{c-a}\leq \alpha\left(\frac{n+1}{n}\right).
$$

Take $n_0 \in \mathbb{N}$ such that $\alpha(\frac{n_0}{n_0+1}) - \alpha > -\epsilon$ and $\alpha(\frac{n_0+1}{n_0}) - \alpha < \epsilon$ then,

$$
\left|\frac{\lambda(A_{n_0}\cap(a,c))}{c-a}-\alpha\right|<\epsilon.\tag{4}
$$

Let A'_{n_0} be the set A_{n_0} reflected in the midpoint of (a,b) . If $A =$ $A_{n_0} \cup A'_{n_0}$ then $\lambda A = 2(\lambda A_{n_0}) = 2(\alpha m) = \alpha(b-a)$. Since A is symmetric about $\frac{b+a}{2}$ it is enough to show (1) and (2) hold for $c \in (a, a+m]$. But $\lambda(A \cap (a, c)) = \lambda(A_{n_0} \cap (a, c))$ for $c \in (a, a + m]$ so (4) implies (1). By (1)

$$
\left|\alpha-\frac{\lambda(A\cap(a,c))}{c-a}\right|<\epsilon
$$

which implies

$$
\left|\frac{\alpha(c-b)}{c-a}+\left(\frac{\alpha(b-a)}{c-a}-\frac{\lambda(A\cap(a,c))}{c-a}\right)\right|<\epsilon
$$

and since $\frac{\alpha(b-a)}{c-a} = \frac{\lambda A}{c-a} = \frac{\lambda(A \cap (a,c)) + \lambda(A \cap (c,b))}{c-a},$ $\left|\frac{\alpha(c-b)}{c-a}+\frac{\lambda(A\cap(c,b))}{c-a}\right|<\epsilon.$

But $c \in (a, a+m]$ so $(b-c) \ge (c-a)$ thus,

$$
\left|-\alpha+\frac{\lambda(A\cap(c,b))}{b-c}\right|<\epsilon
$$

and (2) holds. \Box

Remark. As a result of (3), given $\eta > 0$ there is a $\delta > 0$ such that for all $c \in (a, b)$ with $c - a < \delta$ and all $d \in (a, b)$ with $b - d < \delta$,

$$
\left|\frac{\lambda(A\cap(a,c))}{c-a}-\alpha\right|<\eta\;\;\text{and}\;\;\left|\frac{\lambda(A\cap(d,b))}{b-d}-\alpha\right|<\eta.
$$

Let f be the Cantor singular function [1]. Now construct the Cantor set K in [0, 1] using the process of removing middle thirds. Let $I_{n_1}, I_{n_2},..., I_{n_i} =$ $(a_{n_i}, b_{n_i}), ..., I_{n_{2^{n-1}}}$ be the intervals removed from [0, 1] at the n^{th} step. For each $n \ge 1$ and $1 \le i \le 2^{n-1}$ find $E_{n_i} \subseteq I_{n_i}$ using proposition 1, where E_{n_i} is the A of proposition 1, $\alpha = f(a_{n_i})$ and $\epsilon = \frac{1}{n}$. Put

$$
E=\bigcup_{n=1}^{\infty}\bigcup_{i=1}^{2^{n-1}}E_{n_i}.
$$

Given a set $A \subseteq [0,1]$, the complement of A in [0, 1] will be written A^c . Proposition 2. Given an interval $J \subseteq [c,d] \subseteq (\cup_{n=1}^N \cup_{i=1}^{2^{n-1}} I_{n_i})^c$,

$$
f(c)-\frac{1}{N}\leq \frac{\lambda(J\cap E)}{\lambda J}\leq f(d)+\frac{1}{N}.
$$

Proof. Since the exclusion of end points will not effect the measure, assume $J = (g, h)$ for some $g, h \in [c, d]$. Since $\lambda K = 0$ and $J \subseteq [0, 1]$,

$$
\lambda J = \lambda (J \cap K^c)
$$

and since $J \subseteq (\bigcup_{n=1}^{N} \bigcup_{i=1}^{2^{n-1}} I_{n_i})^c$,

$$
= \lambda \left(J \cap \left(\bigcup_{N+1}^{\infty} \bigcup_{i=1}^{2^{n-1}} I_{n_i} \right) \right)
$$

$$
= \sum_{n=N+1}^{\infty} \sum_{i=1}^{2^{n-1}} \lambda(J \cap I_{n_i}).
$$
\nSince $J \subseteq (\bigcup_{n=1}^{N} \bigcup_{i=1}^{2^{n-1}} I_{n_i})^c \subseteq (\bigcup_{n=1}^{N} \bigcup_{i=1}^{2^{n-1}} E_{n_i})^c,$
\n
$$
\lambda(J \cap E) = \lambda \left(J \cap \left(\bigcup_{n=N+1}^{\infty} \bigcup_{i=1}^{2^{n-1}} E_{n_i}\right)\right).
$$

\n
$$
= \sum_{n=N+1}^{\infty} \sum_{i=1}^{2^{n-1}} \lambda(J \cap E_{n_i}).
$$
\n
$$
(6)
$$

If $J \cap I_{n_i} = (a_{n_i}, h)$ and $n > N$, (1) gives

$$
\left|\frac{\lambda((a_{n_i},h)\cap E_{n_i})}{h-a_{n_i}}-f(a_{n_i})\right|<\frac{1}{n};
$$

so, since f is increasing,

$$
f(c)-\frac{1}{N} (7)
$$

If $J \cap I_{n_i} = (g, b_{n_i})$ and $n > N$, the same inequalities follow similarly from (2). If $J \cap I_{n_i} = I_{n_i}$ and $n > N$, then $J \cap E_{n_i} = E_{n_i}$ and $c \leq g \leq a_{n_i}$, $b_{n_i} \leq h \leq d$. So $\lambda (J \cap E_{N_i}) = \lambda E_{n_i}$, but by the construction of E_{n_i} , $\lambda E_{n_i} =$ $f(a_{n_i})(\lambda I_{n_i})$ so (7) again holds. Consequently, for $n > N$,

$$
(f(c)-\frac{1}{N})(\lambda(J\cap I_{n_i}))\leq \lambda(J\cap E_{n_i})\leq (f(d)+\frac{1}{N})(\lambda(J\cap I_{n_i}))
$$
 (8)

in the above three situations; while in the remaining situation $J \cap I_{n_i} = \emptyset$, (8) holds trivially. Thus, summing (8) for $1 \le i \le 2^{n-1}$ and $n \ge N + 1$,

$$
\left(f(c)-\frac{1}{N}\right)(\lambda J)\leq \lambda(J\cap E)\leq \left(f(d)+\frac{1}{N}\right)(\lambda J)
$$

follows from (5) and (6). \Box

Claim. Given $t \in (0,1)$ and $x \in K$ such that $f(x) = t$, then $d_E(x) = t$. Consider two cases.

Case i) x is not an end point of K (i.e. $x \neq a_{n_i}$ or b_{n_i} for any $n \in \mathbb{N}$ and $1 \leq i \leq 2^{n-1}$). So given N there is an interval (c_N, d_N) containing x where $d_N - c_N = \frac{1}{3^N}$ and $[c_N, d_N] \subseteq (\bigcup_{n=1}^N \bigcup_{i=1}^{2^{n-1}} I_{n_i})^c$ and there exists positive $\delta_N \leq \frac{1}{3^N}$ such that for every interval I containing x where $\lambda I < \delta_N$, $I \subseteq (c_n, d_N)$. So by Proposition 2

$$
f(c_N) - \frac{1}{N} \leq \frac{\lambda(I \cap E)}{\lambda(I)} \leq f(d_N) + \frac{1}{N}
$$

As $N \to \infty$, c_N and d_N converge to x and $\delta_N \to 0$. Thus, since f is continuous, $f(c_N) - \frac{1}{N}$ and $f(d_N) + \frac{1}{N}$ converge to $f(x)$. So given $\epsilon > 0$ there exists N such that for all intervals I containing x with $\lambda I < \delta_N$,

$$
\left|\frac{\lambda(I\cap E)}{\lambda I}-f(x)\right|<\epsilon.
$$

Therefore $d_E(x) = f(x)$.

Case *ii*) x is an end point of K. So $x = a_{n_i}$ for some $n \in \mathbb{N}$ and $1 \leq i \leq 2^{n-1}$ (the case when $x = b_{n_i}$ is analogous). For a given interval I containing x look at the right portion of I, $I_r = I \cap [x, \infty)$, and the left portion of I, $I_i = I \cap (-\infty, x]$. By the argument of case i) given $\epsilon > 0$ there exists $\delta_r > 0$ such that for all intervals I with $x \in I$ and $\lambda I_r < \delta_r$,

$$
\left|\frac{\lambda(I_r\cap E)}{\lambda I_r}-f(x)\right|<\epsilon.
$$

By the remark at the end of proposition 1 there exists δ_l such that for all intervals I with $x \in I$ and $\lambda I_i < \delta_i$,

$$
\left|\frac{\lambda(I_l\cap E)}{\lambda I_l}-f(x)\right|<\epsilon.
$$

Thus for $\delta = \min \{\delta_r, \delta_l\}$, given any interval I with $x \in I$ and $\lambda I < \delta$,

$$
\left|\frac{\lambda(I\cap E)}{\lambda I}-f(x)\right|<\epsilon.
$$

Therefore $d_E(x) = f(x)$.

Since E is an open set it is clear that every point $x \in E$ has density 1 and since $E \subseteq [0,1]$ every point not in [0,1] has density 0. So for each $t \in [0,1]$ there is a point $x \in \mathbf{R}$ such that $d_E(x) = t$.

REFERENCE

[1] Cohn, D.L., Measure theory. Boston: Birkhäuser 1980.

Received June 6, 1990