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THE CONSTRUCTION OF A LEBESGUE MEASURABLE SET WITH
EVERY DENSITY

The question of the existence of a Lebesgue measurable set £ C R such
that each density ¢ € [0, 1] occurs, was posed by R.M. Shortt. The following
is the construction of such a set E.

Definition. Given a Lebesgue measurable set E C R and t € [0,1],
z € R is said to have density ¢t with respect to E, denoted dg(z) = ¢, if
given € > 0 there is a § > 0 such that for all intervals I containing z with
AI <6,

AINE)
Al
Theorem (Lebesgue Density Theorem) [1]. Given a Lebesgue measur-

able set E C R, almost every point in R has density 0 or 1 with respect to

E.

So the set of points z € R where dg(z) € (0,1) is a set of measure zero.
In the following construction, for each ¢t € (0,1) there will be an z € K,
the Cantor set, such that dg(z) =t.

Proposition 1. Given 0 < a < 1, € > 0, and (a,b), there exists a
measurable set A C (a,b) such that AA = a(b— a) and for every ¢ € (a,b),

—tj<e.

A(AN(a,¢)) ol <e (1)

c—a
e AAN (e,8)

N (c,

—b-_—c-—-—a <e€. (2)

Proof. Fix n € N. Let m = %2 and put
o nm nm anm
=0 (o4 e I+ )

Notice that A, C (a,a + m] and that the constitutent intervals of A, are
disjoint. For any positive integer N,

,\G LN anm
N n+r  n+r (n+r)(n+r-1)

344



;(( nrr (n+r)CZ:T-r—1)) N (a+nn:tnr))
=o(S (- ) = o (=)

In particular, for N = 1, A(4,) = am. Now take ¢ € (a,a + m| then
¢ € (a+ 2,a + 2] for some integer s > 0, so

anm anm
— < XA, N <
n+s+1" ( (a,c ))‘n+s
and nm nm
_— —a) <
n+s+1’(c a) n+s
Thus,

a(n+ s) < A(An N (a,c)) < a(n +s+1) (3)
n+s+1" c—a = n+s
So for any ¢ € (a,a + m|,

a( n ) A(An n(a,c)) (n+1).

n+1 c—a n

Take ng € N such that o(;2) — a > —¢ and o(®2!) — & < € then,

al <e. (4)

‘A(A,..,f (a,¢))

Let A be the set A,, reflected in the midpoint of (a,b). If A =
An, U A}, then AA = 2(MA,,) = 2(am) = a(b — a). Since A is symmetric
about %2 it is enough to show (1) and (2) hold for ¢ € (a,a + m|. But
A4 N (a,¢)) = A(An, N (a,¢)) for ¢ € (a,a + m] so (4) implies (1). By (1)

A(A N (a,¢)) <e

c—a

a_

which implies

afc—b) (a(b—a) _A4n (a’c)))‘ <e

c—a c—a c—a
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a(b—a) _ M MAN(a))+A(AN (¢,0))

c—a c—a c—a

and since

a(c—b) + A(A N (e,b)) <e
c—a c—a

But ¢ € (a,a + m] so (b —c¢) > (¢ — a) thus,

}—a+ A(A N (e, b)) <e
b—c

and (2) holds. O
Remark. As a result of (3), given n > 0 there is a § > 0 such that for
all ¢ € (a,b) with ¢ —a < 6 and all d € (a,b) with b—d < 6,

A(A N (a,¢)) A(AN(d,b))
c—a b—d

Let f be the Cantor singular function [1]. Now construct the Cantor set
K in [0,1] using the process of removing middle thirds. Let I, , I, ..., In, =
(@n;sbn;)s--r In ,_, be the intervals removed from [0, 1] at the n** step. For
eachn >1and 1<:<2"!find E,, C I,, using proposition 1, where E,,
is the A of proposition 1, a = f (a,,..) and € = '—1‘ Put

—al<n and —al<n

oo 2n—1

E=U U EBn.

n=1 =1

Given a set A C [0,1], the complement of A in [0, 1] will be written A°.
Proposition 2. Given an interval J C [¢,d] C (UN_, U¥ " I,..)°,

(JnE) 1
7 S fd)+ %

Proof. Since the exclusion of end points will not effect the measure,
assume J = (g, h) for some g,h € [c,d]. Since AK =0 and J C [0,1],

AJ = A(J N K°)

and since J C (UN_, u?]' I,.)°,
oo 271
=xlJIn|{ U U I,
N+1 i=1

346

()'—jv‘<



oo on-—1

2. 2 AJINL). (5)

n=N+1 i=1
Since J C (UN_, UX " I,,)° C (UN_, u¥ ' E, )",

AJNE)=2 (Jn ( G 2UE,...)) .
n=N+1 i=1

00 2n—l

> Y AMINE). (6)

n=N+1 =1
If JNI,, = (an;, k) and n > N, (1) gives

A((an;, k) N Ey) 1
‘ h — an, - f(a".‘) < n
so, since f is increasing,
AMJINE,,
f(e) —% < f(an;) — z ﬁ f(an;) +% < f(d) + % (7)

If JN I, = (g,bn;) and n > N, the same inequalities follow similarly from
(2). ¥JnI,, =1I,,and n > N, then JNE,, = E,, and ¢ < g < ay,,
b,, < h < d. So A(J N Ey,) = AE,,, but by the construction of E, ,AE,, =
f(an,)(MI,,;) so (7) again holds. Consequently, for n > N,

(f(C)——)(A(JﬂI J) SAINEL) < (f(d) + )(A(Jﬂ-’n)) (8)

in the above three situations; while in the remaining situation J N I,, = 0,
(8) holds trivially. Thus, summing (8) for 1 <¢<2"!andn> N +1,

(f(c) - —) () <A(JNE) < (f(d) T ) (AJ)

follows from (5) and (6). O

Claim. Given t € (0,1) and z € K such that f(z) = t, then dg(z) = t.
Consider two cases.

Case ?) z is not an end point of K (i.e. = # ay,, or b,, for any n € N
and 1 < ¢ < 2*1). So given N there is an interval (cy,dy) containing
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z where dy — ey = 3 and [en,dy] € (UN_, U I,,.)° and there exists

positive oy < g}v such that for every interval I containing = where AI < dy,
I C (en,dn). So by Proposition 2
1 _MINE) 1
f(cN)~N < WS f(dN)"f’N-
As N — oo, ¢y and dy converge to z and §y — 0. Thus, since f is
continuous, f(cx) — % and f(dn) + % converge to f(z). So given € > 0
there exists N such that for all intervals I containing z with AI < §y,

AINE)
= - f(@)

(7]

<e€.

Therefore dg(z) = f(z).

Case it) z is an end point of K. So z = a,, for some n € N and
1 <1 < 2"! (the case when z = b,, is analogous). For a given interval
I containing z look at the right portion of I, I, = I N [z,00), and the left
portion of I, I; = IN (—oo, z|. By the argument of case 1) given € > 0 there
exists 6, > 0 such that for all intervals I with z € I and AL, < §,,

A0z

VA - f(z)| <e.

By the remark at the end of proposition 1 there exists § such that for all
intervals I with z € I and A} < §;,

AL N E)
‘ VAR f(z)| <e
Thus for § = min {4, &}, given any interval I with z € I and AI < §,

AMINE)
‘_A_I—— f(.’l:) < €.

Therefore dg(z) = f(z).

Since E is an open set it is clear that every point £ € E has density
1 and since E C [0,1] every point not in [0,1] has density 0. So for each
t € [0,1] there is a point z € R such that dg(z) =t.
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