Real Analysis Exchange Vol 16 (1990-91)

M. Repický, Matematický ústav SAV, Jesenná 5, 041 54 Košice, Czechoslovakia.

ADDITIVITY OF POROUS SETS

Let **P** denote the ideal of σ -porous sets and let **K** be the ideal of first category sets on the real line **R**. The aim of this note is to prove this theorem:

THEOREM. Let \mathcal{I} be arbitrary ideal on \mathbf{R} such that $\mathbf{P} \subseteq \mathcal{I} \subseteq \mathbf{K}$. Then $\operatorname{add}(\mathcal{I}) \leq \mathbf{b}$ and $\mathbf{d} \leq \operatorname{cof}(\mathcal{I})$.

Let us recall some definitions (see e.g. [2] and [5]): A set $A \subseteq \mathbf{R}$ is porous if for every $b \in A$,

$$p(A,b) = \limsup_{\varepsilon \to 0^+} \frac{\lambda(A, (b-\varepsilon, b+\varepsilon))}{\varepsilon} > 0.$$

Here $\lambda(A, I)$ denotes the maximal length of a subinterval of the interval I which is disjoint with A. A set A is σ -porous if it is a countable union of porous sets.

$$add(\mathcal{I}) = \min\{|\mathcal{I}_0| : \mathcal{I}_0 \subseteq \mathcal{I} \& \bigcup \mathcal{I}_0 \notin \mathcal{I}\},\\cof(\mathcal{I}) = \min\{|\mathcal{I}_0| : \mathcal{I}_0 \subseteq \mathcal{I} \& (\forall A \in \mathcal{I})(\exists B \in \mathcal{I}_0) A \subseteq B\}.$$

For $f, g \in {}^{\omega}\omega, f \leq {}^{*}g$ iff $(\exists n)(\forall m > n) f(n) \leq g(n)$.

$$\mathbf{b} = \min\{|F| : F \subseteq {}^{\omega}\omega \& (\forall f \in {}^{\omega}\omega)(\exists g \in F) g \not\leq^* f\},\$$

$$\mathbf{d} = \min\{|F| : F \subseteq {}^{\omega}\omega \& (\forall f \in {}^{\omega}\omega)(\exists g \in F) f \leq^* g\}.$$

See also [1].

If m, n are integers then $(m, n) = \{k \in \omega : m \leq k < n\}$. For $s \in {}^{\omega}2, [s] = \{x \in {}^{\omega}2 : s \subseteq x\}$ is a basic clopen set of the Cantor space ${}^{\omega}2$. Let φ be the mapping from ${}^{\omega}2$ onto the interval (0, 1) defined by $\varphi(x) = \sum_{n \in \omega} x(n)2^{-n-1}$. For $s \in {}^{n}2, I_s = \varphi([s])$ is a closed subinterval of (0, 1) of length 2^{-n} .

The proof of the Theorem is a slight modification of A. W. Miller's proof of $add(\mathbf{K}) \leq \mathbf{b}$ (see [3]).

Let us fix a sequence of integers $k(n), n \in \omega$ such that

$$k(n+1) - k(n) > n$$
, for all $n \in \omega$.

For $f \in {}^{\omega}\omega$ let us denote

(1)
$$\alpha(f) = \{ x \in {}^{\omega}2 : (\forall m)x \upharpoonright \langle k(f(m)), k(f(m)+1) \rangle \equiv 1 \}.$$

LEMMA 1. If $f \in {}^{\omega}\omega$ is increasing then the set $A = \varphi(\alpha(f))$ is porous.

PROOF: Let $b \in A$ be arbitrary, $b = \varphi(x)$ for some $x \in \alpha(f)$. We will show that p(A, b) = 1.

Let $m \in \omega$ be arbitrary. Put $\varepsilon = 2^m |I_{x \upharpoonright k(f(m)+1)}| < 2^{-m}$. For $s \in {}^{k(f(m))}2$ let s^* denote the sequence $s \urcorner 1 \ldots \urcorner 1$ of length k(f(m)+1). It is obvious that $(x \upharpoonright k(f(m)))^* = x \upharpoonright k(f(m)+1)$ and $A \cap I_s \subseteq I_{s^*}$. Since $|I_s| \ge 2^{f(m)} |I_{s^*}| \ge 2^m |I_{s^*}|$ and the distance between any two closest distinct intervals of the form I_{s^*} is $|I_s| - |I_{s^*}| > \varepsilon$ we have $A \cap (b - \varepsilon, b + \varepsilon) \subseteq I_x \upharpoonright k(f(m)+1)$. Therefore $\lambda(A, (b - \varepsilon, b + \varepsilon)) \ge (1 - 2^{-m})\varepsilon$ and so p(A, b) = 1.

It is easy to see that the set A is closed and even strongly symmetrically porous, see [5].

LEMMA 2. Let us denote $\varphi^{-1}(\mathcal{I}) = \{A \subseteq \omega^2 : \varphi(A) \in \mathcal{I}\}$. Then $\operatorname{add}(\mathcal{I}) = \operatorname{add}(\varphi^{-1}(\mathcal{I}))$ and $\operatorname{cof}(\mathcal{I}) = \operatorname{cof}(\varphi^{-1}(\mathcal{I}))$.

PROOF: The lemma is a simple consequence of these two implications (see e.g [4, Lemma 2.2]):

$$\varphi(A) \subseteq B$$
 implies $A \subseteq \varphi^{-1}(B)$, and
 $\varphi^{-1}(B) \subseteq A$ implies $B \subseteq \varphi(A)$

for $A \in \varphi^{-1}(\mathcal{I})$ and $B \in \mathcal{I}$.

According to the previous two lemmas, for proving the Theorem it is enough to prove the following: CLAIM. Let $\mathcal{H} = \{\alpha(f) : f \in {}^{\omega}\omega \text{ is increasing}\}$ and let \mathcal{J} be an arbitrary ideal on ${}^{\omega}2$ such that $\mathcal{H} \subseteq \mathcal{J} \subseteq \mathbf{K}({}^{\omega}2)$. Then $\operatorname{add}(\mathcal{J}) \leq \mathbf{b}$ and $\mathbf{d} \leq \operatorname{cof}(\mathcal{J})$.

PROOF: We will find two mappings

$$\alpha: {}^{\omega}\omega \to \mathcal{H} \quad \text{and} \quad \beta: \mathbf{K}({}^{\omega}2) \to {}^{\omega}\omega$$

such that

(2)
$$\alpha(f) \subseteq A$$
 implies $f \leq^* \beta(A)$ for every $A \in \mathbf{K}(2), f \in {}^{\omega}\omega$.

This will conclude the proof because if $\mathcal{F} \subseteq {}^{\omega}\omega$ is any family such that $\alpha(f) \subseteq A$ for every $f \in \mathcal{F}$ then the family \mathcal{F} is dominated by $\beta(A)$. Therefore $\operatorname{add}(\mathcal{J}) \leq \mathbf{b}$. The proof of $\mathbf{d} \leq \operatorname{cof}(\mathcal{J})$ is similar. Let us note that anologous details are omitted in [2] and [3].

The mapping α is already defined by (1). Let us define β . Let $A \subseteq {}^{\omega}2$ be an arbitrary meager set. There is a sequence $C_0 \subseteq C_1 \subseteq C_2 \ldots$ of closed nowhere dense subsets of ${}^{\omega}2$ such that $A \subseteq \bigcup_{n \in \omega} C_n$. By induction

define an increasing function $g \in {}^{\omega}\omega$ such that

(3) $(\forall s \in {}^{k(g(m)+1)}2)(\exists t \in {}^{k(g(m+1))}2) s \subseteq t \& [t] \cap C_m = \emptyset$

for every m. Put $\beta(A)(n) = g(2n)$.

We shall verify (2). Let $f \in {}^{\omega}\omega$ be arbitrary and let $f \not\leq {}^{*}\beta(A)$. We can assume that f is increasing. Therefore

$$(\forall k)(\exists n > k) f(n) > \beta(A)(n) = g(2n).$$

Let us denote $A_m = \langle g(m), g(m+1) \rangle \cap \operatorname{rng}(f)$. We claim that for all $k \in \omega$ there exists m > k such that $A_m = \emptyset$. To see this choose n > k+2 such that g(2n) < f(n). Then at most n sets among A_i , $i = 0, 1, \ldots, 2n-1$ are nonempty. Hence there is an m > n-2 such that $A_m = \emptyset$.

Using this fact together with property (3) we can inductively define an $x \in {}^{\omega}2$ and an increasing sequence $n_i, i \in \omega$ such that:

(4)
$$(\forall i) [x \upharpoonright k(g(n_i + 1))] \cap C_{n_i} = \emptyset$$
, and

(5)
$$(\forall m) x \upharpoonright (k(f(m)), k(f(m)+1)) \equiv 1.$$

The condition (5) ensures that $x \in \alpha(f)$ and since the sequence C_n , $n \in \omega$ is increasing, (4) ensures that $x \notin A$. Therefore $\alpha(f) \not\subseteq A$ and (2) holds true.

This finishes the proof of the Claim and of the Theorem.

On the one hand the Theorem gives some restrictions on the values of the cardinals $\operatorname{add}(\mathbf{P})$ and $\operatorname{cof}(\mathbf{P})$. On the other hand we still cannot decide whether inequalities $\operatorname{add}(\mathbf{P}) > \omega_1$ and $\operatorname{cof}(\mathbf{P}) < 2^{\omega}$ are possible.

An example of a σ -ideal which fulfils assuptions of the Claim is the σ -ideal generated by closed Lebesgue measure zero sets.

REFERENCES

- van Douwen E., The integers and topology, "The Handbook of Set-theoretic Topology," (K. Kunen and J. Vaughan, editors), North-Holland, Amsterdam, 1984.
- [2] Fremlin D. H., Cichoń's diagram, Publ. Math. Univ. Pierre Marie Curie 66. Semin. Initiation Anal. 23eme Anee-1983/84 Exp. No5, 13p.(1984).
- [3] Miller A. W., Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93-114.
- [4] Repický M., Porous sets and additivity of Lebesgue measure, Real Analysis Exchange (1990).
- [5] Zajíček L., Porosity and σ -porosity, Real Analysis Exchange 13, 2 (1987–1988), 314–350.

Received March 30, 1990