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 ADDITIVITY OF POROUS SETS

 Let P denote the ideal of cr-porous sets and let K be the ideal of
 first category sets on the real line R. The aim of this note is to prove
 this theorem:

 Theorem. Let I be arbitrary ideal on R such that P C T C K. Then
 add(J) < b and d < cof(J).

 Let us recall some definitions (see e.g. [2] and [5]): A set A Ç R is
 porous if for every b G A,

 p(A, b) = lim sup A(ļ4'(6-e't + £)) > 0.
 £-►0+ £

 Here A(A, I) denotes the maximal length of a subinterval of the interval
 I which is disjoint with A. A set A is cr-porous if it is a countable union
 of porous sets.

 add(J) = min{|2o| : %oQ % & £ 2"}»

 cof(I) = min{|T0| :IQÇ1 k (VA G I)(3B elo) AC B}.

 For f,g e Uu>, f <* g iff (3 n)(Vm > n) f(n) < g(n).

 b = min{|F| :FÇww k (V/ € wu;)(3ö G F) g /},

 d = min{|F| :FÇww k (V/ G wo;)(3 g G F) f <* g).

 See also [1].
 If m, n are integers then (m,n) = {k G u> : m < k < n}. For

 s G <w2, [s] = {xGw2:sÇar}isa basic clopen set of the Cantor space
 w2. Let <p be the mapping from w2 onto the interval (0, 1) defined by
 <p(x) - *¿2 x(n) 2~n_1. For s G n2, Is = <p([s]) is a closed subinterval

 of (0, 1) of length 2-n.
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 The proof of the Theorem is a slight modification of A. W. Miller's
 proof of add(K) < b (see [3]).

 Let us fix a sequence of integers fc(n), n G w such that

 k(n + 1) - k(n ) > n, for all n G u.

 For / G let us denote

 (1) a(f ) = {x G w2 : (Vm)xf (k(f(m)),k(f(m) + 1)) = 1}.

 Lemma 1. If f G is increasing then the set A = <p{cx(f )) is porous.

 Proof: Let b £ Abe arbitrary, 6 = ip{ x) for some x G <*(/)• We will
 show that p(A,b) = 1.

 Let m, E u be arbitrary. Put £ = ^m'Ix'k(f(m)+i)' < 2-m. For
 s £ fc(/(™)) 2 let s* denote the sequence si". . ."1 of length k(f(m) + 1).
 It is obvious that (xffc(/(ra)))* = xffc(/(m) + 1) and A fl Is Ç Js..
 Since 'IS' > 2^m)|Js.| > 2m'Is»' and the distance between any two
 closest distinct intervals of the form Is* is 'IS' - |7S-| > £ we have
 AC'(b-e,b+£ ) Ç Therefore A(A, (b-e, b+e)) >
 and so p(A, b) = 1.

 It is easy to see that the set A is closed and even strongly symmet-
 rically porous, see [5].

 Lemma 2. Let us denote <p~l(l) = {A Ç w2 : <p{A) G T}. Then
 add(J) = add^-^I)) and cof(I) = cof(<p-1(X)).

 PROOF: The lemma is a simple consequence of these two implications
 (see e.g [4, Lemma 2.2]):

 <p(A) Ç B implies A Ç ), and
 Ç A implies B Ç y{A)

 for A G <p~x(T) and B G X.

 According to the previous two lemmas, for proving the Theorem it
 is enough to prove the following:
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 CLAIM. Let Ti = {<*(/) : / G is increasing} and let J be an arbi-
 trary ideal on w2 such that Ti C J' Ç K(w2). Then add(^7) < b and
 d < cof(J).

 Proof: We will find two mappings

 ot:uu >-*H and ß:K("2)^uu

 such that

 (2) a(f) Ç A implies f <* ß(A ) for every A £ K(2), / G Ww.

 This will conclude the proof because if T Ç wu ; is any family such that
 a(f) Ç A for every / 6 T then the family T is dominated by /3(A).
 Therefore add( J) < b. The proof of d < cof(J") is similar. Let us
 note that anologous details are omitted in [2] and [3].

 The mapping a is already defined by (1). Let us define ß. Let A Ç u2
 be an arbitrary meager set. There is a sequence Co Ç C' Ç C2 • • . of
 closed nowhere dense subsets of w2 such that AC ļj Cn. By induction

 nGcj

 define an increasing function g 6 w u such that

 (3) (Vs Ç. k^(m)+l) 2)(3< g fc(5(m+ 1))2) sçt k [t] n Cm = 0

 for every m. Put ß(Ä)(n) = g(2n).
 We shall verify (2). Let / 6 be arbitrary and let f ß{A). We

 can assume that / is increasing. Therefore

 (Vfc)(3n > k) f(n) > ß(A)(n) = g{2n).

 Let us denote Am = (g{m),g(m + 1)) fl rng(/). We claim that for
 all k G łj there exists m > k such that Am = 0. To see this choose
 n > k + 2 such that g(2n) < f(n). Then at most n sets among A,-,
 i = 0, 1, . . . , 2n - 1 are nonempty. Hence there is an m > n - 2 such
 that Am = 0.

 Using this fact together with property (3) we can inductively define
 an z 6w2 and an increasing sequence n¡,i6w such that:

 (4) (Vi) [x' k(g(m + 1))] n Cni = 0, and
 (5) (Vm) x' (k(f(m)), k(f(m) + 1) ) = 1.
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 The condition (5) ensures that x € «(/) and since the sequence C„,
 n G co is increasing, (4) ensures that x £ A. Therefore a(f) % A and
 (2) holds true.

 This finishes the proof of the Claim and of the Theorem.

 On the one hand the Theorem gives some restrictions on the values
 of the cardinals add(P) and cof(P). On the other hand we still cannot
 decide whether inequalities add(P) > u>i and cof(P) < 2W are possible.

 An example of a cr-ideal which fulfils assuptions of the Claim is the
 cr-ideal generated by closed Lebesgue measure zero sets.
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