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 BAIRE MEASURES ON [0 ,Q) AND [0,0]. II

 In a preceding paper [5] we have proved elementary decomposition

 theorems for Baire measures on the ordinal spaces X - [0,0) and

 X » [0,0], where 0 denotes the first uncountable ordinal. The purpose of

 this note is to show that every finite Baire or Borei measure on X or X

 is perfect and is complete if and only if it is not purely discontinuous.

 It is also shown that the Baire a -algebras ®q(X) and ®q(X) are

 separated and strongly Blackwell but not countably generated and that the

 Borei a-algebras $(X) and $(X) are not countably generated nor

 strongly Blackwell. We shall follow the terminology and notation of [5].

 1. Ferfectness and Completeness

 Let E be X or X. It is known ([1], [5]) that the Baire

 a-algebra ®q(E) consists of the countable subsets of X together with

 their complements in E and that the Borei a-algebra $(E) consists of

 the subsets A of E such that A or E-A contains an unbounded closed

 subset of X. It is well known that ®(E) * ?(E) , the power set of E

 (see, e.g., [4, Lemma 7.6] or [8]).

 A finite measure on a measurable space (E,£) is called perfect

 if for each tf-measurable real -valued function f on E and for each

 subset A of the real line IR with f 'a) G ff, there exists a Borei
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 subset B of IR, i.e. B E S(R), such that B C A and

 /i(f 'b)) - /i(f ^(A)) or, equivalently , for each ff-measurable real-valued

 function f on E, there exists a Be fi(IR) such that B C f(E) and

 /i(f 'b)) - /i(E) (see [7, Lemma 2]).

 We need in the sequel the following lemma.

 LEHMA 1. For every real-valued function f defined on X[resp. X],

 f is Borei measurable on X [resp. X] if and only if it is constant on an

 unbounded closed subset of X.

 PROOF. Suppose f is Borei measurable on X [resp. X]. Then there

 exist a decreasing sequence nan»bn)) °f bounded intervals in IR and a

 decreasing sequence {F^} of unbounded closed subsets of X such that
 b - a - l/2n ^ and F c f '[a 1 ,b )) for all n. Since OF is an n n n 1 n n n

 unbounded closed subset of X and since n [a ,b ) - {c} for some
 n n

 c E IR , we get n F^ c f 'c). Plainly the converse of the foregoing
 assertion holds. □

 By a minor modification of the proof of Lemma 1 we obtain the next

 result.

 LEMMA 2. For every real -valued function f defined on X [resp.

 X] , f is Baire measurable on X [resp. X] if and only if there exist

 a E X and c E IR such that [a,0) C f 'c) [resp. [a,0] C f ^"(c)].

 THEOREM 1. Every finite Baire or Borei measure on X is perfect.

 PROOF. If f is a Baire measurable function on X, then f(X) is a

 countable subset of IR by Lemma 2. Consequently every finite Baire

 measure on X is perfect (cf. [7, Example 2]).
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 Suppose /i is a finite Borei measure on X. Then the set

 Y={x:/i({x})>0) is countable. Let S denote the Borei measure on X

 such that 5(A) - 1 or 0, depending on whether A or X-A contains

 an unbounded closed subset of X. By Theorems 2 and 3 of [5], we also

 have fi - v + pS , where 0 < p < ® and u is a Borei measure

 concentrated on Y. Let f be any Borei measurable function on X. By

 Lemma 1, there exist an unbounded closed subset F of X and a real

 number c such that F C f 'c). Put B - f(Y U F) . It is easy to

 verify that B is a countable subset of f(X) such that

 /x(X) - i/(Y) + p - m(Y U F) < /i( f'V)) < fi(X) .

 Therefore, /i is perfect. □

 By definition, every Baire or Borei measure on X is a finite

 measure. An application of [1, Theorem], together with Lemmas 1 and 2,

 yields the next result.

 THEOREM 2. Every Baire or Borei measure on X is perfect.

 Recall that on X, every Baire or Borei measure is regular if and

 only if it is purely discontinuous ([5], p. 459).

 THEOREM 3. Let /i be either a Baire measure or a finite Borei

 measure on X. Then /i is complete if and only if it is not purely

 discontinuous .

 PROOF. Suppose is a regular Baire [resp. Borei] measure on X.

 Then there exists an a G X such that /x([a,0)) - 0. Since $(X) * ?(X) ,

 there is a subset A of [a,0) that is not Borei. Therefore, /i is not

 complete .

 Suppose /i is a nonregular finite Borei measure on X. By Theorems

 324



 2 and 3 of [5] there is a positive number p such that /*( A) > p 5(A)

 for every A e $(X). If A G $(X), /i(A) - 0, and B C A, then 5(A) - 0

 so that X-B contains an unbounded closed subset of X and hence

 B e JB(X) . Thus /i is complete.

 Using Theorem 1 of [5] we show easily that every nonregular Baire

 measure on X is complete. □

 On the set X, it is known ([1], [5]) that every Baire measure is

 regular and that a Borei measure is regular if and only if it is purely

 discontinuous. The next theorem follows easily from Theorem 5 of [5]

 together with Theorem of [1].

 THEOREM 4. Let /i be a Baire or Borei measure on X. Then /x is

 complete if and only if it is not purely discontinuous.

 2. Strongly Blackwell Spaces

 Let (E,ff) be a measurable space. For each x G E, the atom A(x)

 of E determined by x is the intersection of those sets in E that

 contain x. The a-algebra E is called separated if A(x) - {x} for

 each x G E. The a-algebra E is called countably generated (e.g.) if

 there is a sequence elements of E which generates E. If the

 a-algebra E has a countable generator then for each x G E, the

 atom A(x) v ' is the intersection of those E or E - E that contain x v ' n n

 and hence A(x) G E. The space ( E,E ), or the a-algebra E, is called

 separable if E is e.g. and separated (see, e.g., [2], [3]).

 A measurable space (E,£), or the a-algebra E, is called strongly

 Blackwell if any two e.g. sub -a -algebras of E with the same atoms
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 coincide. By a strongly Blackwell separable space we shall mean a

 separable measurable space that is strongly Blackwell. It is easy to

 verify that the theorem of Ramachandran [6] (see also [2]) characterizing

 strongly Blackwell separable spaces is also valid for arbitrary strongly

 Blackwell spaces. In particular, we have that a measurable space (E,P)

 is strongly Blackwell if and only if for every ff-measurable real -valued

 function f on E, - 2^ where «4^ - {f 'a) G E: A C IR } and -
 { f ~ 1 (B) : B e S(R) } .

 We begin with a preliminary result.

 LEMMA 3. Let E be X or X. Then the Baire and Borei a-algebras

 $q(E) and Ä(E) are separated but not countably generated.

 PROOF. It is easy to show that ®q(E) and 8(E) are separated.
 Suppose Ä(X) is e.g. Then there is a Borei isomorphism f from

 (X,$(X)) onto a subset Z of [0,1] with its Borei a-algebra $(Z)

 (see, e.g,, [2], [3]) which is impossible by Lemma 1. Similarly ®q(X) ,

 $q(X) and S(X) are not e.g. by Lemmas 2 and 1, respectively. □

 LEMMA 4. Let E be X or X. Then every e.g. sub-a-algebra of

 $q(E) can have only a countable number of atoms and is not separated.

 PROOF. Suppose Ü is a sub-a-algebra of ®q00 with a countable

 generator { Cn } . We may assume without loss of generality that all

 are countable subsets of X. Then for each x G X, the atom A(x) of Ü

 determined by x is in Ü. If we put C - U C^, then X - C * <ļ> and
 A(x) - X - C for all x in X-C. Consequently the set X-C is an

 unbounded atom of U and hence ü is not separated. Since the set C

 is countable and since C - u (A(x) : x G C), there exists a countable
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 collection {A(x ): x G C) of bounded atoms such that C - u A(x ).
 n n n

 Therefore, the family of atoms of Ü consists of X-C, together with

 {A(xn)}. Similarly we also prove the lemma for ®q(X). □

 THEOREM 5. The Baire a-algebras ®g(x) an(* ®q(X) are strongly
 Blackwell.

 PROOF. Suppose that Ü and V are e.g. sub -a -algebras of ®g(X)

 with the same atoms. Let A be any nonempty set in Ü. By Lemma 4,

 together with hypothesis, the set A is the union of a countable

 collection of atoms of ü or, equivalently , 2). Consequently A G V and

 hence ü c V. Similarly we get V c Ü. Thus ®g(x) *s strongly

 Blackwell. Again using Lemma 4 we show that ®q(X) is strongly
 Blackwell. □

 THEOREM 6. The Borei a-algebras Ä(X) and $(X) are not strongly

 Blackwell .

 PROOF. First, we show $(X) is not strongly Blackwell. Let F be

 the set of limit ordinals in X and G - X - F. Then F is an unbounded

 closed set and G is an unbounded open set. Let f: X -» [0,1] be such

 that f(F) - {1} and the restriction of f to G is a bijection between

 G and [0,1). By Lemma 1, f is Borei measurable. Let P be a subset of

 [0,1) which is not Lebesgue measurable and Q - [0,1] - P. Since

 F c f 'q), we have f 'q) g If f 'q) G then we have
 f ^(Q) - f ^(S) for some Borei subset S of [0,1], whence Q - S, a

 contradiction. Consequently 2^ * and hence $(X) is not strongly
 Blackwell. Similarly we also show that ®(X) is not strongly Blackwell. □
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