C.W. Kim, Department of Mathematics and Statistics Simon Fraser University, Burnaby, B.C., Canada V5A 1S6

BAIRE MEASURES ON $[0,\Omega)$ AND $[0,\Omega]$. II

In a preceding paper [5] we have proved elementary decomposition theorems for Baire measures on the ordinal spaces $X = [0,\Omega)$ and $\bar{X} = [0,\Omega]$, where Ω denotes the first uncountable ordinal. The purpose of this note is to show that every finite Baire or Borel measure on X or \bar{X} is perfect and is complete if and only if it is not purely discontinuous. It is also shown that the Baire σ -algebras $\mathbf{S}_0(X)$ and $\mathbf{S}_0(\bar{X})$ are separated and strongly Blackwell but not countably generated and that the Borel σ -algebras $\mathbf{S}(X)$ and $\mathbf{S}(\bar{X})$ are not countably generated nor strongly Blackwell. We shall follow the terminology and notation of [5].

1. Perfectness and Completeness

Let E be X or \bar{X} . It is known ([1], [5]) that the Baire σ -algebra $\mathcal{B}_0(E)$ consists of the countable subsets of X together with their complements in E and that the Borel σ -algebra $\mathcal{B}(E)$ consists of the subsets A of E such that A or E-A contains an unbounded closed subset of X. It is well known that $\mathcal{B}(E) \neq \mathcal{P}(E)$, the power set of E (see, e.g., [4, Lemma 7.6] or [8]).

A finite measure μ on a measurable space (E,8) is called *perfect* if for each 8-measurable real-valued function f on E and for each subset A of the real line $\mathbb R$ with $f^{-1}(A) \in \mathcal E$, there exists a Borel

subset B of \mathbb{R} , i.e. $B \in \mathcal{B}(\mathbb{R})$, such that $B \subset A$ and $\mu(f^{-1}(B)) = \mu(f^{-1}(A))$ or, equivalently, for each \mathcal{E} -measurable real-valued function f on E, there exists a $B \in \mathcal{B}(\mathbb{R})$ such that $B \subset f(E)$ and $\mu(f^{-1}(B)) = \mu(E)$ (see [7, Lemma 2]).

We need in the sequel the following lemma.

LEMMA 1. For every real-valued function f defined on $X[resp. \bar{X}]$, f is Borel measurable on $X[resp. \bar{X}]$ if and only if it is constant on an unbounded closed subset of X.

PROOF. Suppose f is Borel measurable on X [resp. \bar{X}]. Then there exist a decreasing sequence $\{[a_n,b_n)\}$ of bounded intervals in $\mathbb R$ and a decreasing sequence $\{F_n\}$ of unbounded closed subsets of X such that b_n - $a_n = 1/2^{n-1}$ and $F_n \subset f^{-1}([a_n,b_n))$ for all n. Since $\cap F_n$ is an unbounded closed subset of X and since $\cap [a_n,b_n) = \{c\}$ for some $c \in \mathbb R$, we get $\cap F_n \subset f^{-1}(c)$. Plainly the converse of the foregoing assertion holds. \square

By a minor modification of the proof of Lemma 1 we obtain the next result.

LEMMA 2. For every real-valued function f defined on X [resp. \bar{X}], f is Baire measurable on X [resp. \bar{X}] if and only if there exist $\alpha \in X$ and $c \in \mathbb{R}$ such that $[\alpha,\Omega) \subset f^{-1}(c)$ [resp. $[\alpha,\Omega] \subset f^{-1}(c)$].

THEOREM 1. Every finite Baire or Borel measure on X is perfect.

PROOF. If f is a Baire measurable function on X, then f(X) is a countable subset of \mathbb{R} by Lemma 2. Consequently every finite Baire measure on X is perfect (cf. [7, Example 2]).

Suppose μ is a finite Borel measure on X. Then the set $Y = \{x: \mu(\{x\}) > 0\}$ is countable. Let δ denote the Borel measure on X such that $\delta(A) = 1$ or 0, depending on whether A or X-A contains an unbounded closed subset of X. By Theorems 2 and 3 of [5], we also have $\mu = \nu + p\delta$, where $0 \le p < \infty$ and ν is a Borel measure concentrated on Y. Let f be any Borel measurable function on X. By Lemma 1, there exist an unbounded closed subset F of X and a real number c such that $F \subset f^{-1}(c)$. Put $B = f(Y \cup F)$. It is easy to verify that B is a countable subset of f(X) such that

$$\mu(X) = \nu(Y) + p = \mu(Y \cup F) \le \mu(f^{-1}(B)) \le \mu(X)$$
.

Therefore, μ is perfect. \square

By definition, every Baire or Borel measure on \bar{X} is a finite measure. An application of [1, Theorem], together with Lemmas 1 and 2, yields the next result.

THEOREM 2. Every Baire or Borel measure on X is perfect.

Recall that on X, every Baire or Borel measure is regular if and only if it is purely discontinuous ([5], p. 459).

THEOREM 3. Let μ be either a Baire measure or a finite Borel measure on X. Then μ is complete if and only if it is not purely discontinuous.

PROOF. Suppose μ is a regular Baire [resp. Borel] measure on X. Then there exists an $\alpha \in X$ such that $\mu([\alpha,\Omega)) = 0$. Since $\mathcal{B}(X) \neq \mathcal{P}(X)$, there is a subset A of $[\alpha,\Omega)$ that is not Borel. Therefore, μ is not complete.

Suppose μ is a nonregular finite Borel measure on X. By Theorems

2 and 3 of [5] there is a positive number p such that $\mu(A) \ge p \delta(A)$ for every $A \in \mathcal{B}(X)$. If $A \in \mathcal{B}(X)$, $\mu(A) = 0$, and $B \subset A$, then $\delta(A) = 0$ so that X-B contains an unbounded closed subset of X and hence $B \in \mathcal{B}(X)$. Thus μ is complete.

Using Theorem 1 of [5] we show easily that every nonregular Baire measure on X is complete. \Box

On the set \bar{X} , it is known ([1], [5]) that every Baire measure is regular and that a Borel measure is regular if and only if it is purely discontinuous. The next theorem follows easily from Theorem 5 of [5] together with Theorem of [1].

THEOREM 4. Let μ be a Baire or Borel measure on \bar{X} . Then μ is complete if and only if it is not purely discontinuous.

2. Strongly Blackwell Spaces

Let (E,\mathcal{E}) be a measurable space. For each $x \in E$, the atom A(x) of \mathcal{E} determined by x is the intersection of those sets in \mathcal{E} that contain x. The σ -algebra \mathcal{E} is called separated if $A(x) = \{x\}$ for each $x \in E$. The σ -algebra \mathcal{E} is called countably generated (c.g.) if there is a sequence $\{E_n\}$ of elements of \mathcal{E} which generates \mathcal{E} . If the σ -algebra \mathcal{E} has a countable generator $\{E_n\}$, then for each $x \in E$, the atom A(x) is the intersection of those E_n or $E - E_n$ that contain x and hence $A(x) \in \mathcal{E}$. The space (E,\mathcal{E}) , or the σ -algebra \mathcal{E} , is called separable if \mathcal{E} is c.g. and separated (see, e.g., [2], [3]).

A measurable space (E,8), or the σ -algebra 8, is called strongly Blackwell if any two c.g. sub- σ -algebras of 8 with the same atoms

coincide. By a strongly Blackwell separable space we shall mean a separable measurable space that is strongly Blackwell. It is easy to verify that the theorem of Ramachandran [6] (see also [2]) characterizing strongly Blackwell separable spaces is also valid for arbitrary strongly Blackwell spaces. In particular, we have that a measurable space (E,\mathcal{E}) is strongly Blackwell if and only if for every \mathcal{E} -measurable real-valued function f on E, $\mathcal{A}_f = \mathcal{B}_f$ where $\mathcal{A}_f = \{f^{-1}(A) \in \mathcal{E}: A \subset \mathbb{R}\}$ and $\mathcal{B}_f = \{f^{-1}(B): B \in \mathcal{B}(\mathbb{R})\}$.

We begin with a preliminary result.

LEMMA 3. Let E be X or \bar{X} . Then the Baire and Borel σ -algebras $\mathbf{3}_{0}(E)$ and $\mathbf{3}(E)$ are separated but not countably generated.

PROOF. It is easy to show that $\mathbf{3}_0(E)$ and $\mathbf{3}(E)$ are separated. Suppose $\mathbf{3}(X)$ is c.g. Then there is a Borel isomorphism f from $(X,\mathbf{3}(X))$ onto a subset Z of [0,1] with its Borel σ -algebra $\mathbf{3}(Z)$ (see, e.g., [2], [3]) which is impossible by Lemma 1. Similarly $\mathbf{3}_0(X)$, $\mathbf{3}_0(\bar{X})$ and $\mathbf{3}(\bar{X})$ are not c.g. by Lemmas 2 and 1, respectively. \square

LEMMA 4. Let E be X or \bar{X} . Then every c.g. sub- σ -algebra of $\mathbf{3}_0(E)$ can have only a countable number of atoms and is not separated.

PROOF. Suppose \mathcal{C} is a sub- σ -algebra of $\mathcal{S}_0(X)$ with a countable generator $\{C_n\}$. We may assume without loss of generality that all C_n are countable subsets of X. Then for each $x \in X$, the atom A(x) of \mathcal{C} determined by x is in \mathcal{C} . If we put $C = \bigcup C_n$, then $X - C \neq \phi$ and A(x) = X - C for all x in X-C. Consequently the set X-C is an unbounded atom of \mathcal{C} and hence \mathcal{C} is not separated. Since the set C is countable and since $C = \bigcup \{A(x) \colon x \in C\}$, there exists a countable

collection $\{A(x_n): x_n \in C\}$ of bounded atoms such that $C = \bigcup A(x_n)$. Therefore, the family of atoms of C consists of X-C, together with $\{A(x_n)\}$. Similarly we also prove the lemma for $S_0(\bar{X})$.

THEOREM 5. The Baire σ -algebras $\mathbf{8}_0(X)$ and $\mathbf{8}_0(\bar{X})$ are strongly Blackwell.

PROOF. Suppose that $\mathcal E$ and $\mathcal D$ are c.g. sub- σ -algebras of $\mathcal B_0(X)$ with the same atoms. Let A be any nonempty set in $\mathcal E$. By Lemma 4, together with hypothesis, the set A is the union of a countable collection of atoms of $\mathcal E$ or, equivalently, $\mathcal D$. Consequently $A \in \mathcal D$ and hence $\mathcal E \subset \mathcal D$. Similarly we get $\mathcal D \subset \mathcal E$. Thus $\mathcal B_0(X)$ is strongly Blackwell. Again using Lemma 4 we show that $\mathcal B_0(X)$ is strongly Blackwell. \square

THEOREM 6. The Borel σ -algebras $\mathbf{S}(X)$ and $\mathbf{S}(\bar{X})$ are not strongly Blackwell.

PROOF. First, we show $\mathbf{3}(X)$ is not strongly Blackwell. Let F be the set of limit ordinals in X and G = X - F. Then F is an unbounded closed set and G is an unbounded open set. Let $f\colon X \to [0,1]$ be such that $f(F) = \{1\}$ and the restriction of f to G is a bijection between G and [0,1). By Lemma 1, f is Borel measurable. Let F be a subset of [0,1) which is not Lebesgue measurable and F and F and F and F are then we have $F = f^{-1}(F)$ for some Borel subset F of F and hence F are the following substantial F and hence F and F

REFERENCES

- [1] M. Bhaskara Rao and K.P.S. Bhaskara Rao, Borel σ -algebra on $[0,\Omega]$, Manuscripta Math. 5 (1971), 195-198.
- [2] K.P.S. Bhaskara Rao and B.V. Rao, Borel spaces, Dissertationes Math.

 190 (1981), 1-63.
- [3] D.L. Cohn, Measure Theory, Birkhäuser, Boston, 1980.
- [4] T. Jech, Set Theory, Academic Press, New York, 1978.
- [5] C.W. Kim, Baire measures on $[0,\Omega)$ and $[0,\Omega]$, Real Analysis Exchange. 14 (1988-1989), 454-463.
- [6] D. Ramachandran, On the two definitions of independence, Colloquium Math. 32 (1975), 227-231.
- [7] V.V. Sazonov, On perfect measures (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 391-414; English transl., Amer. Math. Soc. Transl. (2) 48 (1965), 229-254.
- [8] S. Ulam, Zur Masstheorie in der algemeinen Mengenlehre, Fund. Math. 16 (1930), 140-150.

Received February 12, 1990