Ernest Freund, str. Dragos-voda 2, Satu-Mare 3900, Rumania

S-NULL FUNCTIONS

1 Introduction

In this paper we consider the class of S-null functions, i.e. of those real functions which have symmetric variation equal to zero. We prove that any S-null function is constant on a co-countable set and belongs to the first class of Baire. The results of the paper extend some theorems on locally symmetric functions to the class of S-null functions.

Let $\delta: R \to (0, \infty)$ be a function. A collection $P = \{([x_i - h_i, x_i + h_i], x_i) : i = 1, 2, ..., n\}$ is called a symmetric δ -partition on R if $0 < h_i < \delta(x_i)$ and $(x_i - h_i, x_i + h_i) \cap (x_j - h_j, x_j + h_j) = \emptyset$, $i \neq j$. The closed interval [a, b] has a symmetric δ -partition if there exists a symmetric δ -partition P on R with $\bigcup_{i=1}^n [x_i - h_i, x_i + h_i] = [a, b]$.

Definition 1.1. Let $f: R \to R$ and $\delta: R \to (0, \infty)$ be real functions. Define the number $V(f, \delta)$ as follows: $V(f, \delta) = \sup\{\sum_{i=1}^{n} |f(x_i + h_i) - f(x_i - h_i)| : P = \{([x_i - h_i, x_i + h_i], x_i); i = 1, 2, ..., n\}$ is a symmetric δ -partition on R. The symmetric variation of f on R is defined by $VS(f) = \inf\{V(f, \delta) | \delta: R \to (0, \infty)\}$.

A function $f: R \to R$ with VS(f) = 0 is called an S-null function. The class of these functions is denoted by V(S).

<u>Definition 1.2.</u> We call a function $f: R \to R$ locally symmetric if for each $x \in R$ there exists $\delta(x) > 0$ with f(x - h) = f(x + h) whenever $0 < h < \delta(x)$. I.Z. Ruzsa [1] proved the following theorem:

Theorem 1.3. If f is a locally symmetric function, then there exists $\alpha \in R$ for which the closure of the set $\{x \in R : f(x) \neq \alpha\}$ is countable.

Every locally symmetric function is an S-null function; therefore one can ask whether a similar theorem is valid for the class V(S).

2 The class V(S)

To obtain the main result (some version of Theorem 1.3 for the class V(S)), we need a few lemmas.

Lemma 2.1 ([2]) Let $[a,b] \supset R$ and $\delta: R \to (0,\infty)$ be a function. Write $c = \overline{(a+b)/2}$. Then there exists a set $D \subset (c,b)$ such that the closure of the set $(c,b)\setminus D$ is countable and moreover the interval [c-x,c+x] has at least one symmetric δ -partition for all $x \in (0, \frac{b-a}{2})$ with $c+x \in D$.

From this lemma we immediately deduce the following:

<u>Lemma 2.2 ([3])</u>. Let $\delta: R \to (0, \infty)$ be a function. Then there exists a countable set N such that for all $x, y \in R \setminus N$ the closed interval [x, y] has at least one symmetric δ -partition.

Theorem 2.3. Let $f: R \to R$ be an S-null function. Then there exists $\alpha \in R$ such that the set $\{x \in R : f(x) \neq \alpha\}$ is countable and moreover for each $\varepsilon > 0$ the closure of the set $\{x \in R : |f(x) - \alpha| > \varepsilon\}$ is countable.

Proof. First we prove that f is constant on a co-countable set. To each n there corresponds a positive function $\delta_n:R\to(0,\infty)$ with $V(f,\delta_n)<\frac{1}{n}$. Lemma 2.2 implies that there is a countable set N_n such that for every $x,y\in R\backslash N_n$ the closed interval [x,y] has a symmetric δ_n -partition. Put $N_0=\bigcup_{n=1}^\infty N_n$. Thus N_0 is countable. Let $x,y\in R\backslash N_0$. Then for each n there exists at least one symmetric δ_n -partition of [x,y], $P_n=\{([x_i-h_i,x_i+h_i],x_i):i=1,2,\ldots,k\}$. We have that $|f(x)-f(y)|=|\sum_{i=1}^k f(x_i+h_i)-f(x_i-h_i)|\leq V(f,\delta_n)<\frac{1}{n}$ for all n. Consequently f(x)=f(y). Since $x,y\in R\backslash N_0$ were chosen arbitrary, it follows that f is equal to a constant (say α) on $R\backslash N_0$.

We prove now the second assertion. Suppose the contrary for some $\varepsilon > 0$ the set $E_{\varepsilon} = \overline{\{x \in R : |f(x) - \alpha| > \varepsilon\}}$ is uncountable. Then the set of condensation points of E_{ε} is nonempty. Let x_0 belonging to it. Without loss of generality, we assume that $(x_0 - 1, x_0) \cap E_{\varepsilon}$ is uncountable. It is easy to prove that the set $\{(x + y)/2 : x, y \in S\}$ is countable if S is. Thus with $S = \{x \in R : f(x) \neq \alpha\}$ we obtain that the set $\{(x + y)/2 : f(x), f(y) \neq \alpha\}$ is countable, and we may find a point $c < x_0 - 1$ not belonging to it. For $\varepsilon > 0$ and $\delta : R \to (0, \infty)$ such that $V(f, \delta) < \varepsilon$ we use Lemma 2.1 with $a = 2c - x_0$ and $b = x_0$ to find a set D with the properties described there. Let $x \in (x_0 - 1, x_0), f(x) \neq \alpha$. We have $f(2c - x) = \alpha$. If $x \in D$, then the interval [2c - x, x] has at least one symmetric δ -partition. Consequently $|f(x) - f(2c - x)| = |f(x) - \alpha| \leq \sum_{i=1}^n |f(x_i + h_i) - f(x_i - h_i)| < V(f, \delta) < \varepsilon$. Then $x \in (x_0 - 1, x_0)$ and $|f(x) - \alpha| > \varepsilon$

imply that x belongs to $(c, x_0) \setminus D$. From Lemma 2.1 it follows that $(x_0 - 1, x_0) \cap E_{\epsilon}$ is countable. This contradiction shows that E_{ϵ} has no point of condensation. Consequently E_{ϵ} is countable for all $\epsilon > 0$. The proof is complete.

The following theorem generalizes the well-known theorem of Kostyrko, Neubrunn, Smital and Šalát stating that every locally symmetric function is of class Baire-one [4].

Theorem 2.4. Each S-null function is of class Baire-one.

Proof. If f is not Baire 1, then there must exist a perfect set P such that the restriction of f to P has no point of continuity. Let $x \in P \cap \{x \in R : f(x) = \alpha\}$. Then exists n_0 such that $x \in E_{\frac{1}{n_0}}$. Consequently $P \subset \bigcup_{n_0=1}^{\infty} E_{\frac{1}{n_0}}$ and thus the set P is countable. This contradiction shows that f is of class Baire-one.

References

- [1] J.Z. Ruzsa: Locally symmetric functions, Real Analysis Exchange 4 (1978-79), 84-86.
- [2] B. Thomson: On full covering properties, Real Analysis Exchange 6 (1980 81), 77-93.
- [3] D. Preiss, B. Thomson: A symmetric covering theorem, Real Analysis Exchange 14 (1988-89), 253-254.
- [4] P. Kostyrko, T. Neubrunn, J. Smital, T. Šalát: On locally symmetric and symmetrically continuous functions, Real Analysis Exchange 6 (1980-81), 67-76.

Received February 7, 1990