Real Analysis Exchange Vol 16 (1990-91)

Ján Borsík, Matematický ústav SAV, Grešákova 6, 040 01 Košice, Czechoslovakia Jozef Doboš, Katedra matematiky VŠT, Švermova 9, 040 01 Košice,

Czechoslovakia

ON DECOMPOSITIONS OF QUASICONTINUITY.

There are many papers which deal with decompositions of continuity (see for example [2], [5], [6], [10]). The purpose of this note is to investigate similar questions for the quasicontinuity. A characterization of the cliquishness on Baire spaces is given.

In what follows X, Y denote topological spaces. For a subset A of a topological space denote Cl A and Int A the closure and the interior of A, respectively. The letters N, Q and R stand for the set of natural, rational and real numbers, respectively.

We recall that a function $f:X \rightarrow Y$ is almost continuous (also nearly continuous) at a point $x \in X$ (see [7]) if for each neighbourhood V of f(x), the set Cl $f^{-1}(V)$ is a neighbourhood of x. Denote by H_f the set of all such points at which f is almost continuous. If $H_f = X$, then f is said to be almost continuous.

A function $f:X \rightarrow Y$ is quasicontinuous at a point $x \in X$ (see [9]) if for each neighbourhood U of x and each neighbourhood V of f(x) there is a nonempty open set $G \subset U$ such that $f(G) \subset V$. Denote by Q_f the set of all points at which f is quasicontinuous. If $Q_f = X$, then f is said to be quasicontinuous.

A function $f:X \rightarrow Y$ is simply continuous (see [1]) if for each open set V in Y, the set $f^{-1}(V)$ is a union of an open set and a nowhere dense set in X.

It is easy to see that every quasicontinuous function is simply continuous.

Let Y be a metric space with a metric d. A function f:X \Rightarrow Y is cliquish at a point $x \in X$ (see [9]) if for each $\varepsilon > 0$ and each neighbourhood U of x there is a nonempty open set G C U such that $d(f(y), f(z)) < \varepsilon$ for each y, z \in G. Denote by A_f the set of all points at which f is cliquish. If $A_f = X$, then f is said to be cliquish.

The set A_f is closed in X (see [8]). Hence, if Y is a metric space and f:X \rightarrow Y is a function such that Q_r is dense in X, then f is cliquish.

Now we shall give a simultaneous generalization of the almost continuity and of the quasicontinuity.

Definition 1. We say that $f:X \rightarrow Y$ is almost quasicontinuous at a point $x \in X$, if for each neighbourhood V of f(x) and each neighbourhood U of x, the set $f^{-1}(V) \cap U$ is not nowhere dense. Denote by B_r the set of all points

at which f is almost quasicontinuous. If $B_f = X$, we say that f is almost quasicontinuous.

Remark 1. It is easy to see that $H_r \cup Q_r \subset B_r$.

Remark 2. Evidently, a function f is almost quasicontinuous at x if and only if for each neighbourhood U of x and each neighbourhood V of f(x) there is a nonempty open set $G \subseteq U$ such that $G \subseteq Cl f^{-1}(V)$.

Lemma 1. Let Y be a regular space. Then $B_f \cap Int Cl Q_f \subseteq Q_f$.

Proof. Let $x \in \mathbb{B}_{f} \cap \text{Int Cl} \mathbb{Q}_{f}$. Let U and V be open neighbourhoods of x and f(x), respectively. Put $H = \text{Int Cl} \mathbb{Q}_{f}$. Choose a neighbourhood W of f(x) such that Cl W C V. From the almost quasicontinuity at x there is an open nonempty set $G \subset U \cap H$ such that $f^{-1}(W)$ is dense in G. Since $G \subset \text{Cl} \mathbb{Q}_{f}$, there is a point $y \in \mathbb{Q}_{f} \cap G$. Let S be an arbitrary neighbourhood of f(y). From the quasicontinuity at y there is a nonempty open set $T \subset G$ such that $f(T) \subset S$. From the density of $f^{-1}(W)$ in G we have $f^{-1}(W) \cap T \neq \emptyset$. Then $\emptyset \neq W \cap f(T) \subset W \cap S$. Thus each neighbourhood S of f(y)intersects the set W, which yields $f(y) \in \text{Cl } W \subset V$. Therefore V is a neighbourhood of f(y). From the quasicontinuity at y there is a nonempty open set $E \subset U$ such that $f(E) \subset V$. Therefore $x \in \mathbb{Q}_{f}$.

We recall that a set A is said to be quasiclosed (also semiclosed) if Int Cl A \subset A.

Proposition 1. Let Y be a regular space. If $f:X \rightarrow Y$ is almost quasicontinuous, then Q_r is a quasiclosed set.

From the Lemma 1 we get

Theorem 1. Let Y be a regular space. Then $f:X \rightarrow Y$ is quasicontinuous if and only if it is almost quasicontinuous and $Q_{\underline{r}}$ is dense set in X.

The following example shows that the assumption of the regularity of Y in Theorem 1 cannot be omitted.

Example 1. Let X = R with the usual topology. Let $Y = \{a, b\}, \ T = \{\emptyset, \{b\}, Y\}$. Let $f: X \rightarrow Y, f(x) = a$ for $x \in Q, f(x) = b$ otherwise. Then f is almost quasicontinuous, the set Q_r is dense in X, however f is not quasicontinuous.

Lemma 2. Let Y be a metric space with a metric d. Then $B_f \cap Int A_f \subseteq Q_f$.

Proof. Let $x \in B_f \cap Int A_f$. Let U be a neighbourhood of x and $\varepsilon > 0$. Since $x \in B_f$, there is a nonempty open set $G \subset U \cap Int A_f$ such that the set $H = f^{-1}(S(f(x), \varepsilon/2))$ (where $S(f(x), \varepsilon/2) = \{w \in Y: d(f(x), w) < \varepsilon/2\}$) is dense in G. Let $y \in G \cap H$. From the cliquishness at y there is a nonempty open set $S \subset G$ such that $d(f(u), f(v)) < \varepsilon/2$ for all $u, v \in S$. Since H is dense in G, there is $z \in H \cap S$. Let $t \in S$ be an arbitrary point. Then $d(f(x), f(t)) \le d(f(x), f(z)) + d(f(z), f(t)) < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Therefore $x \in Q_f$. From Lemma 2 we get

Theorem 2. Let Y be a metric space. Then $f:X \rightarrow Y$ is quasicontinuous if and only if it is almost quasicontinuous and cliquish.

We shall give a simultaneous generalization of Theorems 1 and 2.

Definition 2. Denote $L_f = \{x \in X: \text{ there is a base } (b) of neighbourhoods of <math>f(x)$ such that for each $B \in (b)$ there is a neighbourhood U of x such that the set $f^{-1}(B) = \text{Int } f^{-1}(B)$ is nowhere dense in U).

Remark 3. We observe that $X = B_r \cup L_r$.

Lemma 3. Let $f: X \rightarrow Y$ be a function. Then Int $Q_f \subset L_f$.

Proof. Let $x \in Int Q_f$. Let B be an open neighbourhood of f(x). Put $G = Int Q_f$ and $H = f^{-1}(B) - Int f^{-1}(B)$. We shall show that H is nowhere dense in G. By contradiction. Let $K \subseteq G$ be a nonempty open set such that H is dense in K. Let $y \in H \cap K$. Then K is a neighbourhood of y and B is a neighbourhood of f(y). Hence from the quasicontinuity at y there is a nonempty open set $L \subseteq K$ such that $f(L) \subseteq B$. Thus $L \subseteq f^{-1}(B)$, which yields $L \subseteq Int f^{-1}(B)$. Hence $L \cap H = \emptyset$, which contradicts the density H in K.

Corollary 1. If $f: X \rightarrow Y$ is quasicontinuous, then $L_f = X$. **Remark 4.** It is easy to see that if f is continuous at x, then $x \in L_f$. The following example shows that this assertion does not hold for quasicontinuity points.

Example 2. Let $f: \mathbb{R} \to \mathbb{R}$, f(x) = x for $x \in \mathbb{Q}$, $x \ge 0$, f(x) = -1 for $x \in \mathbb{Q}$, x < 0 and f(x) = 0 otherwise. Then $0 \in \mathbb{Q}_{f} - \mathbb{L}_{f}$.

Lemma 4. Let Y be a regular space. Then Int Cl $Q_f \subset L_f \cup Q_f$.

Proof. According to Remark 3 and Lemma 1 we get Int Cl $Q_f = (B_f \cup L_f) \cap Int Cl Q_f = (B_f \cap Int Cl Q_f) \cup U (L_f \cap Int Cl Q_f) \subset Q_f \cup L_f.$

Proposition 2. Let Y be a regular space. Let Q_f be a dense set in X. Then $X = L_f \cup Q_f$.

Proposition 3. If $X = L_f \cup Q_f$, then the set L_f is dense in X.

Proof. Since $X - L_f \subseteq Q_f$, according to Lemma 3 we have Int $(X - L_f) \subseteq$ Int $Q_f \subseteq L_f$. On the other hand evidently Int $(X - L_f) \subseteq X - L_f$. Hence Int $(X - L_f) = \emptyset$, i. e. the set L_f is dense in X.

Corollary 2. Let Y be a regular space. If the set Q_f is dense in X, then the set L_f is dense in X.

Lemma 5. Let Y be a metric space. Then Int $A_f \subset L_f \cup Q_f$.

Proof. According to Remark 3 and Lemma 2 we have Int $A_f = (B_f \cup L_f) \cap Int A_f = (B_f \cap Int A_f) \cup (L_f \cap Int A_f) \subset Q_f \cup L_f$.

Proposition 4. Let Y be a metric space. Let $f: X \rightarrow Y$ be cliquish. Then $X = L_f \cup Q_f$.

From Propositions 3 and 4 we get

Corollary 3. Let Y be a metric space. Let $f:X \to Y$ be cliquish. Then the set L_r is dense in X.

Lemma 6. Let $f: X \to Y$ be a function. Then $\mathbb{B}_f \cap L_f \subset \mathbb{Q}_f$.

Proof. Let $x \in B_f \cap L_f$. Let U and V be neighbourhoods of x and f(x), respectively. Let B be a neighbourhood of f(x) such that $B \subset V$ and let T be a neighbourhood of x such that the set $H = f^{-1}(B) - Int f^{-1}(B)$ is nowhere dense in T. Since $x \in B_f$, there is a nonempty open set $G \subset U \cap T$ such that $f^{-1}(B)$ is dense in G. Since H is nowhere dense in T, there is a nonempty open set $K \subset G$ such that $H \cap K = \emptyset$. Since $f^{-1}(B)$ is dense in G, we have $f^{-1}(B) \cap K \neq \emptyset$. Since $H \cap K = \emptyset$, we get Int $f^{-1}(B) \cap K \neq \emptyset$. Put $S = Int f^{-1}(B) \cap K$. Then S is a nonempty open subset of U and $f(S) \subset V$.

Theorem 3. Let Y be a regular space. Then $f:X \rightarrow Y$ is quasicontinuous if and only if it is almost quasicontinuous and the set L_f is dense in X.

Proof. Necessity. According to Theorem 1 and Corollary 2. Sufficiency. According to Lemma 6 and Theorem 1.

Clearly, Theorem 3 is a generalization of Theorems 1

and 2 (by Corollary 3). Now we shall give other generalization of Theorems 1 and 2 (by Propositions 2 and 4, respectively), where the regularity of a range space is not required.

Theorem 4. Let $f:X \rightarrow Y$ be a function. Then the following three conditions are equivalent:

(i) f is quasicontinuous;

(ii) f is almost quasicontinuous and $L_f = X$;

(iii) f is almost quasicontinuous and $X = L_f \cup Q_f$.

Proof.

(i) \Rightarrow (ii): according to Remark 1 and Corollary 1.

(ii) \Rightarrow (iii): obvious.

(iii) \Rightarrow (i): according to Lemma 6 we have $X = L_f \cup Q_f = B_f \cap (L_f \cup Q_f) \subset (B_f \cap L_f) \cup Q_f \subset Q_f$.

By the definition of the simply continuity we get

Lemma 7. Let $f:X \rightarrow Y$ be a simply continuous function. Then $L_f = X$. (The converse is not true, as the Riemann function shows.)

Theorem 5. A function $f:X \rightarrow Y$ is quasicontinuous if and only if it is almost quasicontinuous and simply continuous.

Proof. According to Lemma 7 and Theorem 4.

Now we shall give a certain characterization of the cliquishness. We recall that a topological space X has the Souslin property (see [4; p. 86]) if every family of pairwise disjoint nonempty open subsets of X is countable. **Definition 3.** We say that a topological space X has the locally Souslin property if for each point of X there is its neighbourhood, which (as a subspace of X) has the Souslin property.

Example 3. Every uncountable discrete topological space has the locally Souslin property, however it has not the Souslin property.

By a routine way we can prove

Lemma 8. A topological space X is completely regular if and only if for each $a \in X$ and each neighbourhood U of a there is a family $\{B_{\mathcal{E}}\}_{\mathcal{E}\in\{0,1]}$ of open neighbourhoods of a such that $Cl B_{\gamma} \subset B_{\mathcal{E}} \subset U$ for $0 < \gamma < \delta \leq 1$.

Theorem 6. Let a topological space X have the locally Souslin property, let Y be a completely regular space and let $f:X \rightarrow Y$ be a function. If the set Q_f is dense in X, then $L_f = X$.

Proof. Let $x \in X - L_f$. Then there is a neighbourhood W of f(x) such that for each neighbourhood V of f(x), $V \subseteq W$ and each neighbourhood T of x, the set $f^{-1}(V) - Int f^{-1}(V)$ is not nowhere dense in T. Let U be a neighbourhood of x such that every family of pairwise disjoint nonempty open subsets of U is countable. Let $\{B_{\mathcal{L}}\}_{\mathcal{L} \in \{0,1\}}$ be a family of open neighbourhoods of f(x) such that Cl $B_{\mathcal{L}} \subseteq B_{\mathcal{L}} \subseteq W$ for $0 < \mathfrak{L} < \mathfrak{L} \leq 1$. Let $0 < \mathfrak{L} < 1$. Then the set $H_{\mathcal{L}} =$ $= f^{-1}(B_{\mathcal{L}}) - Int f^{-1}(B_{\mathcal{L}})$ is not nowhere dense in U. Therefore in G_{ε} . Since Q_{ε} is dense in X, there is a point $z \in Q_{\varepsilon} \cap G_{\varepsilon}$. Let S be an arbitrary neighbourhood of f(z). From the quasicontinuity at z there is a nonempty open set $E \subseteq G_n$ such that f(E) \subseteq S. Since H_E is dense in G_E, there is a point $w \in H_{r}$ $\cap E$. Then $f(w) \in S \cap B_{r}$. Therefore each neighbourhood S of f(z) intersects the set B_{z} , i.e. $f(z) \in Cl B_{p}$. We shall show that $f(z) \notin B_{p}$. By contradiction. Suppose that $f(z) \in B_{r}$. From the quasicontinuity at z there is a nonempty open set $K \subseteq G_n$ such that $f(K) \subseteq B_n$. This yields $K \subseteq f^{-1}(B_{\mathcal{E}})$ and hence also $K \subseteq Int f^{-1}(B_{\mathcal{E}})$. Since H_{ε} is dense in G_{ε} , there is a point $v \in H_{\varepsilon} \cap K$. Therefore $v \in H_{\varepsilon} \subset X - \text{Int f}^{-1}(B_{\varepsilon})$ and simultaneously $v \in K \subset \text{Int f}^{-1}(B_{\varepsilon})$, a contradiction. Therefore $f(z) \in Cl B_{g} - B_{g}$. From this we get $f(Q_f \cap G_g) \subseteq Cl B_g - B_g$. Thus we have constructed a family $\{G_{\mathcal{E}}\}_{\mathcal{E} \in \{0,1\}}$ of nonempty open subsets of U. We shall show that $\{G_{\mathcal{E}}\}_{\mathcal{E}\in\{0,1\}}$ is a family of pairwise disjoint sets. By contradiction. Suppose that there is 0<arphi<arsigma<1 such that $G = G_y \cap G_g$ is a nonempty set. Since Q_f is dense in X, there is a point $u \in G \cap Q_r$. Then $f(u) \in Cl B_v - B_v \subset$ \subset Cl B_y \subset B_f and simultaneously f(u) \in Cl B_f - B_f \subset X - B_f, a contradiction. From the definition of the set U it follows that $\{G_{\mathcal{E}}\}_{\mathcal{E}\in\{0,1\}}$ is a countable family and this contradicts to the uncountability of the interval (0, 1). Therefore $X - L_f = \emptyset$, i.e. $X = L_f$.

The following example shows that the assumption of the locally Souslin property in Theorem 6 cannot be omitted.

Example 4. We put $T = A \times I$, where $A = \{a \in R^N :$ $a \ge a_{n+1}$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = 0$ and I = [0, 1]. Let $S = U (R \times \{t\})$ with the sum topology σ . Let $t \in T$ $X = S \cup \{0\}$ with a topology $\mathcal{T} = \sigma \cup \{X\}$. Let $Q^+ =$ $\{q_1, q_2, q_3, \dots\}$ be the set of all positive rational numbers. For each $t = (a, r) \in T$ define a function $f_{+}:R \times \{t\} \rightarrow R$ as follows: $f_{+}(x) = r + a_{p}$, if $x = (q_{p}, t)$; $f_{t}(x) = r - a_{n}$, if $x = (-q_{n}, t)$ and $f_{t}(x) = r$ otherwise. Now we define a function f: $X \rightarrow R$ as $f(x) = f_+(x)$ for $x \in R \times \{t\}$ and f(x) = 0 otherwise. Then the set $Q_f = U$ ((R - Q) × {t}) is dense in X ter (and f is cliquish), however $L_r \neq X$. We shall show that $0 \notin L_f$. Let B be an arbitrary bounded neighbourhood of the point O (in R). Put $r = \sup B$. We shall show that $f^{-1}(B) - Int f^{-1}(B)$ is not nowhere dense in X (X is only neighbourhood of 0 in X). a) Suppose that $r \in B$. Choose an arbitrary point $a \in A$. Put $G = (0, \infty) \times \{(a, r)\}$. Then G is a nonempty open subset of X such that $f^{-1}(B) \cap G = ((0, \infty) - Q) \times \{(a, r)\}.$ This yields that $f^{-1}(B) - Int f^{-1}(B)$ is dense in G. b) Suppose that $r \notin B$. Choose $a \in A$ such that $r - a \in B$ for all $n \in N$. Put $G = (-\infty, 0) \times \{(a, r)\}$. Then G is a nonempty open subset of X such that $f^{-1}(B) \cap G =$ = $((-\infty, 0) \cap Q) \times \{(a, r)\}$. This yields that $f^{-1}(B) - Int f^{-1}(B)$ is dense in G.

Lemma 9. Let Y be a second countable space and let

f:X \rightarrow Y be a function. Then $L_f = Q_f$ is a set of the first category.

Proof. In the paper [11] it is proved that $X - H_f$ is a set of the first category for second countable range space. Hence according to Remark 1 and Lemma 6 we have $L_f - Q_f \subset$ $\subset L_f - (L_f \cap B_f) \subset L_f - B_f \subset X - B_f \subset X - H_f$, therefore $L_f - Q_f$ is a set of the first category.

Proposition 5. Let X be a Baire space and let Y be a regular second countable space. Let $f:X \rightarrow Y$ be a function. Then the set Q_r is dense in X if and only if $X = L_r \cup Q_r$.

Proof. Necessity. According to Proposition 2. Sufficiency. According to Lemma 9 the set $X - Q_f =$ = $(L_f \cup Q_f) - Q_f = L_f - Q_f$ is a set of the first category. Since X is a Baire space, the set Q_f is dense in X.

Corollary 4. Let X be a Baire space and Y be a separable metric space. Then $f:X \rightarrow Y$ is cliquish if and only if $X = L_{r} \cup Q_{r}$.

Proof. According to Propositions 4 and 5.

Now we shall give a new characterization of the cliquishness.

Theorem 7. Let X be a Baire space with the locally Souslin property. Let Y be a separable metric space. Then $f:X \rightarrow Y$ is a cliquish function if and only if $X = L_{r}$.

Proof. According to Corollary 4, Proposition 5 and

Theorem 6.

Corollary 5. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is cliquish if and only if $L_r = \mathbb{R}$.

Remark 5. The assumption " $L_f = R$ " in Corollary 5 cannot be replaced by the assumption " L_f is dense in R". The function f:R \Rightarrow R, f(x) = q for x = p/q, where p, q are relatively prime integers, q > 0, f(x) = 0 otherwise, is not cliquish, however the set L_f is dense in R.

Remark 6. There is a real function $f:X \rightarrow R$ such that f is not cliquish, however $L_f = X$. Let X = N and let \mathcal{F} be an ultrafilter in X, which contains no finite set. Let X be assigned the topology $\mathcal{T} = \mathcal{F} \cup \{\emptyset\}$. Define $f:X \rightarrow R$ as f(x) = x for all $x \in X$. Then $L_f = X$, however $A_f = \emptyset$ (see [3]).

REFERENCES

- [1] N. Biswas, On some mappings in topological spaces, Bull. Calcutta Math. Soc. 61, 1969, 127-135.
- [2] J. Borsík J. Doboš, On certain decompositions of continuity, submitted in Rend. Ist. Matem. Univ. Trieste.
- [3] J. Doboš, Simple continuity and cliquishness,Časopis pëst. mat. 112, 1987, 355-358.
- [4] R.Engelking, General Topology, PWN, Warszawa 1977.

- [5] L. A. Fudali, On cliquish functions on product spaces, Math. Slovaca 33, 1983, 53-58.
- [6] Ľ. Holá, Some conditions that imply continuity of almost continuous multifunctions, Acta Math. Univ. Comen. 52-53, 1987, 159-165.
- [7] T. Husain, Almost continuous mappings, Ann. Soc. Math. Polon. Comment. Math. 10, 1966, 1-7.
- [8] J. S. Lipinski T. Šalát, On the points of quasicontinuity and cliquishness of functions, Czechoslovak Math. J. 21 (96), 1971, 484-489.
- [9] S. Marcus, Sur les fonctions quasicontinues au sens deS. Kempisty, Colloq. Math. 8, 1961, 47-53.
- [10] J. Smítal E. Stanová, On almost continuous functions, Acta Math. Univ. Comen. 37, 1980, 147-155.
- [11] M. Wilhelm, Nearly lower semicontinuity and its applications, Proc. Fifth Prague Topol. Symp. 1981, 692-698.

Received November 8, 1989