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 There are many papers which deal with decompositions of

 continuity ( see for example C23, C53, C63, CIO] ). The purpose

 of this note is to investigate similar questions for the

 quasicontinuity . A character i zati on of the cliquishness on

 Baire spaces is given.

 In what follows X, V denote topological spaces. For

 a subset A of a topological space denote Cl A and Int A

 the closure and the interior of A, respectively. The letters

 N, Q and R stand for the set of natural , rational and real

 numbers, respect i vel y .

 We recall that a function f : X -+ Y is almost continuous

 ( also nearly continuous ) at a point x e X ( see Í71 ) if

 for each neighbourhood V of f(x), the set Cl f * (V) is

 a neighbourhood of x. Denote by the set of all such

 points at which f is almost continuous. If H^. - X , then
 f is said to be almost continuous.
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 A function fsX -* Y is quasi continuous at a point x e X

 ( see C93 ) if for each neighbourhood U of x and each

 neighbourhood V of f(x) there is a nonempty open set G C u

 such that f (G> C V. Denote by the set of all points

 at which f is quasi continuous. If = X, then f is said

 to be quasi continuous.

 A function f:X ■* Y is simply continuous ( see CI 3 )

 if for each open set V in Y, the set f * (V) is a union

 of an open set and a nowhere dense set in X.

 It is easy to see that every quasicontinuous function

 is simply continuous.

 Let Y be a metric space with a metric d. A function

 f:X -* Y is cliquish at a point x e X ( see C9D ) if for

 each C > 0 and each neighbourhood U of x there is

 a nonempty open set G C U such that d(f (y), f(z)> < £ for

 each y, z e G. Denote by A^ the set of all points at which

 f is cliquish. If A^ = X, then f is said to be cliquish.

 The set A^ is closed in X ( see C83 ). Hence, if
 Y is a metric space and f s X Y is a function such that

 is dense in X, then f is cliquish.

 Now we shall give a simultaneous generalization of the

 almost continuity and of the quasicontinuity .

 Definition 1. We say that f:X -* Y is almost quasi-

 continuous at a point x e X, if for each neighbourhood V of

 f (x) and each neighbourhood U of x, the set f * (V) H U

 is not nowhere dense. Denote by the set of all points
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 at which f is almost quasi continuous. If B^ = X, we say
 that f is almost quasi continuous.

 Remark 1. It is easy to see that U C B^ .

 Remark 2. Evidently, a -function f is almost quasiconti-

 nuous at x if and only if for each neighbourhood U of x

 and each neighbourhood V of f<x) there is a nonempty open

 set G C ü such that G C Cl f -1 (V) .

 Lemma 1. Let V be a regular space. Then

 Bf H Int Cl Q C Q .

 Proof. Let x e B+ f) Int Cl Q^. Let U and V be open
 neighbourhoods of x and f(x), respectively. Put

 H = Int Cl GĻ . Choose a neighbourhood W of f(x) such that
 Cl W C V. From the almost quasicontinui ty at x there is an

 open nonempty set G C u H H such that f *(W> is dense in

 G. Since G C CI Q^, there is a point ye fi 6. Let S be
 an arbitrary neighbourhood of f(y>. From the quasi conti nui t y

 at y there is a nonempty open set T C G such that f (T) C S.

 From the density of f *<W) in G we have f ^W) H T * 0.

 Then 0 ^ W fl f (T) C W H S. Thus each neighbourhood S of f (y)

 intersects the set W, which yields f (y) e Cl W C V. Therefore

 V is a neighbourhood of f(y). From the quasicontinui ty at

 y there is a nonempty open set ECU such that f (E) C v.

 Theref ore x e .

 We recall that a set A is said to be quasi closed ( also

 semi closed ) if Int Cl ACA.
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 Proposition 1. Let Y be a regular space. If f:X -* Y

 is almost quasi continuous, then is a quasi closed set.

 From the Lemma 1 we get

 Theorem 1. Let Y be a regular space. Then fsX ■+ Y is

 quasi continuous i-f and only if it is almost quasi continuous

 and Q+ is dense set in X.

 The following example shows that the assumption of the

 regularity of Y in Theorem 1 cannot be omitted.

 Example 1. Let X = R with the usual topology. Let

 Y ■ <a, bî, tf = <0, íb>, Y> . Let fsX -► Y, f (x) = a for

 X e Q, f (x) = b otherwise. Then f is almost quasi continuous,

 the set GĻ is dense in X, however f is not quasi continuous.

 Lemma 2. Let Y be a metric space with a metric d.

 Then Bf 0 Int C Qf .

 Proof. Let x 6 Br fl Int A... Let U be a neighbourhood
 f f

 of >: and £ > 0. Since x e B^., there is a nonempty open set

 B c u fl Int Af such that the set H ■ f~ł(S(f(x), c/2>>
 ( where S(f(x), C/2) = iw e Y: d(f(x), w) < C/2> ) is dense

 in G. Let y € G D H. From the cliquishness at y there is

 a nonempty open set S C G such that d <f (u) , f (v) ) < C/2

 for all u, ves. Since H is dense in G, there is

 z e H H S. Let tes be an arbitrary point. Then

 d(f(x), f(t>> ¿d(f(x), f(z>) + d (f (z ) , f(t>> < C/2 + C/2 « C.

 Theref ore x e Q^. .
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 From Lemma 2 we get

 Theorem 2. Let V be a metric space. Then f : X -*■ Y is

 quasi continuous i-f and only if it is almost quasi continuous

 and cliquish.

 Me shall give a simultaneous general i z at i on of Theorems

 1 and 2.

 Definition 2. Denote L+ = <x e X: there is a base ft of
 neighbourhoods of f(x) such that for each B e ft there is

 a neighbourhood U of x such that the set

 f * (B) - Int f 1 (B) is nowhere dense in U>.

 Remark 3. We observe that X = B^ U L^ .

 Lemma 3. Let fsX •+ Y be a function. Then Int Q^. C L^ .

 Proof. Let x e Int Q^. Let B be an open neighbourhood

 of f(x). Put G ■ Int Qf and H = f"1 (B) - Int f-1(B). We
 shall show that H is nowhere dense in G. By contradiction.

 Let K C G be a nonempty open set such that H is dense in K.

 Let y e H fi K. Then K is a neighbourhood of y and B is

 a neighbourhood of f(y). Hence from the quasicontinui ty at y

 there is a nonempty open set L c K such that f (L) C B.

 Thus L C f ~ 1 (B ) , which yields L C Int f-1(B). Hence L fl H = 0,

 which contradicts the density H in K.

 Corollary 1. If f:X~*Y is quasi continuous, then L^ » x.

 Remark 4. It is easy to see that if f is continuous at
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 X, then X e L^.. The -following example shows that this assertion
 does not hold for quasi continui t y points.

 Example 2. Let f:R R, f (x) = x for x «s Q, x ¡Ł 0,

 f (x) = -1 for x e Q, x < 0 and f(x) = 0 otherwise. Then

 0 e - Lf .

 Lamm« 4. Let Y be a regular space. Then

 Int Cl Q, CL, U GL .
 f f f

 Proof. According to Remark 3 and Lemma 1 we get

 Int Cl Qf = <Bf U L+> H Int Cl Qf - (B+ <1 Int Cl Qf> U

 U (L fi Int Cl Q+) C Qf U Lf.

 Propomi ti on 2. Let Y be a regular space. Let be

 a dense set in X. Then X - L^ U Q^.

 Proposition 3. If X = L^ U Q^, then the set L^ is
 dense in X.

 Proof. Since X - L, C Q , according to Lemma 3 we have
 T T

 Int (X - L^.) C int C L^. On the other hand evidently

 Int (X - L+) C X - L^. Hence Int (X - L+) =0, i. e. the set

 L^ is dense in X.

 Corollary 2. Let Y be a regular space. If the set

 is dense in X, then the set L^ is dense in X.

 Lemma 5. Let Y be a metric space. Then Int A, C L^ U .

 Proof. According to Remark 3 and Lemma 2 we have Int A^. =

 ■ (B j. U L , ) n Int A , = (B, ñ Int AJ U (L, fi Int A,) fff C Q U L, . ff j. , ff , ff fff
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 Proposition 4. Let Y be a metric space. Let f : X -* Y be

 cliquish. Then X = L^ U .

 From Propositions 3 and 4 we get

 Corollary 3. Let Y be a metric space. Let fsX •* Y be

 cliquish. Then the set L^ is dense in X.

 Lemma 6. Let f:X -» Y be a function. Then Bf D Lf C .

 Proof. Let x e B, fi L,. Let U and V be neighbourhoods
 T T

 of X and f(x), respectively. Let B be a neighbourhood of

 f (x) such that B C V and let T be a neighbourhood of x

 such that the set H = f *(B) - Int f *(B> is nowhere dense

 in T. Since x e B^., there is a nonempty open set B C U H T
 such that f *(B) is dense in G. Since H is nowhere dense

 in T, there is a nonempty open set K C G such that H fi K = 0.

 Since f *(B) is dense in G, we have f *(B) D K č 0. Since

 H H K = 0, we get Int f_1(B) D K * 0. Put S « Int f_1(B) fi K.

 Then S is a nonempty open subset of U and f <S) C V.

 Therefore >: e Q^. .

 Theorem 3. Let Y be a regular space. Then fsX -* Y is

 quasiconti nuous if and only if it is almost quasi continuous

 and the set Lf is dense in X.

 Proof. Necessity. According to Theorem 1 and Corollary 2.

 Sufficiency. According to Lemma 6 and Theorem 1.

 Clearly, Theorem 3 is a general ization of Theorems 1
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 and 2 ( by Corollary 3 ). Now we shall give other generalization

 of Theorems 1 and 2 ( by Propositions 2 and 4, respectively),

 where the regularity of a range space is not required.

 Theorem 4. Let f:X -+ Y be a function. Then the following

 three conditions are equivalent:

 (i) f is quasi conti nuous;

 (ii) f is almost quasi conti nuous and = X;

 (iii) f is almost quasi conti nuous and X = L^. U Q^. .

 Proof .

 (i) =* (ii): according to Remark 1 and Corollary 1.

 (ii) s? (iii): obvious.

 (iii) (i): according to Lemma 6 we have X - L^ U Q^. =
 = B, H (L, U Q,) C (B, H L,) U Q, C Q_.
 f f f f f f f

 By the definition of the simply continuity we get

 Lemma 7. Let f:X -+ Y be a simply continuous function.

 Then L^ •= X. ( The converse is not true, as the Riemann
 function shows. )

 Theorem S. A function f:X -*• Y is quasi conti nuous if

 and only if it is almost quasicontinuous and simply continuous.

 Proof. According to Lemma 7 and Theorem 4.

 Now we shall give a certain characteri zati on of the

 cl i qui shness. We recaí 1 that a topological space X has the

 Souslin property ( see C4; p. 863 ) if every family of

 pairwise disjoint nonempty open subsets of X is countable.
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 Definition 3. We say that a topological space X has the

 locally Souslin property if for each point of X there is

 its neighbourhood, which ( as a subspace of X ) has the

 Souslin property.

 Example 3. Every uncountable discrete topological space

 has the locally Souslin property, however it has not the Souslin

 propert y .

 By a routine way we can prove

 Lemma S. A topological space X is completely regular

 if and only if for each a £ X and each neighbourhood U of

 a there is a family iBc*ce(0 13 oł open neighbourhoods of

 a such that Cl B? C C U for 0 < t < S ¿ 1 .

 Theorem 6. Let a topological space X have the locally

 Souslin property, let Y be a completely regular space and

 let f : X -* Y be a function. If the set is dense in X,

 then L^ = X.

 Proof. Let x e x - L^. Then there is a neighbourhood W
 of f (x) such that for each neighbourhood V of f(x), V c w

 and each neighbourhood T of x, the set f * (V) - Int f * (V)

 is not nowhere dense in T. Let U be a neighbourhood of x

 such that every family of pairwise disjoint nonempty open

 subsets of U is countable. Let 'CBc3'ce(Q 13 be a family

 of open neighbourhoods of f (x> such that CI B^ C B^ c w

 for O < ? < £ S» 1. Let 0 < £ < 1. Then the set H£ -

 - f *(B£) - Int f ^Bg) is not nowhere dense in U. Therefore
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 there is a nonempty open set G£ C LJ such that H£ is dense

 in Gc. Since Q^. is dense in X, there is a point z e O G£.
 Let S be an arbitrary neighbourhood of f(z). From the

 quasi conti nui t y at z there is a nonempty open set E C Gg

 such that f (E) C S. Since H£ is dense in Gg, there is a

 point w e Hg HE. Then f (w) e S D Bg. There-fore each

 neighbourhood S of f(z> intersects the set Bfi , i. e.

 f (z) € CI Bg. We shall show that f (z) ť Bß. By contradiction.

 Suppose that f(z) e B£. From the quasicontinui ty at z there

 is a nonempty open set K c G£ such that f (K) C Bfi. This

 yields K C f *(B£> and hence also K C Int f *(B£). Since
 Hg is dense in G£ , there is a point v e Hg H K. Therefore

 v e Hg c X - Int f *<Bg) and simultaneously v e K C Int f 1(B£),

 a contradiction. Therefore f(z) c Cl B£ - B£. From this we

 get f (Q^ D Gg> C Cl B£ - B£. Thus we have constructed a family

 •C6g>ge^o d nonempty open subsets of U. We shall show that
 Í6 > is a family of pairwise disjoint sets. By contra-

 C Łfe (Uti)

 diction. Suppose that there is 0 < V < & < 1 such that

 G * Gy fi isa nonempty set. Since is dense in X,

 there is a point u e G H Q^.. Then f (u) e Cl B^ - B^ C

 C Cl B^ C B^ and simultaneously f (u) e Cl B^ - B^ C X - B^ ,
 a contradiction. From the definition of the set U it follows

 that ^®c^Ce(0 1) *S a count*ble family and this contradicts
 to the uncountabi 1 i t y of the interval (0, 1). Therefore

 X - Lf = 0 , i . e. X = Lf .

 The following example shows that the assumption of the

 locally Souslin property in Theorem ò cannot be omitted.
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 N
 Ex ampi« 4. We put T = A X I , where A = <a e R :

 a ź: a ,, for all n e N and lint a = 0> and I = CO, 13.
 n n+1 ,, n-*oe. n

 Let S = U (R X Ct>) with the sum topology cr. Let
 teT

 X = S U (0) with a topology T «s cr U ÍX>. Let Q =

 tql ' q2 ' q3' be the set °* a11 Positive rational
 numbers. For each t = (a, r> e T define a function

 •f.ïR X Ct> -*■ R as follows: f. <x) = r + a , if x = <q , t>;
 t t n n

 f.(x)=r-a,if x = (-q , t) and f. (x) = r otherwise, t n n , t

 Now we define a function fs X R as f(x> = f^.(x> for
 x e R X <t> and f (x ) = 0 otherwise.

 Then the set Q, = U ( (R - Q) X <t>) is dense in X
 teT

 ( and f is cliquish ), however L^ ¥ X.

 We shall show that 0 «É L + . Let B be an arbitrary bounded
 neighbourhood of the point 0 ( in R ). Put r = sup B. We

 shall show that f *(B) - Int f *(B) is not nowhere dense

 in X (X is only neighbourhood of 0 in X ).

 a) Suppose that r e B. Choose an arbitrary point a e A.

 Put G = (0, <») X {(a, r)>. Then S is a nonempty open

 subset of X such that f *(B) fi G = ((0, to) - Q) X {(a, r)>.

 This yields that f-1(B) - Int f_1(B) is dense in G.

 b) Suppose that r «É B. Choose a e A such that r - a e B
 n

 for all n e N. Put G = (-», 0) X {<a, r)>. Then G is a

 nonempty open subset of X such that f * (B) HG«

 ■ ((-ce.,0) n Q> X {(a, r>>. This yields that f_1 (B) - Int f"1 (B)

 is dense in G.

 Lemma 9. Let Y be a second countable space and let
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 fsX "» Y be a -function. Then is a «et of the first

 category .

 Proof. In the paper C113 it is proved that X - H_j. is a set
 of the first category for second countable range space. Hence

 according to Remark 1 and Lemma 6 we have L^ - C
 C L, - (L, n B,) C L, - B, C X - B. c X - H,, therefore
 f f f f f T f

 L^. - is a set of the first category.

 Proposition 5. Let X be a Bai re space and let Y be

 a regular second countable space. Let fsX "♦ Y be a function.

 Then the set Q^. is dense in X if and only if X = L^ U Q^.

 Proof. Necessity. According to Proposition 2.

 Sufficiency. According to Lemma 9 the set X - Q^. =

 = <L, U Q r ) - Q, = L, - Q, is a set of the first category, f f r f f f

 Since X is a Bai re space, the set Q^. is dense in X.

 Corollary 4. Let X be a Baire space and Y be a

 separable metric space. Then f : X Y is cliquish if and

 only if X = L^. U .

 Proof. According to Propositions 4 and 5.

 Now we shall give a new characterization of the

 cliquishness.

 Theorem 7. Let X be a Baire space with the locally

 Souslin property. Let Y be a separable metric space. Then

 fsX •* Y is a cliquish function if and only if X = L^.

 Proof. According to Corollary 4, Proposition 5 and
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 Theorem 6.

 Corollary S. A function f : R R is cliquish if and

 only if Lj. = R .

 Ramar k 5. The assumption "L^ = R" in Corollary 5

 cannot be replaced by the assumption "L^ is dense in R".
 The function f:R -* R, f(x) = q for x = p/q, where p, q

 are relatively prime integers, q > 0, f<x) = O otherwise, is

 not cliquish, however the set is dense in R.

 Remark 6« There is a real function f:X R such that

 f is not cliquish, however = X. Let X = N and let 'i

 be an ultrafilter in X, which contains no finite set. Let X be

 assigned the topology t f U •C0>. Define f : X -* R as

 f (x) = x for all x e X. Then L^ = X, however A^. = 0
 ( see C33 ).
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