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 Topologies generated by porosity and strong porosity

 1. Introduction

 W. Wilczyński ([Wl]) defined the J-density topology Ti on the real line which is a cat-
 egory analogue of the ordinary density topology on R. W. Poreda, E. Wagner-Bojakowska
 and W. Wilczyński ([PBW]) proved that the topology 7j is not regular (unlike the den-
 sity topology), but still, T-approximately continuous (=7j-continuous) functions are in the
 first class of Baire and have the Darboux property (like approximately continuous func-
 tions). The problem of finding the coarsest topology T C Tj which makes all 7j-continuous
 functions continuous was solved independently by W. Poreda and E. Wagner-Bojakowska
 ([PB]) and by E. Lazarów ([Ł]). For a survey of results concerning the J-density topology
 see [W2].

 Wilczynski's definition of the Z-density topology uses the algebraic structure of R.
 L. Zajíček in [Z2] introduces new topologies on a metric space (P, q) using the notion
 of (ordinary) porosity: the porosity topology p and the *-porosity topology p* where p* is
 obtained by throwing sets of first category away from p-open sets. He shows ([Z3]) that
 the '-porosity topology on R is identical with the X-density topology. He also studies
 some properties of these topologies (see [Z2], [Z3]). If P is a Baire space, then the class
 of all p-continuous functions is equal to the class of all p*-continuous functions, and these
 functions are in the first class of Baire on P. The topology p * is determined by a category
 lower density.

 There are several variants of the notion of ordinary porosity: strong porosity, ((/)-
 porosity, (fT)-porosity (definitions can be found e.g. in [Zl] or [Z4]). Replacing the notion
 of porosity in the definition of the topologies p and p* by these variants, definitions of
 new topologies and the corresponding '-topologies can be obtained. For example, strong
 porosity leads to the strong porosity topology s and the *-strong porosity topology s* .
 L. Zajíček ([Z2]) remarks that all these '-topologies have similar properties, in particular,
 they are determined by -a category lower density.

 The purpose of the present paper is to prove some properties of the topologies s and s*.
 We restrict ourselves to the case of a (real) normed linear space Q. Moreover, we add
 some new results on the topology p. It turns out that on a non-trivial space Q neither
 s is finer than p (which is almost obvious) nor p is finer than s (which may seem to be
 surprising). We also show that both the porosity topology p on P and the strong porosity
 topology s on Q possess the (complete) Lusin-Menchoff property. As a consequence of
 this fact we obtain that these topologies are completely regular. It follows that p is the
 coarsest topology which makes all p*-continuous functions continuous, therefore on R the
 porosity topology p coincides with the topology T introduced by E. Lazarów. Using the
 idea of [Z2] we prove that «'-continuous functions on a Hilbert space Q are in the first
 class of Baire. In the final part of the paper we investigate membership of p*-continuous
 and ¿'-continuous functions on R in the classes of Zahorski.
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 2. Definitions, basic properties

 Let (P,ß) be a metric space. The symbol U(x, r) will stand for the open ball centered
 at X with the radius r. For x € .P, M C P and R > 0 put

 7 (M, x , R) = sup ({ r > 0 : there is y € P such that U (y, r) C U(x, R) ' M } U {0}).

 The number

 /** ' V
 ir[M,x) /** ' = V lim sup

 fl_o+ R

 is called the porosity of M at x.
 We say that a set M C P is porous at a point x € P if ir(M, x) > 0. We say that M is

 strongly porous at x if 1 r(Af, x) >
 A set E C P is said to be superporous at a point x € P provided that E (J F is porous

 at x whenever F C P is porous at x. Similarly, E is said to be strongly superporous at x
 provided that E U F is strongly porous at x whenever F is strongly porous at x.
 It is obvious that the collection of all sets which are superporous at a point x € P is

 an ideal (unlike the collection of all sets which are porous at x). The same is true of the
 collection of all sets which are strongly superporous at x. It follows that the systems

 p = {G C P : P ' G is superporous at any point x € G }

 and

 s = {G C P : P'G is strongly superporous at any point x € G }

 form topologies on P which are finer than the initial topology. The topology p is called
 the porosity topology , s is called the strong porosity topology.
 The following descriptions of p-neighbourhoods and ¿-neighbourhoods of a point x € P

 are simple consequences of the above mentioned fact that all sets which are superporous
 (strongly superporous) at x form an ideal and of the obvious fact that a set M is super-
 porous (strongly superporous) at x iff M 6 is superporous (strongly superporous) at x.

 PROPOSITION la ([Z2, Proposition 3]). Let V C P, x € V. Then the following conditions
 are equivalent.

 (i) V is a p-neighbourhood of x.
 (ii) intff V U {x} is a p-open p-neighbourhood of x.
 (iii) P'V is superporous at x.

 PROPOSITION lb. Let V C P, x € V. Then the following conditions are equivalent.

 (i) V is an s-neighbourhood of x.
 (ii) inttf V U {x} is an s-open s-neighbourhood of x.
 (iii) P'V is strongly superporous at x.
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 For the points of ordinary porosity of a set M C P we have the following simple char-
 acterization.

 Lemma la ([Z2, Lemma 2]). Let M C P} x G P. If x is an isolated point of P, then M
 is porous at x iff x £ M. If x is not an isolated point of P , then M is porous at x iff there
 exists c > 0 and sequences of balls {í/(x,ižn)}, {U(yn,rn)} such that

 limÄn = 0, x£U(yn,rn), U (yn, rn) C U (x, Rn) ' M.
 ÎCn

 We shall investigate properties of the strong porosity topology on a normed linear
 space Q with a norm || . . . ||. It is obvious that a set E C Q is porous (superporous,
 strongly porous, strongly superporous, respectively) at a point x € Q iff the set E - x -
 { y - x : y € E } is porous (superporous, strongly porous, strongly superporous, respec-
 tively) at the point 0 € Q. Consequently, x € int PE iff 0 € int p(E - x), and x € intÄü7 iff
 0 € int t(E - x).

 As an analogue of Lemma la we state

 LEMMA lb. A set M C Q is strongly porous at 0 if and only if there exists a sequence
 {{/(t/n»**«)} of balls such that

 0 £U(ynirn), U(yn,rn)r'M = 0, limyn = 0, limTr^T7 = l.
 IlîMl

 L. Zajíček characterized the p-interior points of a set V C P.

 PROPOSITION 2a ([Z2, Proposition 8]). Let V C. P, x € V. Then V is a p-neighbourhood
 of x (equivalently, P'V is superporous at x) if and only if the following condition ( Cp ) is
 satisfìed.

 For any u > 0 there exists d > 0 and v > 0 such that whenever U(x,Jł), U(y,r) are
 balls for which U(ytr) C U{x,R ) ' {x}, R < d, r/R > u , then there exists a ball
 U(z,a) C U(ytr) fi V such that a/r > v.

 In a normed linear space Q , Proposition 2a reads as follows. (The proof requires simple
 technique only and we shall omit it.)

 PROPOSITION 2a'. Let V C Q, 0 € V. Then V is a p-neighbourhood of 0 (equivalently,
 Q'V is superporous at 0) if and only if the following condition (Cp') is satisßed.

 For any c € (0,1) there exists S > 0 and e E (0,1) such that whenever x € Q,
 0 < ||x|| < 6, then there exists y € Q and r > 0 such that U(y,r ) C Ï7(x,c||x||) H V,
 r > e||y|l-

 Our aim now is to prove a similar characterization of the á -interior points of a set V C Q.

 Proposition 2b. Let V C Q, 0 € V. Then V is an s- neighbourhood of 0 if and only if
 the following condition (C,) is satisßed.

 For any e € (0,1) there exists S > 0 and c € (0,1) such that whenever x € Q,
 0 < ||x|| < 8 , then there exists y € Q and r > 0 such that U(y,r) C Ï7(x, (1 - c)|ļxļļ)flV,
 r > (1 -e)||y||.
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 PROOF: (a) Let V satisfy the condition (Cg), let F be strongly porous at 0. We shall prove
 that (Q'F)UF is strongly porous at 0. For en = we find the corresponding Sn, cn from
 the condition (Ct). By Lemma lb there exists a sequence of balls { Un ' n = 1,2, . . . } where
 Un = U(xntRn) such that 0 ^ Un, UnC'F = 0, limxn = 0, lim.Rn/||xn|| = 1. Let {o*(n)} be
 an increasing sequence of natural numbers such that ||x<,(n)|| < 6ni R„(n) > (1- cn)||xťT(n)||.
 The condition ( C9 ) then guarantees that there exists a sequence of balls U(yn, ru) such
 that

 U(yn,rn) C U{xa(n)t{ 1 - c^x^W) n V C Ua{n) fl V C Uv{n) ' [(Q ' V) U F],

 rn > (1 - £n)||y„|ļ. This sequence of balls satisfies the condition of Lemma lb for the set
 M = (Q ' V) U F. We have shown that Q ' V is strongly superporous at 0 and therefore
 by Proposition lb, V is an ¿-neighbourhood of 0.

 (b) Assume that Q'V is strongly superporous at 0 and (Ca) does not hold. Then there
 exists e € (0,1) such that for any S > 0, c > 0 there is x 6 Q, 0 < ||x|| < S having the
 property that whenever U(y,r) C U (x, (1 - c)ļļx||) DV, then r < (1 - e)||y||. It follows that
 for the sequence {cn} where cn = it is possible to construct by induction a sequence
 {Í7n} of pairwise disjoint balls where Un = U(xn,(l - cn)||xn||), limxn = 0 such that for
 any ball U(y,r) C UnC'V we have r < (1 - e)||y||. Put

 OO

 F=Q' U un.
 n=l

 Since F is strongly porous at 0, so is (Q ' V) U F. By Lemma lb there is a sequence of
 balls { U(yk,rk) : k = 1,2,...} such that limrjfe /ļ|yjfeļ| = 1 and

 OO

 £%»,>•*) c Q ' [(<3 ' V) u F] = (J tr„ n v.
 n=l

 Since the balls Un are pairwise disjoint, for any k there is n such that U(yk,Tk) CUnC'V.
 But then we obtain that r* < (1 - e)||yfc|| for any k , which is a contradiction. |

 We close this section by giving two examples which show that there is no connection
 between the porosity topology p and the strong porosity 3 on an arbitrary normed linear
 space Q ^ {0}. If a set M is strongly porous at a point x, then a fortiori M is porous at x
 (the opposite assertion being false). So one might conjecture at first glance that strong
 superporosity of M at x implies superporosity of M at x. However, this conjecture is not
 justified.

 EXAMPLE 1. Let Q / {0} be a normed line ar space. Then the set

 A=Q{x€Q:M = ±}
 n= 0

 is superporous at 0 but not strongly superporous at 0. Consequently , Q'A is p-open but
 not s-open.

 PROOF: (a) It is obvious that ir(A, 0) = i. Therefore A is not strongly porous at 0 and,
 a fortiori, not strongly superporous at 0.
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 (b) To show that A is superporous at 0 we prove that Q'A satisfies the condition (Cp')
 of Proposition 2a'. Let c € (0,1) be given. Put c* - min(c, |), e = c*ļ 2. From the
 inequality (1 - c*)/(l + c*) > | it follows that for any x € Q ' {0} the interval

 ((i-OMI. (i + OIMI)
 can contain at most one number l/2n. Consequently, putting y' = (1 - c*/2) x and yz =
 (1 + c*/ 2) x, we have that either Ï7(t/i,£||x||) or t/"(y2>£||a:||) is contained in U(x , c||x||) ' A.
 The value for 8 > 0 in the condition (Cp') can be chosen arbitrarily. |

 EXAMPLE 2. Let Q {0} be a normed linear space. Let {rn} be a decreasing sequence
 of positive real numbers such that limrn = 0, limrn+1/rn = 0. Then the set

 OO

 B = (J { x € Q : rn < ||x|| < 2 rn }
 n=l

 is strongly superporous at 0 but not superporous at 0. Consequently, Q'B is s-open but
 not p-open.

 PROOF: (a) In view of the fact that Q ' B is porous at 0, B cannot be superporous at 0.
 (b) First we prove that the set

 OO

 B' = (J [r„2r,]cR
 71=1

 satisfies the following condition:

 For any € (0, 1) there exists S > 0 and c € (0, 1) such that whenever 0 < z < S, then
 there exists ein interval (a, b ) C (cz, z ) ' B* such that a = t ? 6.

 Choose i? 6 (0,1). There is an index n0 such that 2rn/rn_i < i?2/2 for any n > n0. Put
 S = (4/i?2) rno, c = i?2/2. Choose z € R such that 0 < z < 8. Let n be the greatest index
 for which 2 rn > (i?2/ 2) z (obviously n > no). We distinguish two cases.

 1. Assume that (i?2/2 )z < 2rn < t?z. If the inequality rn_i < z were satisfied, then we
 would obtain that 2rn/rn_ļ > [(i?2/ 2) z] j z - i?2/2, which is impossible. Hence

 (i?z, z) C (cz, z) n (2rn, rn_i) C (cz, z) ' S*.

 2. Assume that 2 rn > i?z. Then, since 2rn+i < (i?2/2) z, it follows that
 /t?2 i? '

 (^y z,-zj C (cz,z)D(2rn+i,rn) C (cz,z)'5*.
 Now it is easy to finish the proof by showing that Q' B satisfies the condition (Cs) of

 Proposition 2b. Choose e € (0,1). Put i? = e/(2 - e) and find the corresponding 8 > 0,
 c € (0,1) by the above condition. Choose x € Q such that 0 < ||z|| < 8. Find an interval
 (a,ò) C (c||z||, ||x||) ' B* for which a = ůb. Putting y = [(a + 6)/(2ļļx||)] x, r = (b - a)/ 2
 we obtain

 U(y,r)cU(x, (l-c)||*||)'B,

 ' - Iři = tťI u»" - (1 - •)|1»11-
 as required. |

 To conclude these observations, we state
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 PROPOSITION 3. Let p, s be the porosity topology and the strong porosity topology on
 a normed linear space Q {0}, respectively. Then neither s is finer than p nor p is finer
 than s.

 3. The Lusin-Menchoff property

 Recall that a fine topology r on a topological space (X, g) has the Lusin-Menchoff
 property (with respect to q) if the following condition is satisfied.

 For any pair of sets F,EcX such that F is g-closed, H is r-closed, F D H = 0 there
 are sets G, W C X such that G is g-open, W is r-open, F C W , H C G Sind Gf'W = 0.

 We say that r has the complete Lusin-Menchoff property (w.r.t. g) if for any subspace
 Y C X, T induced on Y has the Lusin-Menchoff property w.r.t. the topology g induced
 on Y .

 We summarize some well-known facts on the Lusin-Menchoff property (see [LMZ, Chap-
 ter 3.B]).

 THEOREM A. Let r he a fine topology on a topological space (X, g) having the Lusin-
 Menchoff property w.r.t. g. Then for any r-open set E C X of type Fa there exists
 a r-continuous g-upper-semicontinuous function f on X such that

 0 < f(x) < 1 for all X E E and f(x) = 0 for all x £ X ' E.

 THEOREM B . Any fine topology Tonali -space ( X , g) having the Lusin-Menchoff property
 w.r.t. g is completely regular.

 THEOREM C. A fine topology r on (X,g) has. the complete Lusin-Menchoff property
 w.r.t. g if and only if the following condition is satisfied.

 For any pair of sets A,BcX such that Ae DB = AOBT = 0 there are sets G, W C X
 such that G is g-open, W is r-open, A C W, B C G and G D W = 0.

 THEOREM la. The porosity topology p on a metric space (P, g) has the complete Lusin-
 Menchoff property (w.r.t. the initial topology).

 PROOF: Assume that 0 ^ A, B C P are biseparated sets, i.e. Aß fi B = AC' BP = 0.
 Putting

 G = { x € P : g(x, B) < g2(x , A) }, W = P ' G P = int p(P ' G),

 we see that G is £-open, W is p-open, GC'W = 0, B C G and A C P'G. It remains to show
 that A C W = intp(P ' G). To this end, we shall verify that P'G satisfies the condition
 (Cp) of Proposition 2a at any point x € A. Fix x € A. Then x € P'BP = int p(P'B). By
 Proposition 2a, P'B satisfies the condition (Cp) at x. Choose u > 0 and find by (Cp) the
 corresponding d > 0, v > 0. Put d* = min(d,uv/2), v * = v/2. Let U(y,r) C U(x,R) be
 balls for which x ^ U(y,r ), R < d* and r/R > u. Then there is a ball U(z,a ) C U(y,r)'B
 with a/r > v. For an arbitrary point 77 € G fi U(y,r) we have

 e(v,B) < g2(v,A) < g2(rf,x) < R2 = -rR r < - uv - d* < - uv • ^ 2 r uv uv 2 2

 e(z, v) > e{z, B) - g(r¡, B) > a - ^
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 consequently U(z,a/ 2) C U(yyr) ' G. Since (a/2)/r > v/2 = v*, the validity of the
 condition ( Cp ) at x for P ' G is verified, and the proof is complete. |

 COROLLARY. The porosity topology p on a metric space ( P , g) is completely regular.

 THEOREM lb. The strong porosity topology s on a normed linear space Q has the complete
 Lusin-Menchoff property (w.r.t. the initial topology).

 PROOF: Assume that A, B are nonempty subsets of Q such that - AC'B' = ^.
 Put

 G = { x € Q : dist(x, B ) < dist2(x, .4) }, W - Q ' G ' = inta(Q ' G).

 Then obviously G is open, W is j-open, G(~'W = fy, B C G and A C Q'G. By Theorem C
 it remains to prove that A C W = int4(Q ' G). Let x € A be given. To simplify the
 notation, we shall assume that x = 0, the idea in the general case remaining clear. Now it
 suffices to show that Q'G satisfies the condition (Cs) of Proposition 2b.

 Choose e € (0, 1). Since 0 € Q ' B * = int,(Q ' B ), the condition ( Ca ) holds for Q'B.
 Find 6 > 0, c € (0,1) which correspond to e/2 by (C4). Put

 (1) ¿* = min(¿,j).
 Choose £ Ç. Q such that 0 < ||£|| < 8*. Then there exists a ball U(rļ}r) contained in
 U (č, (1 - c)||Č||) ' B with r > (1 - e/2)||í7||. We have

 (2) Ni>iiíii-h-iii>neii-(i-c)iiíii = c|iíii.

 Let z be an arbitrary point in U(rj,r) D G. Then

 IMI < u*- a + iiíii <2|ia
 dist(z,£) < dist2(z, A) < ||z||2 < 4||£||2,

 hence

 (3) H z - Tļ'' > dist(77,ß) - dist(z,i?) > r - 4||£||2.

 It follows from (1) and (2) that

 (4) 4||f II2 < i C ||ť|| • Ihll < ; c ť*M < I ¿ Hill- C c ¿

 Finally, combining (3), (4) we obtain

 II» - »II > <• - 4IIÍII1 > (i - í)||,|| - ||M| = (i - oiloll,

 which implies that

 £/(,, (1 - e) IMI) c V(r,,r) 'GcU( f, (1 - e) ||{ II) ' G.

 By Proposition 2b, 0 € int,(Q ' G) = W. |

 COROLLARY. The strong porosity topology s on a normed linear space Q is completely
 regular.
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 4. "-POROSITY TOPOLOGIES

 Recall that a topological space X is called a Baire space if the Baire Category Theorem
 holds in X , i.e. if X' A is dense in X whenever A C X is of first category in X (equivalently,
 if any nonempty open subset of X is of second category in Jf).

 We say that two topologies r, a on X are S -related provided that for any set A C X,
 intr A jé 0 iff intff A ^ 0. For such topologies the notions of dense sets, nowhere dense
 sets, sets of first category coincide. Moreover, (-X",r) is a Baire space iff (X, cr) is a Baire
 space.

 Let (X,t) be a Baire space. It is not hard to prove (see e.g. [LMZ]) that the collection

 T* = { G ' N : G is r-open, N is of first category in r }

 forms a topology. Obviously, r* is finer than r. If, moreover, <r is a topology on X which
 is 5-related to r, then we have

 r* = { G ' N : G is r-open, N is of first category in <r }.

 In what follows, (P, g) will be a Baire space.
 It is clear from Propositions la, lb that both the porosity topology p and the strong

 porosity topology s on P are 5-related to the ^-topology. The corresponding topology p*
 is called the *-porosity topology, s* is called the *-strong porosity topology.

 THEOREM D ([Z2]). Let (X, r) be a Baire space and let f be a real function on X. Then
 f is t* -continuous on X if and only if f is r -continuous on X.

 COROLLARY. Let f be a real function on a Baire metrìc space (P, q). Then f is p*-
 continuous on P iff f is p-continuous on P, and f is s* -continuous on P iff f is s-continuous
 on P.

 A topology r on a metric space (P, q) is said to satisfy the essential radius condition if
 for each x € P and each r-neighbourhood U of x there is an "essential radius" r(x, 17) > 0
 such that whenever

 0 < e(*,y) < min(r(i, Ux),r(y,Uy)),

 then UxC'Uy ^ 0.

 THEOREM E ([LMZ, pp. 64 and 66]). Let (P,q) be a metrìc space, let r be a topology
 on P which satisñes the essential radius condition . Then any r-continuous function on P
 is in the ßrst class of Baire.

 THEOREM 2a ([Z2, Theorem 3]). If (P, ß) is a Baire space, then the * -porosity topology p*
 on P satisñes the essential radius condition.

 COROLLARY. Any p* -continuous function on a Baire metric space (P, ß) is in the ßrst class
 of Baire.

 LEMMA 2. Let Q be aHilbert space. If a > 1, u,v € Q, ||«|| > ||t;||, then ||au- v|| > ||w- rļļ.

 THEOREM 2b. Let Q be a Hilbert space. Then the *- strong porosity topology s* on Q
 satisfìes the essential radius condition.
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 PROOF: For z € Q and an ¿'-neighbourhood W* of z we shall determine an essential radius
 r(z, W*) in the following way. Choose an ¿-neighbourhood W of z such that W ' W* is of
 first category. Then W - z is an ¿-neighbourhood of 0. By Proposition 2b, the following
 condition is satisfied:

 For any e € (0, 1) there is S > 0 and c € (0, 1) such that whenever Ç € Q, 0 < ||£ - z'' < S ,
 then there exists a ball U(rj,r) C U (£, (1 - c)||£ - z||) fi W for which r > (1 - c) ||»7 - z''.

 Find to e = | the corresponding S = S' (z,W) > 0, c = cj(z, W) 6 (0,1). Further find to
 e = ci(z, W ) the corresponding 6 = ¿2(2» W) > 0, c = C2(z, W) € (0, 1). Put

 r(z,W") = Ì [min(ť1(í,^),í2(I,iy),Cl(z,H'),c2(í,W))]2.

 Now let V* be an ¿'-neighbourhood of x, V* be an ¿'-neighbourhood of y such that

 0 < ||y - x|| < min(r(x,V'*),r(y,Vy*)).

 We shall write S'yX instead of $i(xy Vx) etc. We may suppose without loss of generality
 that c1>z < c1(„. Put

 i = X + - (y - x).
 C2,x

 Then

 y - x = c2,x(t - *),
 y-í = (l-c2,r)(x-í).

 Since ||y - x|| = c2,x||^ - x'' < r(x, V*) < c2,x • 62, x, it follows that 0 < ||£ - x|| < S2,x>
 Hence there exists a ball U(rj,r) for which

 (5) tr(,,r) c V((, (1 - C2,»)||{ - «II) n v.,
 ••>(l-ei,.)b-*ll-

 Furthermore,

 Ih - vil < b - ill + IK - »II < 211« - ill = 7- II» - «II
 C2,®

 < - C Jr(x>V¿) V 'r(y>V¿) ^ ~ ' ' * c2,x • Si,: V = *l,f C 2,x V c2,x *

 This implies that there exists a ball G = U(rļ',r') for which

 (6) W,r') C U(i 7, (1 - cliy)''r, - y||) H V,,

 r' > ^ IIV -yll-
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 Lemma 2 yields (consider u = y - £, v = r¡ - cru = x - £)

 lto-y|| < 11*7- *11»

 SO

 r > (1 - cłf«)||i7 - x|| > (1 - cłtf )||i7 - y||,

 which means that

 m P(<»,(l-ci.,)ll>ł-»ll)cir(ł,r)..
 Combining (5), (6), (7) we obtain that

 Gcu(v,r)f)vycvxnvy.

 The completeness of Q implies that G is of second category, consequently

 G n v* n v* # 0. I

 COROLLARY. Any s* -continuous function on a Hilbert space Q is in the first class of Baire.

 5. The classes of Zahorski

 For a real- valued function / defined on R, the associated sets of f are all sets of the form
 { x : f(x) < a } or { x : f(x) > a }. It is well-known that / is in the first class of Baire
 {Bi) if end only if every associated set of / is of type Fff. Z. Zahorski ([Z]) considered
 a hierarchy Mo D Mi D • • • D Mķ of subclasses of B'. Each of these classes is defined
 in terms of associated sets: / belongs to the class Mi of Zahorski iff every associated set
 of / belongs to the class Mi (t' = 0, 1, . . . , 5) where Mi is a certain family of F0 sets.
 In what follows, A denotes the Lebesgue measure on R.
 Let E C R be a nonempty set of type F9. We say that E belongs to the class

 Mo if E D I is infinite for any closed interval I which intersects E;
 Mi if E fi I is uncountable for any closed interval I which intersects E;
 Mļ if A (E fi I) > 0 for any closed interval I which intersects E;
 M3 if

 um y°) , = 0
 n- >oo dist(x,/n) ,

 whenever x € E and {/n} is a sequence of closed intervals not containing x such
 that A(2? D In) = 0 for each n and lim (diam({x} U In)) = 0;

 n-*oo

 Mi if there exists a sequence {Sn} of closed sets and a sequence {i?n} of positive
 numbers such that E = (J Hn and for each x € Hn and each 7 > 0 there exists
 6 > 0 such that whenever h, hi € R satisfy hhi > 0, h/hi <7, 'h + &i| < 6, then *

 '(E f)(x + h,x + h + hi)) ^ a Z ^ ^ *'»» a
 hi

 . _ . . , . , _ . A (E n(x,x + h))
 M$ if every point . x E E is . a point . of , density of , E, i.e. . lim -

 h- »o h
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 The empty set is considered to belong to each of these classes.

 Z. Zahorski proved that Mo = M' = VB' (the collection of all functions in the first
 class of Baire which have the Darboux property). He also demonstrated that the class A
 of derivatives is contained in M 3 and the class 6 A of bounded derivatives is contained
 in Mą. Moreover, M¡ is equal to the class A of approximately continuous functions.

 For further information concerning the classes of Zahorski see [B].

 Let C(X,r ) denote the family of all real- valued functions on X which are continuous
 relative to the topology r in the domain space and the Euclidean topology in the range. In
 the sequel we shall establish the relations C(R,p*) C M¡, C(R, a*) C M2, C(R,p*) £ -^4»
 C(R,s*) £ M3. (Recall that C(R,p*) = C(R,p) C Bu C(R,a*) = C(R,.s) C Bi.)

 We shall use the following easy fact.

 LEMMA 3. A set E C R belongs to M¡ if and only if E belongs to M2 and, moreover,
 E has porosity 0 at any point x € E.

 Proposition 4. C(R,p*) uC(R,i*) c M2.

 PROOF: Suppose that / is a p*-continuous function. Let E be an associated set of /.
 Since / belongs to B', E is of type F#. In light of the fact that E is p-open, applying the
 condition ( Cp ') of Proposition 2a' we see that E belongs to Mļ.

 The arguments for an ^-continuous function are similar. |

 COROLLARY, (a) (cf. [PBW]) Any p*-continuous function on R has the Darboux prop-
 erty.

 (b) Any s* -continuous function on R has the Darboux property.

 Proposition 5. C(R,p*) c M3.
 PROOF: It is sufficient to show that any p-open set E of type F„ belongs to M3. If x € E,
 then R ' E is superporous at x by Proposition la. It follows that E has porosity 0 at x,
 so Lemma 3 together with Proposition 4 implies the result. |

 PROPOSITION 6. There exists a bounded 5* -continuous function f which does not belong
 to M.3.

 PROOF: Let flcRbe the set constructed in Example 2. Then E = R ' B is an a-open
 set of type Fa. Observe that ir(E, 0) > 0. Since the topology s has the Lusin- Menchoff
 property (Theorem lb), by Theorem A there exists an 3*-continuous function / such that
 £ = {*:/(») > 0}. It is enough to show that E is not in But this follows from
 Lemma 3 since E is porous at 0. |

 PROPOSITION 7. There exists a bounded p* -continuous function f which does not belong
 to Mą.

 PROOF: We shall construct a p-open set E C R of type Fa which does not belong to Mą.
 For k = 0, 1, 2, . . . put

 2fc-l ļ ¿I i 1
 Ife=|JJfc'ť where J*'i= (2 ļ + 2^"' ¿I 2 + 2^ i + 4Š+ī)' 1

 »=o
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 Finally, define
 OO

 E - ( - oo , 0 ] U Ej .
 j=0

 Assume that E is in M4. Then there exist sequences {üTn}, {i?n} with properties de-
 scribed in the definition of the class M4. Let n be an index for which 0 € Hn. Take
 a natural number m such that l/2m_1 < ůn and put 7 = 2m - 1. Find the correspond-
 ing S = ¿(0,7) > 0 and choose a nonnegative integer j for which 1 / 1 < 6. Then for
 h = 1 /2J - l/2J+m, h' = l/2J+m we have h/h' = 7, h + hi < 6. However,

 - ¡fe. è))

 -Î"»( ü (''"('"F'1)))-*™ è ^k=m-l fc=m- 1

 - - 2m ¿

 - - 2m ¿

 which is a contradiction.

 To prove that E is p-open, it suffices to show that the following modification of the
 condition ( Cp ') from Proposition 2a' is satisfied (on R it is customary to deal with intervals
 rather than balls - cf. [Z3]):

 For any c € (0,1) there is 6 > 0 and e € (0,1) such that whenever 0 < z < 6, then
 there exists an interval J C E D (x - ex, x) for which A (J) > ex, and an interval
 J' C E H (-x, -x + ex) for which A (J') > ex.

 Choose c € (0,1). Put 6 = 1, e = c2/ 256. Fix x € (0,1). Let k be the integer for which
 c* = 1/2* € [c/2, c), and let j be the integer for which y = 2*x € [|, 1). Observe that
 A((y - c*y, y)) = c*y > l/2fc+1. We shall distinguish two cases.

 1. Assume that | < y - ( c*/2)y . Then A((y - cmy, y) fi (|, 1)) > l/2fc+2. It follows
 that for some i € { 0, 1, . . . , 2fc+2 - 1 } we have

 G + ¥+> ' ' + ¥&) c (y " c*y' y) n 1)ł

 consequently /*+2,» C Eq fl (y - c*y , y). Putting J = ( 1 /2 J ) • /jb+2,»» we obtain

 J C 2J " [ Eo H (y c y, y) ] = Ej l~) (x c x, x) C E ("I (x ex, x),

 '/j' 1 1 1 1 / 1 '2 c2
 A< '/j' = F • JFR > 4Î« 1 = 64 ' (Fi / 1 - 256 X =
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 2. Assume that y - (c* /2) y < | < y. Then A ((y - c*y, y) D (0, ¿)) > l/2fc+2, hence

 2 Ik,2k-i C [^oH (' + ^FFT'l)] =Ei n (^-^¿2'^) C Ei n(y-c*y, y).

 Putting J = (1/2J+1) • we have

 J C [ExC'{y - c*y, y)] = Ej+i D (x - c*x, x) C E (~)(x - ex, x),

 A w TN 1 1 1 1 / 1 '2 v. > c2 A w v (J) TN ' = - - - • -5- > - - - - x = - • ( -T- J x v. > - x > ex. v ' 2->+1 -5- 4fc+1 2-4fc+1 8 '2fc/ -T- 32

 Since the existence of the interval J' is obvious, we have demonstrated that E is p-open.
 By Theorem la, the topology p has the Lusin-Menchoff property. Theorem A guarantees

 that there exists a bounded p*-continuous function / for which E = { x : /(x) > 0 }. On
 the other hand, we have shown that E is not in Mą, therefore / does not belong to the
 class Aí 4 and the proof is complete. |

 Let us remark that Proposition 7 slightly improves a result of W. Wilczyński and
 V. Aversa ([WA, Theorem 3]). They constructed a bounded Z-approximately continu-
 ous function which is not a derivative.
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