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Pseudo—Orbit Shadowing on the Unit Interval

I. INTRODUCTION

Let f : X — X be a continuous function where X = [0,1] has the usual topology.
Then (X, f,IN) is a dynamical system where f*,n € IN, is the n-fold composition of f.
The orbit of z € X is the sequence {z, f(z),..., f*(z),...}, n € IN. A pseudo-orbit
is defined as follows: Given § > 0, a é - pseudo-orbit is a sequence {z,}3%, such that
d(f(z;), zi41) <6 Vie IN.

A dynamical system with noise will generate a pseudo-orbit, an example being an
orbit generated by a computer. Consequently, the relationship between actual orbits
and pseudo-orbits raises interesting questions. To wit, when are pseudo-orbits closely
followed (i.e. shadowed) by actual orbits? A function f has the shadowing property if
Ve >0, 36> 0 such that given a 6 - pseudo-orbit, {z,}5,, there is an r € X which
satisfles d(z,, f*(z)) < € V n € IN. In this case, we say the § - pseudo orbit is ¢ -
shadowed by the actual orbit.

Coven, Kan, and Yorke considered the shadowing property in the family of tent maps[1]:
diffeomorphisms have also been studied. In this paper we consider functions that are
increasing (i.e. nondecreasing) and continuous on the unit interval. Let F be the set of all
interior fixed points of f, andtakeC={z € F:Ve >0 Jy,z € (z — ¢, 2 + ¢) such that
f(y) < y and f(z) > z}. Our main result (Theorem 8) is that an increasing continuous

function f : [0,1] — [0, 1] will have the shadowing property if and only if F = C.
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II. PRELIMINARIES

Let z € X be a fixed point of f, which throughout the paper will denote an increasing
(i.e. nondecreasing) continuous function on [0,1], and let I = (z —a, z 4+ a), a > 0. If
3 a > 0 such that all actual orbits {a,}32, (i.e., an = f*(ao), ao € [0,1]) in I converge to

z, then we call z an attracting fized point. On the other hand, « is a repelling fized point
n=0

if 3 a > 0 such that all actual orbits {a,}32, that start in I'\ {z} eventually leave I. This

leads us to the following propositions.

Proposition 1. The interior fized point z is attracting if and only if I e > 0 such
that f(t) >t for t€(z—¢€, ) and f(t) <t fort€ (z, z+e¢).

PROOF. = SupposeVe >0 3t € (z—¢, z) with f(¢t) < t. (The other case is proved
similarly.)

Case 1. Suppose 3t € (z —¢, z) such that f(t) = t. Let the actual orbit {a,}22, have
initial value t. Then {a,}3%, converges to t instead of z.

Case 2. If thereis a t € (r — e, z) such that f(t) < t, then, since f is increasing, an
orbit beginning at ¢t will have no elements greater than ¢. In particular, the orbit will not
converge to z.

<= Since 3 ¢ > 0 such that f(t) >t Vt€ (z —¢, ), {a.}, starting in (v — . x)
is increasing and ap < z. If a, < z, n € IN, then a,41 = f(a,) < f(z) = z since f is

increasing. Thus z is an upper bound of {a.}3,, and as is easily seen, sup a, = 2. O

Propbsition 2. The interior fized point = 13 repelling if and only if 3 € > 0 such that
ft)<t Vte(z—¢, z)and f(t) >t VtE(z, z+¢).

ProoF. = Clear by using the contrapositive.

<= Let a = ¢/2. Choose {a,}32, to be any actual orbit starting in (2 — /2. ). Set
d = min{|f(t) —t|: t € [z —3¢/4, a1]}. Let N be the smallest integer greater than
(ay —(z — 3¢/4))/d . Since a, — any >dVn,an € (z —€/2, z). O

239



III. THE SHADOWING PROPERTY
We begin by considering the simplest case in which f has no interior fixed points. This

is then generalized to one, finitely many, and an arbitrary number of fixed points.

Proposition 3. If f satisfies f(t) >t Vt € (0,1), then f has the shadowing property.

PROOF. Given € > 0, let d = min{|f(t) —t| :t € [¢/2, 1 —¢/2]} Hence d is the
minimum difference between any two consecutive elements of any actual orbit contained in
[e/2, 1—¢€/2]. Let n = min{e/2, d/2}, and take N, to be the smallest integer greater than
(1—¢€)/(d—n). Since f is uniformly continuous on [0,1], 3én,, 0 < én, < €/2(N,+1) , such
that |f(t) — f(z)| < €/2(N,+1) whenever |t—z| < én, Vt,z € [0,1]. Regressing, there
exists 6x—1 < 6x such that whenever [t—z| < éx—1, then |f(t)—f(z)| < bk, (kK =2,3,...,N,).
Vt,z € [0,1]. Choose é§ > 0 such that § < min{é, 1, €/2(N, +1)}. Since 6 < n < d/2
and f(z) —z > don [¢/2, 1 —€/2], if ) and x4, are two consecutive points of a § -
pseudo-orbit in (¢/2, 1 —¢/2], then x4 — 24 > d — 1. Hence N, is an upper bound for
the number of iterations needed for any é - pseudo-orbit to travel from £/2 to 1 — /2.

Case 1. f(0) =0.

(A) The 6 - pseudo-orbit {z,}52, has an infinite number of elements in [0,¢): If there
is an element of {z,}32, outside of [0,¢), call it x,, then since {z,}L, is increasing on
[e/2, 1 —¢€/2], z,4x €[0,¢) V k € IN. Thus if an infinite number of elements of {x,}72,
belong to [0,¢), then z, € [0,e) Vn € IN. Let {a,}5%, be an actual orbit with initial
value equal to 0. Since 0 is a fixed point, a, =0 V n € IN. Hence {a,}3, € - shadows
the pseudo-orbit {z,}2,.

(B) The 6 - pseudo-orbit {x,}32, has only a finite number of elements in [0, ¢): Let 2, be
the last element of {z,}32, in [0,¢). Set a, = z, and set a,_, € f~"(a,)forn =1,2,...,7).
Since a, € [0,¢), ao,a1,...,a,-1 € [0,€). Thus |a, — z,] <cforn=0,1..... T

Now, |f(zr) = zr41| < 8 < 1. Hence |f*(z;) = f(z,41)| < &2, and [f(2r41) = Trs2l <
§ < &;. Continuing, we finish with |f¥»*1(2,) — fN(z,41)| < €/2(N, + 1), |f"(2,41) —
VoY (zoya)| <€/2(Np+1) ..., |f(zn,) — TN41] < 6 < €/2(N, +1). We see |fNe+1(z,) —
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TN, 41| <(€/2(Np+1))(Np+1) =€/2. Since 8 < bx41 < €/2(N,+1),fork =1.2,... . N,.
|f*¥(z,) — z,4x| < €/2. Hence |a,4k — T,4k| < €/2 for k = 1,2,...,N, + 1. Because N, + 1
iterations have taken place since a,, a,4n,41 € (1 —¢/2, 1]. Thus z,4n,41 € (1 —¢, 1]. It
follows from 6 < ¢/2 and 6 < d/2, that z,4n,4; € (1 — €, 1] Vj € IN. Since {a,}%, is
increasing for all n, a,4n,+;j € (1—¢, 1] Vj € IN. Hence |ar4N,+;—Tr4N,+| <€ Vj € IN.
Therefore |a, — z,| <€ Vn e IN.

(C) The pseudo-orbit {z,}32, has no elements in [0,¢): Let ag = zo. The rest is similar
to (B).

Case 2. f(0) > 0: Choose 0 < €; < min{e, f(0)/2}. Now using ¢, instead of ¢, choose
6 > 0 with é fulfilling all the previous conditions. Since €; < f(0)/2 and é < €;/2, any
actual or 6 - pseudo orbit starting in [0,¢;) has only one element in [0,£,). The rest of the
argument is similar to Case 1. O

A similar argument proves

Proposition 4. If f(t) <t Vt € (0,1), then f has the shadowing property.
Next, we consider the cases when f has one interior fixed point, being either attracting

or repelling.

Proposition 5. If f has one interior fized point  which is attracting, then f has the
shadowing property.

PROOF. If z is the interior fixed point, then Propositions 3 & 4 can be applied to
the intervals [0, z] and [z, 1] respectively. Since the pseudo orbit can travel past the fixed

point, we need only choose é small enough that the pseudo orbit stays close to the fixed

point. O

Proposition 6. If f has one interior fized point + which is repelling. then f has the

shadowing property.
This proof is similar to that of the previous result except for the case when a pseudo-

orbit originates in a small neighborhood about the fixed point. Either the pseudo-orbit
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stays in the neighborhood indefinitely in which case take ap = z, or else it eventually leaves
the neighborhood which then commits the pseudo-orbit to increase towards 1 or decrease
towards 0. O

Now that we have dealt with a single interior fixed point, we move to a finite number of
attracting or repelling interior fixed points. Here, f will still have the shadowing property,
since we can trap the pseudo-orbit by one of the fixed points as was done in the previous

arguments. We state this as

Proposition 7. If f has a finite number of interior fized points, each one either
attracting or repelling, then f has the shadowing property.

PROOF. Given ¢ > 0, let s;,s83,...,8ny-1 be the interior fixed points, and set sy and
sn equal to 0 and 1 respectively. Let I} = (so,81), I2 = ($1,82),---,» IN = (Sn-1. SAn),
and 0 = min{|L1|, |L2|,...,|In|}. Also, let p = min{e/2, o/4} and d; = nun{|f(z) — «|.
T € [so + p/2, s1 — p/2]}, likewise d,,d3,...,dny. Take d = min{dy,ds,....dn}. and
set n = min{p/2, d/2}. Let N, be the smallest integer greater than (s; — p)/(d — 7).
likewise N, > (s2 — 1 — p)/(d —17),..., Ny 2 (sN — sn-1 — p)/(d — 7). Take N, =
maz{Np,, Np,,...,Npy}. Choose én,,6n,-1,...,6; as in the proof of Proposition 3.
Choose 6 such that 0 < § < min{é;. n, ¢/(N, +1)}. Since é < 7, every 6 - pseudo-orbit
will be contained in (sj-1—p, s;+p) for some j = 1,2,...,n. Without loss of generality. let
s; be attracting and s;_; be repelling. The argum'ent then follows as it did for Proposition
5 0

Recalling the definition of C and F from the Introduction, we now show that f has
the shadowing property if 7 = C by isolating the fixed points in a finite number of small
intervals, and then treating the intervals like fixed points. We also show the condition
F = C is necessary as well as sufficient for f to have the shadowing property. resulting in

the following theorem.
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Theorem 8. Let f be an increasing continuous function on [0,1], then f has the
shadowing property if and only if F = C.

PROOF. = Suppose C # F. Then there exists a fixed point z and a > 0 such that
either f(t) > tor f(t) <t Vt € (z —a, =+ a); assume the former. Let ¢ = a/4
and § > 0 be given. We can find a § - pseudo-orbit {z,}32, that starts at z — 3a/4
and such that 2o < z; < --- < z,, and z, >  + a/4 for some m € IN. Any actual
orbit {a,}3, in order to € - shadow {z,}52, must start in (z — a, £ — a/2). Since
a, <z VneN, |an—zn|>a/d=c.

<= Let € > 0 be given. Call an interval (a,b) attracting if f(a) > a and f(b) < b. and
repelling if f(a) < a and f(b) > b. Let P = {0,a;,a,...,an,1} be a partition of [0,1]
with ||P|| < €/5. Since F = C, we may choose P so that a; ¢ F Vi =1,2,...,N and also
so that each interval (a;, a;4)) containing a fixed point is either attracting or repelling.

Now, let J be the collection of all intervals of the form (a;,a;4;) which contain a fixed
point. Since a; € F Vi = 1,2,...,N, we can shorten each interval of [J slightly and
throw in I; = [0,a,) and Ipy = (an, 1] to form a finite collection of disjoint open intervals,
numbered left to right, I, I, ..., Iy which satisfy:

1) F C UL, L.

2) Each I, k =2,3,...,M — 1, is attracting or repelling.

3) Il <e/5, k=1,2,...,M.

4) There is a positive distance between each pair of intervals.

The attracting and repelling intervals Iy, I3,...,Ip-; by virtue of their construc-
tion behave like attracting and repelling fixed points. Hence we can treat the inter-
vals I, I3,...,Ip_, as we did the points s;,ss,...,sy-1 in Proposition 7. With this in
mind, set o equal to the minimum distance between I,, and I+, 1 < m < M. Let
p = min{e/5, o/5}. Choose 0 < § < p so that § fulfills the conditions from the proof
of Proposition 7. If I,, (n = 2,3,...,M — 1), is attracting, then once a ¢ - pseudo-orbit

has an element in (I, — p, I, + p), all following elements of the é - pseudo-orbit are also
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in (I, — 2p, I, + 2p) which has length less than ¢. The rest of the proof is similar to the

proof of Proposition 7. O

The authors are grateful for a referee’s suggestion of

Example 9. Since the standard Cantor function defined on the unit interval is increas-

ing, continuous, and is easily shown to have exactly one interior fixed point, the Cantor

function has the shadowing property.
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