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 Pseudo-Orbit Shadowing on the Unit Interval

 I. Introduction

 Let f : X -> X be a continuous function where X = [0, 1] has the usual topology.

 Then (X, /, IN) is a dynamical system where /n,n G W, is the n-fold composition of /.

 The orbit of x G X is the sequence {x, /(x), . . . , /n(x), . . .}, n G IN. A pseudo-orbit

 is defined as follows: Given 6 > 0, a 6 - pseudo-orbit is a sequence {xn}J£_0 such that

 d(f(xi ), x¿+1) <6 VieJV.

 A dynamical system with noise will generate a pseudo-orbit, an example being an

 orbit generated by a computer. Consequently, the relationship between actual orbits

 and pseudo-orbits raises interesting questions. To wit, when are pseudo-orbits closely

 followed (i.e. shadowed) by actual orbits? A function / has the shadowing property if

 V £ > 0, 3 ¿ > 0 such that given a S - pseudo-orbit, {xn}£l0, there is an x G -Y which

 satisfies d(xn, /n(x)) < e V n G IN. In this case, we say the 6 - pseudo orbit is s -

 shadowed by the actual orbit.

 Coven, Kan, and Yorke considered the shadowing property in the family of tent maps[l]:

 diifeomorphisms have also been studied. In this paper we consider functions that are

 increasing (i.e. nondecreasing) and continuous on the unit interval. Let T be the set of all

 interior fixed points of /, and take C = {x G T : V e > 0 3 y, z G (x - e, x + e ) such that

 f{y) < V and f(z) > z). Our main result (Theorem 8) is that an increasing continuous

 function / : [0, 1] - » [0, 1] will have the shadowing property if and only if T - C.
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 II. Preliminaries

 Let i G I be a fixed point of /, which throughout the paper will denote an increasing

 (i.e. nondecreasing) continuous function on [0,1], and let J = (x - a, x + a), a > 0. If

 3 a > 0 such that all actual orbits {an}£Lo °n = /n(ao), € [0, 1]) in I converge to

 x, then we call x an attracting fixed point. On the other hand, x is a repelling fixed point

 if 3 a > 0 such that all actual orbits {an}£Lo ^at start in I ' {x} eventually leave I. This

 leads us to the following propositions.

 Proposition 1. The interior fixed point x is attracting if and only if 3 e > 0 such

 that f(t) > t for t G (x - e, x) and f(t) < t for t G (x, x + e).

 PROOF. => Suppose V e > 0 3 t G (x - £, x) with f(t) < t. (The other case is proved

 similarly.)

 Case 1. Suppose 3 t G (x - e, x) such that f(t) = t. Let the actual orbit {an}£_o have

 initial value t. Then {an}£Ļ0 converges to t instead of x.

 Case 2. If there is a t G (x - £, x) such that f(t) < ť, then, since / is increasing, an

 orbit beginning at t will have no elements greater than t. In particular, the orbit will not

 converge to x.

 <*= Since 3 e > 0 such that f(t) > t V t G (x - £, x), {an}£l0 starting in (x - s, ./ )

 is increasing and a0 < x. If an < x, n G JV, then an+i = f(an) < f(x) = x since / is

 increasing. Thus x is an upper bound of {an}£L0> an<^ 35 *s easily seen, sup an = x. □

 Proposition 2. The interior fixed point x is repelling if and only if 3 e > 0 such that

 f(t) <t V t G (x - e, x) and f(t) > t V t G (x, x + e).

 PROOF. => Clear by using the contrapositive.

 <£= Let a = e/2. Choose {an}^Ļ0 to be any actual orbit starting in (x - c/2. x). Set

 d = min{'f(t) - ť| : t G [x - 3č/4, ûi]}. Let N be the smallest integer greater than

 ( ai - (x - 3č/4 ))/d . Since an - an_! > d Vn, £ (x - e/2, x). □
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 III. The Shadowing Property

 We begin by considering the simplest case in which / has no interior fixed points. This

 is then generalized to one, finitely many, and an arbitrary number of fixed points.

 Proposition 3. If f satisfies f(t) > t V t € (0, 1), then f has the shadowing property.

 PROOF. Given e > 0, let d = min{'f(t) - ť| : t 6 [e/2, 1 - e/2]} Hence d is the

 minimum difference between any two consecutive elements of any actual orbit contained in

 [e/2, 1 - e/2]. Let r¡ = min{e/ 2, d/2}, and take Np to be the smallest integer greater than

 (1 - e)/(d- 77). Since / is uniformly continuous on [0, 1], 3 6ņp, 0 < 6np < e/2(Np + l) , such

 that |/(ť) - /(x)| < e/2(Np + 1) whenever |ť - x| < Vť,x€[0, 1]. Regressing, there

 exists 6k-i < 6k such that whenever 't- x| < then 'f(t)- /(x)| < <5¿, (k = 2, 3, . . . ,NP),

 Ví,i G [Oļi]- Choose è > 0 such that 6 < min{6ļ, r¡, e/2(Np + 1)}. Since 6 < r¡ < d/ 2

 and /(x) - X > d on [e/2, 1 - e/2], if Xk and Xk+i are two consecutive points of a ó -

 pseudo-orbit in [e/2, 1 - e/2], then xjt+i - x¿ > d - r¡. Hence Np is an upper bound for

 the number of iterations needed for any 6 - pseudo-orbit to travel from e/2 to 1 - e/2.

 Case 1. /(0) = 0.

 (A) The 6 - pseudo-orbit {xn }^L0 has an infinite number of elements in [0. e ): If there

 is ail element of {xn}£Ļ0 outside of [0, e), call it xs, then since {x„}£l0 is increasing on

 [e/2, 1 - e/2], xs+k ^ [0,e) V k € IN. Thus if an infinite number of elements of {.r„}^=u

 belong to [0, e), then xn 6 [0, e) V n 6 IN. Let {an}£í=o be an actual orbit with initial

 value equal to 0. Since 0 is a fixed point, an = 0 V n 6 IN. Hence {an}^.0 e - shadows

 the pseudo-orbit {xn}£Ļ0.

 (B) The 6 - pseudo-orbit {xn}^_0 has only a finite number of elements in [0, e ): Let xr be

 the last element of {x„}5JL0 in [0,e). Set aT = xr and set ar_„ G f~n(aT) for n = 1,2,..., r).

 Since aT € [0, e), ao, aj, . . . , ar_! 6 [0, e). Thus |a„ - xn| < e for n = 0, 1

 Now, |/(xr) - xr+i| < 6 < ¿j. Hence |/2(xr) - /(xr+1)| < S2, and |/(xr+i ) - 1 <

 S < 62. Continuing, we finish with 'fNp+1(xr) - /Np(xr+i)| < e/2{Np + 1), |/Af',(xr+1) -

 fN>~'xT+2)' <e/2(Np + l) ,..., |/(xNp)-xNp+1| < 6 <e/2(Np + l). We see | fN'+1{xr)~
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 xNp+1' <{e/2(Np + l))(Np + ') = e/2. Since 6k < 6k+i < e/2(Np + 1), for k = 1,2

 |/*(xr) - xr+fc| < e/2. Hence |ar+/t - xr+k| < e/2 for k = 1,2, . . . ,NP + 1. Because Np + 1

 iterations have taken place since ar, ar+/vp+i € (1 -£/2, 1]. Thus xr+A/p+i € (1 - £, 1]. It

 follows from S < e/2 and 6 < d/2, that xr +N„+j 6 (1 - e, 1] V j € -SV. Since {an}£Ļ0 is

 increasing for all n, ar+Np+j G (1 - £, 1] Vj 6 JV' Hence |ar+^p+¿ - xr +Np+j| < £ v j e iv .

 Therefore |a„ - xn| < e V n 6 W.

 (C) The pseudo-orbit {in}"=0 has no elements in [0, e): Let a0 = x0. The rest is similar

 to (B).

 Case 2. /(0) > 0: Choose 0 < £i < min{e, f( 0)/2}. Now using £i instead of £, choose

 ¿ > 0 with 6 fulfilling all the previous conditions. Since £i < /( 0)/2 and 6 < £i/2, any

 actual or 6 - pseudo orbit starting in [0, £i ) has only one element in [0, £i ). The rest of the

 argument is similar to Case 1. □

 A similar argument proves

 Proposition 4. If f(t ) < t V ť € (0,1), then f has the shadowing property.

 Next, we consider the cases when / has one interior fixed point, being either attracting

 or repelling.

 Proposition 5. If f has one interior fixed point x which is attracting, then f ha » the

 shadowing property.

 PROOF. If x is the interior fixed point, then Propositions 3 íi 4 can be applied to

 the intervals [0,x] and [x, 1] respectively. Since the pseudo orbit can travel past the fixed

 point, we need only choose 6 small enough that the pseudo orbit stays close to the fixed

 point. □

 Proposition 6. If f has one interior fixed point x which is repelling, then f has the

 shadowing property.

 This proof is similar to that of the previous result except for the case when a pseudo-

 orbit originates in a small neighborhood about the fixed point. Either the pseudo-orbit
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 stays in the neighborhood indefinitely in which case take a0 = x, or else it eventually leaves

 the neighborhood which then commits the pseudo-orbit to increase towards 1 or decrease

 towards 0. □

 Now that we have dealt with a single interior fixed point, we move to a finite number of

 attracting or repelling interior fixed points. Here, / will still have the shadowing property,

 since we can trap the pseudo-orbit by one of the fixed points as was done in the previous

 arguments. We state this as

 Proposition 7. If f has a finite number of interior fixed points, each one either

 attracting or repelling , then f has the shadowing property.

 PROOF. Given e > 0, let sus2, . . . , syv-i be the interior fixed points, and set s0 and

 sn equal to 0 and 1 respectively. Let I' = (so,<Si), /2 = (^1,52),..., In = isN- h $n)*

 and a = min{'Ii', |J2|, . . . , 'In'}- Also, let p = min{e/2, cr/Ą] and d' = min{ |/(.r ) - x'.

 X 6 [sq + p/2, si - p/ 2]}, likewise d2, <¿3, • • • , d;v- Take d - min {di, d2, . . . . and

 set 77 = min{p/2 , d/2}. Let NPl be the smallest integer greater than (s 1 - p)/(d - 7;).

 likewise NP2 > {s2 - si - p)/(d - 77), . . . ,NPn > (sN - sN. 1 - p)/(d - 7/). Take Np =

 max{NPl , 7VP2, . . . , Npn}. Choose <5^p, 6np-i, • • . , ¿1 as in the proof of Proposition 3.

 Choose 6 such that 0 < 6 < min{6i< 77, ¿/{Np + 1)}. Since 6 < 77, every 6 - pseudo-orbit

 will be contained in - p, Sj + p) for some j = 1, 2, . . . , n. Without loss of generality, let

 Sj be attracting and Sj-i be repelling. The argument then follows as it did for Proposition

 5. □

 Recalling the definition of C and T from the Introduction, we now show that / has

 the shadowing property if T - C by isolating the fixed points in a. finite number of small

 intervals, and then treating the intervals like fixed points. We also show the condition

 T = C is necessary as well as sufficient for f to have the shadowing property, resulting in

 the following theorem.
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 Theorem 8. Let f be an increasing continuous function on [0, 1], then f has the

 shadowing property if and only if T = C.

 PROOF. Suppose C ^ T . Then there exists a fixed point x and a > 0 such that

 either f(t) > t or f(t) < t V < G (i - a, i + a); assume the former. Let e = a/4

 and 6 > 0 be given. We can find a 6 - pseudo-orbit {xn}£l0 that starts at x - 3a /4

 and such that xo < X' < • • • < xm and xm > x + a/4 for some m 6 W. Any actual

 orbit {an}^Lo m order to € - shadow {xn}^L.0 must start in (x - a, x - a/2). Since

 an < x V n G W, |am - xm' > a/4 = t.

 <= Let e > 0 be given. Call an interval (a, b) attracting if /(a) > a and f(b) < 6. and

 repelling if f(a) < a and f(b) > b. Let V = {0, ai, a2, . . . , ayv, 1} be a partition of [0,1]

 with I1P11 < e/5. Since T = C, we may choose V so that at ^ T V i = 1, 2, . . . , N and also

 so that each interval (at , a¿+i) containing a fixed point is either attracting or repelling.

 Now, let J be the collection of all intervals of the form (a,, at+ 1) which contain a fixed

 point. Since a, ^ T V i = 1, 2, . . . , TV, we can shorten each interval of J slightly and

 throw in I' = [0,ai) and Im = (ûn, 1] to form a finite collection of disjoint open intervals,

 numbered left to right, Jļ, I2, . . . , Im which satisfy:

 1)^CU

 2) Each /jt, fc = 2, 3, . . . , M - 1, is attracting or repelling.

 3) |/*|<e/5, fc = l,2,...,M.

 4) There is a. positive distance between each pair of intervals.

 The attracting and repelling intervals /2, /3, . . . , Im-' by virtue of their construc-

 tion behave like attracting and repelling fixed points. Hence we can treat the inter-

 vals /2, /3, . . . , Im-i as we did the points si, ¿2, • • • •» ^n-i in Proposition 7. With this in

 mind, set a equal to the minimum distance between Im and /m+i, I < m < M. Let

 p = min{e/ 5, cr/5}. Choose 0 < 6 < p so that 6 fulfills the conditions from the proof

 of Proposition 7. If Jn, (n = 2,3, . . . , M - 1), is attracting, then once a 6 - pseudo-orbit

 has an element in ( In - p, In + p), all following elements of the 6 - pseudo-orbit are also
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 in (In - 2 p, In + 2/9) which has length less than e. The rest of the proof is similar to the

 proof of Proposition 7. □

 The authors are grateful for a referee's suggestion of

 Example 9. Since the standard Cantor function defined on the unit interval is increas-

 ing, continuous, and is easily shown to have exactly one interior fixed point, the Cantor

 function ha s the shadowing property.

 References

 1. P. Collet, J. -P. Eckmann, Iterated Maps on the Interval as Dynamical System .s.

 Progress in Physics 1, Birkhäuser, Boston, Mass., 1980.

 2. E. M. Coven, I. Kan, J. A. Yorke, Pseudo-orbit Shadowing the Family of Tent Maps .

 Trans. Amer. Math. Soc. 308 (1988), 227-241.

 3. R. L. Devaney, An Introduction to Chaotic Dynamical Systems , Addison- Wesley.

 1987.

 4. H. E. Nüsse, J. A. Yorke, Is Every Approximate Trajectory of Some Process Near

 an Exact Trajectory of a Nearby Process ?, Commun. Math. Phvs. 114 (198$), 363-379.

 5. P. Walters, On the Pseudo Orbit Tracing Property and Its Relationship to Stability ,

 Lecture Notes in Math., 668, Springer- Verlag, Berlin and New York, (197S). 231-244.

 Received February Ī, / 990

 244


	Contents
	p. 238
	p. 239
	p. 240
	p. 241
	p. 242
	p. 243
	p. 244

	Issue Table of Contents
	Real Analysis Exchange, Vol. 16, No. 1 (1990-91) pp. 1-376
	Front Matter
	EDITORIAL MESSAGE [pp. 4-4]
	LETTERS to the EDITOR [pp. 5-6]
	ERRATA: A CRITERION FOR MEASURABILITY OF COUNTABLE-TO-ONE FUNCTIONS [pp. 7-7]
	CONFERENCE ANNOUNCEMENTS [pp. 8-8]
	REPORT OF THE FOURTEENTH SUMMER SYMPOSIUM
	THE FOURTEENTH SUMMER SYMPOSIUM ON REAL ANALYSIS, California State University, San Bernardino, June 20-12, 1990 [pp. 9-14]
	DESCRIPTIVE SET THEORETIC PHENOMENA IN ANALYSIS AND TOPOLOGY [pp. 15-16]
	DENSITY TOPOLOGY AND COMPLETELY RAMSEY SETS [pp. 17-19]
	A short proof of a theorem of Jasinski and Weiss [pp. 20-20]
	THE FAMILY OF COMPACT POROUS SETS [pp. 21-22]
	A GLIMM-EFFROS DICHOTOMY FOR BOREL EQUIVALENCE RELATIONS [pp. 23-23]
	Non—Uniformization Results for the Projective Hierarchy [pp. 24-25]
	AN INTEGRAL IN GEOMETRIC MEASURE THEORY [pp. 26-28]
	Henstock and Lebesgue integration [pp. 29-29]
	Transfinite Induction and Integrals [pp. 30-31]
	CONVERGENCE THEOREMS FOR THE HENSTOCK INTEGRAL [pp. 32-33]
	Integration by Parts in the SCP Integral [pp. 34-34]
	First Return Selections and Block Selections [pp. 35-36]
	Three Methods of Constructing ω-limit Sets [pp. 37-38]
	Some results and problems about ω-limit sets [pp. 39-40]
	Countable Collections of ω-limit sets for Darboux Baire 1 Functions [pp. 41-41]
	Differentiable-, continuous-, and Derivative-Restrictions of Measurable Functions [pp. 42-43]
	[Extendable Functions with a Dense Graph] [pp. 44-44]
	APPROXIMATE HIGH ORDER SMOOTHNESS [pp. 45-46]
	Proofs of the Uher and Freiling Covering Theorems [pp. 47-49]
	SOME INTERPOLATION PROBLEMS IN REAL AND HARMONIC ANALYSIS [pp. 50-50]
	On category bases: Abstract [pp. 51-52]
	REFINEMENTS OF THE DENSITY AND I-DENSITY TOPOLOGIES [pp. 53-54]
	EXTREME POINT SELECTORS [pp. 55-56]
	Parametric I-approximate derivatives are in Baire class one [pp. 57-58]
	(ε,η)-Approximating Partitions [pp. 59-59]

	RESEARCH ARTICLES
	ON THE BOREL HIERARCHIES OF COUNTABLE PRODUCTS OF POLISH SPACES [pp. 60-66]
	Martin's Axiom implies a stronger version of Blumberg's Theorem [pp. 67-73]
	ON GENERALIZED DOMINATED CONVERGENCE [pp. 74-78]
	A Theory of Integration for Cardinal Algebras [pp. 79-118]
	On non-differentiable measure-preserving functions [pp. 119-129]
	On Riemann summable trigonometric series [pp. 130-153]
	THE INVERSION OF APPROXIMATE AND DYADIC DERIVATIVES USING AN EXTENSION OF THE HENSTOCK INTEGRAL [pp. 154-168]
	ALGEBRAIC STRUCTURES GENERATED BY Td-QUASI CONTINUOUS AND ALMOST CONTINUOUS FUNCTIONS ON Rm [pp. 169-176]
	Separation of points by families of intervals [pp. 177-186]
	Convexity and Symmetric Derivates of Measurable Functions [pp. 187-196]
	An Analytic Study of Functions defined on Self-Similar Fractals [pp. 197-214]
	Upper and Lower Generalized Riemann Integrals [pp. 215-237]
	Pseudo-Orbit Shadowing on the Unit Interval [pp. 238-244]
	CHARACTERISTIC FUNCTIONS AND PRODUCTS OF DERIVATIVES [pp. 245-254]
	Topologies generated by porosity and strong porosity [pp. 255-267]
	A Global Implicit Function Theorem [pp. 268-272]

	INROADS
	Asymmetry of all Countable orders of a real function [pp. 273-278]
	Solution of two problems concerning F-sigma sets of measure zero [pp. 279-283]
	A note on topologies related to (xα )-porosity [pp. 284-291]
	ON DECOMPOSITIONS OF QUASICONTINUITY [pp. 292-305]
	ANOTHER APPROACH TO THE CONTROLLED CONVERGENCE THEOREM [pp. 306-310]
	PATH DIFFERENTIATION IN BOREL THE SETTING [pp. 311-318]
	S-NULL FUNCTIONS [pp. 319-321]
	BAIRE MEASURES ON [O, Ω] AND [O, Ω]. II [pp. 322-328]
	A Symmetric Approximate Perron Integral for the Coefficient Problem of Convergent Trigonometric Series [pp. 329-339]
	ADDITIVITY OF POROUS SETS [pp. 340-343]
	THE CONSTRUCTION OF A LEBESGUE MEASURABLE SET WITH EVERY DENSITY [pp. 344-348]
	A MINIMAL FAMILY OF OPEN INTERVALS GENERATING THE BOREL SETS [pp. 349-352]
	Some interpolation problems in real and harmonic analysis [pp. 353-361]
	Three Methods of Constructing ω-Limit Sets [pp. 362-372]

	QUERIES [pp. 373-376]
	Back Matter



