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 1. Introduction

 Let E be an ¿-set, that is, a subset of the Euclidean n-space Mn which is measurable with
 respect to the s- dimensional Hausdorff measure H3 and for which 0 < H'(E ) < oo. In the Mandel-
 brot's terminology [6], a fractal is a s-set for which s is fractional, or s is integer and its geometric
 properties are completely opposites to the properties of the nice s-dimensional surfaces. The aim
 of this paper is the construction of a Fourier Analysis on the self-similar s-sets, that is s-sets which
 are a finite union of disjoint subsets, each of them similar to the whole set.

 In the second section of this paper we present some definitions and results about Hausdorff
 measures and self-similar sets, and notations.

 Given E C lRn, a self-similar s-set, in section 3 we define on E a system of functions
 $ C H3) which will be orthonormal in the Hilbert space L2(E,H3). Later we evaluate the
 Dirichlet kernel associated to $ and we get the pointwise convergence of the Fourier series, with
 respect to <ř, for functions / G £1(£, H3), which give us immediately the Lp-completeness of
 for p > 1. Finally we study in this section the convergence to zero of the Fourier coefficients of the
 functions / € LÏ^E,!!3) and the convergence in Lp-norm of the Fourier series, with respect to $,
 of the functions / 6 LP(E,HS).

 Finally, in section 4, we give some examples where we obtain the Fourier series of some
 functions and the functions associated to some Fourier coefficients.

 The possibility of this theory was suggested by Miguel de Guzmán in [3]. I wish to ac-
 knowledge here his kind and generous advice.

 2. Preliminaries

 Given a subset E C 2Rn, for s, 0 < s < ra, we define:

 Hģ(E) = liminf {f^d(Ai)s : E C 0 A,- , 0 < < ¿}
 ^0"1" i=' i= i

 where d(A) denotes the diameter of the set A. For each s, 0 < s < n, the application Ha is an outer
 measure on Mn which we call Hausdorff 5- dimensional outer measure. The restriction of H'
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 to the o'- field of ÍT ''-measurable sets is called Hausdorff ¿-dimensional measure. This measure

 H* is Borei regular. We shall say that E is an s-set if E is H'- measurable and 0 < Ha(E) < oo.
 Given E C IRn there is a unique number s, 0 < s < n, such that:

 H'E) = 00, if t < s

 H'E) = 0 , if t>s
 which is called the HausdoriF dimension of E , and we shall write s = dimE.

 More details about Hausdorff measures may be consulted in [2] or [8].
 A wide and important class of s-sets is the one formed by the self-similar sets, which are

 defined as follows:

 2.1. Definition

 We shall say that a compact set E C Mn is self-similar if there is a finite family
 S = 5¿} of similitudes (5,- : Mn - ► Mn such that |S,(x) - 5,(j/)| = r,- • |x - y', Vx,y € JRn,
 0 < r, < 1, where r, is called similitude ratio) and a number s, 0 < s < n, verifying:

 a) -E = U¿=i Si(E)
 b) 0 < H3(E) < 00
 c) H'(Si(E) n Sj(E)) = 0, for 1 < i < j < t

 The number s which gives us the HausdorfT dimension of the self-similar set E is the unique
 positive number which verifies £f=1 rf = 1 (see [2]). From the definition it follows immediately
 that if I = 1 the set E contains only one point, and the dimE = 0 and H°(E) = 1. Therefore, we
 shall assume, in this paper, that £> 2.

 2.2. Notation

 Let I be a fixed positive integer. For every positive integer k, we denote by Sļ the set of
 all ¿-tuples formed using the first £ positive integers, that is:

 $k = {(*1, -,»*) : 1 < ij < 1 , 1 < J < k}

 and analogously S ¿ will denote the set of all the infinite sequences formed using the I first positive
 integers:

 SL = {(¿1,. : 1 < ij < I , j > 1}
 If a = (ii,..., ik) 6 Sļ and ß = (ji,...,jq) G S¡¡, we define the concatenation of a and ß

 by:

 aß = (ii,...,ik,ji,...,jq) 6 Sļ+q
 and for every p, 1 < p < k, we denote by a[p] the p-tuple formed by the p first coordinates of a,
 that is:

 a[p] = (ň,-,íp) € S¡
 Moreover, if k < q, we shall say that a C ß if a = ß[k', that is, if the fc-tuple a are the k

 first coordinates of ß.

 For every k > 1, we shall define in Sļ the following natural order relation: Given a, ß € Sļ,
 a = (ii,...,i)c) and ß = (ji,...,jk), we shall say that a < ß if there is h, 1 < h < k, such that:

 ip = jp , if 1 < P < h
 ih < jh
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 If a E Sļ and ß G S* with k < q, we shall say that a < ß.
 With this relation we have ordered, in an only chain, all the elements of U*>i We

 denote, for every a G Sļ and k > 1, by a~ the preceding element to a in that chain, that is:

 - _ f max{/3 : ß € Sļ , ß < a} ,if a ¿ (1,...,1)
 ,if a = (1, ..., 1)

 2.3. Basic results about self-similar fractals

 Let E C 2Rn be the self-similar set associated to the family of similitudes S = {Si,..., St},
 with ratios {ri,...,r/}, and with Hausdorff dimension s (Ylí=iri = !)• For every k > 1 and
 a = (ii,..., if.) G Sļ we denote:

 Ea = Sa(E) = 5, j 0 ... O Sik{E)

 v a = rtl • ... • r,fc

 where ra will be the similitude ratio of Sa. It is easy to show that:
 (a) = 1 , for all * > 1.
 (b) E = U aes'Ea , for all fc > 1.

 (c) Ea = U/Jes' E aß, for every a G Sļ, k > 1 and p > 1. In particular Ea = Uf=1 Eai.
 (d) H3(Ea H Eß ) = 0, for every k > 1, a,ß G Sļ and a ^ ß.
 (e) If a G Sp, ß £ Sg and p < q, we have that:

 (el) Eß C Ea, if a C ß.
 (e2) H°(Ea n Eß) = 0, if a <£ ß.

 (f) For every k > 1 and a G Sļ we have, applying the homogeneity of the measure Hs, that:
 (fl) H*(Ea) = rļ-H°(E).
 (f2) Ha(Eaß) = • H'(Ea) , for all p > 1 and ß G S*.

 For more details about self-similar sets one can see [2] or [5].

 Let E C Mn be the self-similar set, of dimension s, associated to the family of similitudes
 S = {Sļ,..., St} with ratios {ri, ..., r¿}. We shall call subsets of the generation k, k > 1, to the
 elements of the following family:

 Sk = {Ea : a € <Sj ķ}

 and we shall also consider the following families of sets:

 i

 Ai = Si U {E' = (J Ei : 1 <j<£}
 i= 1

 Ak - Sk U {E^ = Eai : a G Sļ-i » 1 < j < ¿} > f°r ^ k > 1
 i'=i

 It is easy to check that B = 's a differentiation basis for ( E,HS ), being:

 B(x) = {V G B : X G V} , for all x G E

 This basis differentiates to LX(E,H*) as show the next Theorem.
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 2.4. Theorem:

 For every function / € Ll(E,H') we have that:

 lim -77-7777- • f f(y) ■ dH°(y) = fix) JK '
 <ĶU)~ 0 -77-7777- v / J" lu JK ' ueB(x) v / J"

 for iP-a.e. a: 6 E.

 The proof of this Theorem can be found in [7]. This Theorem will be important to get the
 pointwise convergence results that we shall obtain later.

 3. Fourier Analysis on Self-Similar Fractals

 In this section E C JRn will be the self-similar fractal associated to the family of simili-
 tudes S = with ratios {ri,..., r/}, and with Hausdorff dimension s (£¿=1 r* = 1). To
 simplify the computations we may suppose, without loosing generality, that HS(E) = 1 and that
 E{ fi Ej = 0, for 1 < i < j < I.

 We are going to define on E a system of functions $ C L^{E, H3) which will be orthonor-
 mal in L2(E,Ha). The appropriate computation of the Dirichlet kernel of this system, together
 with the differentiation Theorem 2.4, will allow us to show that the Fourier series (with respect to
 $) of every function of Ll(E, Ha) converges at almost every point to the given function.

 3.1. The system $ of functions defined on E
 We shall define a function of the generation -1 with support on the set E, which will

 beñ

 7_i(x) = 1 , for all x 6 E

 Associated to the set E we define I - 1 functions ~fo, I < h < £ - 1, which we call functions of
 the generation 0. They are defined as follows:

 f .¡fxeu UE>
 ( 0 , otherwise

 and associated to every set Ea, a € Sļ, of the generation k, k > 1, we define £ - 1 functions 7¿,
 1 < h < £ - 1, which we call functions of the generation k (we shall have tk{t - 1) functions of
 the generation k) and they are:

 f , if x e u}=1 Eai
 (£»„, rf) rJJ, , if X € E„,M

 k 0 , otherwise

 where for every h, 1 < h < £ - 1, the constant is defined by:

 (h 1 + rh+ 1 Ž t=i rt ' / ) Ž i=i h ri = rĀ+i ¿ ť=i h ri h+l ¿ «=i (h 1 + rh+ 1 Ž rt ) Ž ri = rĀ+i ¿ ri ¿ r¡ (!) t=i / i=i ť=i «=i
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 It is easy to see that:

 support 7_i = E
 /1+1

 support 7o = (J Ej C E , I < h < £ - 1
 3=1

 h+1

 support = |J Eaj C Ea , a 6 Sļ , k > 1 , 1 < h < £ - 1
 j= 1

 and also that the system:

 $ = {7_i } U {7o : 1 < h < £ - 1} U <7¿ : a e Sek , k > 1 , 1 < h < £ - 1}

 verifies that $ C L°°(E,HS) C LP(E,H3), for every p > 1.

 3.2. Remarks

 (a) If HS(E) / 1, we would have to divide the functions of $ by (H3(E))ī, and if the
 intersections of those sets were not empty (they are of measure zero) it would be enough to
 define the functions as zero on such intersections.

 (b) If £ = 2 then, associated to every set Ea of the generation k, k > 1, we shall have
 a unique function fa of the generation k (we shall also have a unique function of the generation
 zero).

 (c) The interval [0, 1] C M may be considered as a self-similar set of dimension 1 associated
 to the similitudes {Si, 52} centered, respectively, in the points 0 and 1 and with ratios ri = r% =
 In this case the sets Ea, a £ Sj* and k > 1, are the dyadic partitions of [0,1] and the system of
 functions defined on E = [0, 1] coincides (except in the values of the extremes of the intervals) with
 a system of functions defined by Haar in such interval and based in their dyadic partitions (see
 [1, pp.46]).

 (d) If E is the classic Cantor set defined on the unit interval, then dimE = log 2/ log 3 = s
 and H°(E) = 1. The classic Cantor set is the self-similar set associated to the homothecies {Si, S2}
 centered, respectively, in the points 0 and 1 and both of ratio ri = r¿ = 5. In this case C' = 1 and
 the system $ associated to such Cantor set is:

 7_i(x) = 1 , for all x G E

 Wxì-i 1 .tf*e£i = £n[M]
 70(x)-ļ_i ļifx6£2 = f;n[|)1]

 and for every k > 1 and a € S£:

 ( 2* /2 ,ifx€Eal
 7a(x)={ -2*/2 , if x G Ea2

 [0 , if X & Ea

 3.3. Theorem

 The system $ is orthonormal in the Hilbert space L2(E,H3).
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 Proof: The normallity of the system $ is easy to check. To see the orthogonallity it is enough
 to notice that, given two functions of the same or different generation, their supports are either
 disjoint or one of the functions is constant in the support of the other, so it would be enough to
 show that:

 JErì(x)dH>(x) = ļEf ha(x)dH3(x) = 0
 for every k > 1, a G Sļ and 1 < h < £ - 1, which is trivial. □

 Given a function / € LX{E,HS), we define its Fourier series with respect to the system $
 as:

 e-i oo (-1

 f(x) ~ 0_i7_i(x) + £ Oo7o(s) + E E E aa7a(*) (2)
 h=l k=l a£S£ h=.'

 where:

 a_! = /(y)7-x(y) dHs(y) ; ah0 = jEf{y)^{y)dHã{y) , ' < h < l - '

 «Ì = JEfM(y)dH°(y) , k> 1 , aeSļ, l<h<t-l (3)
 are the Fourier coefficients of / with respect to <J>, which we denote simply by:

 {a_i,a£,a£}

 We are now going to study the pointwise convergence of this series by considering the
 partial sums, which for every m > h ß € ^m+l* 1 < p < £ - 1, are defined by:

 t- 1 m l-l

 Sm+if(x) = a-i7-i(z) + Yi ao7o(* ) + S S S a¿7¿(*) +
 h=l k=l a£S£ ^=1

 + S £ aìla(x) + ahß(X) (4)
 a*sL+1 h=1 h=1

 a<$

 Replacing (3) in the expression (4) and using the orthonormallity of the system $ one finds that:

 s£i/(») = Ļ /(»)A'Sīi(*. V)iH'(y) (5)
 where:

 I- 1 m t-1

 Km+i(x^y) = 7-i(i)7-i(!/) + ETo(I)7o(y) + E E EtÎ(i)^(î') +
 /i=1 k-l at£S£ h=l

 + S ¿7a(®)7¿(f)+ Eî^hfc) (6)
 °65m+l h=1 Ä=1

 a<0

 is the Dirichlet kernel associated to the system <ř.
 We shall give now some notations and definitions, as well as a technical Lemma, which will
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 be useful to simplify later computations.

 3.4. Notations and Definitions

 For l<q<p<¿ - 1, we define:

 I ?(«,?) = ¿ Cj"'
 i=l h=q+ 1

 (7)

 G(ç,p) = c,_1(IZr.-)2r7+î+ S ^/T1
 t=l h=q+l

 In particular, if q = 0 and 1 < p < £ - 1:

 F(0,p) = G(0,p)=¿Q_1 (8)
 /1=1

 and if q = p, 1 < p < I - 1:

 H(p,P) = -c;'ÍtrtKÍ i
 i=l

 (9)

 g(p,P) = c-'(¿i-;)2rP-+2;
 1=1

 It is obvious that in the case £ = 2 the definition (7) makes no sense.

 3.5. Lemma

 (a) H(q,p) = -(Zīli rt)-' 1 < 9 < P < * - 1-
 (b) G(g,p) = r-x - (E&1 r?)-1, 1 < q < P < I ~ 1.
 (c) JT(0,p) = G(0,p) = rf - (H=i 1 < P < < - 1-

 Proof:

 (a) If q < p (it can only occur when I > 2), using (1) we have:

 / 9 9+1 '-1 / 9 ' ( 9+1 9+2 '_1 P
 #(?,?) = - ( ¿ rf ¿ rf] (¿ rf ' ) r-+3! + ( ( r~¿2 r'i ri ) + Š =

 ' «=i i=i / '»=i / ' »=i i=i / /1=9+2

 _ ~1 ,

 es-Í ,

 (9+1 E'*K« 1 = 1 ' / + /l=ļ E p (9+1 E'*K« + E c¡-' = j(«+i,p) 1 = 1 / /l=ļ + 2

 and iterating the preceding process one gets:

 H(q,p) = H(p,p)
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 and then:

 H(p,p) = -C-' (¿r?) r-, = - (gr?) '
 (b) If 1 < q < p < i - 1:

 0(1, P) = C,-'(¿ríj r¿; +C,-> (¿r,j r-¿ + ff(,,p) =

 = Cf'r-ļ.C, + H(,,p ) = r,-+', - ^ r?)
 (c) If 1 < p < i - 1:

 tf(0,p) = G(0,p) = ¿ C*1 = Cf1 + #(!,!>) =

 = + H(l,p) = r,-- (E r?) 1
 □

 We are going to compute, in the following Lemma, the Dirichlet kernel associated to the
 system

 3.6. Lemma

 (a)

 Y' ih(x)<yh(v) ~ - ( 'i* ~ 1 ' if Z' y e E*> 1 - q - é
 ti ~ I -1 ' if x e E" y e E>> ? 1 ^ 9j < i

 (b) For every k > 1 and a € S£:

 t- 1 i r-'r~ģ - 1) , if x, y G Eaq, l<q<t
 7a(x)7¿(y) = < -r~s , if x e Eaq, yeEaj,q¿j, 1 < q,j < I

 A=i [ 0 , otherwise

 (c) For every fc > 1, a G Sļ and 1 < p < i - 1:

 p rās [v* ~ (ÏÏÏÏ r«' ) *] ' if *' f e Ean 1 - q - p + 1
 E 7¿(®)7¿(y) = < _r-. ķp+i r*)_1 , if x e Eaq, y€Eaj,q¿j,l<q,j <p+l

 „ 0 , otherwise

 (d) For every m > 1:

 _ / rās »if x,y 6 Ea, a £ <S¿+1
 m I » V) _ ļ o , otherwise
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 (e) For every m > 1 and ß 6 <Sm+i:

 ra rq î if J/ £ Eaq, <2 € <^m+l' & - ßi^- - Q - ^
 Km+SiXiV) = < r~3 , if x,yeEa,aeS*l+1,a>ß

 0 , otherwise

 (f) For every m > 1, ß £ S^+i and 1 < P < t - 1:

 ' rā'rā' , if x,y G Eaq, a € 5ļ+1, a < ß, 1 < q < (.

 Tß3 1 + r~s - (E?=x rf) *j , if x, y 6 Eßq, 1 < q < p + 1

 ^m+i(x^y) = i rß' ^ - (HU rt ) , if i 6 Eßq, y € Eßj, q ^ j, 1 < q,j < i>+ 1
 Tß" , if X G Eßq, y G Eßj, q> P+IOT j > p + 1
 »"ā4 , if X, y e Ea, a € <S¿+1, a > ß
 0 , otherwise

 Proof: First we notice that when Í = 2 then (c) coincides with (b) and (f) with (e), and so in the
 proof of (c) and (f) we can assume that I > 2.
 (a) Let i 6 Eq, y e Ej and j < q. Then, by Definition 3.1 of the system $, we have:

 (i) If Ç = &

 S 7o(*)7o (y) = To'Hsbo-1^) = ~Cī-' fe rÍ] rīScē-i =
 /l=l 't=l /

 = l,ť- 1)
 using the definition of H and its evaluation in Lemma 3.5.

 (ii) If q < I (It can only happen if i > 2):

 'Ž -rÍM-roM = E TÍ Mio (y) = -c;X rA r ;-c¡X +
 /1=1 /»=1-1 '«= 1 /

 h=q

 By the symmetry of the kernel one gets the result for q ^ j.
 Now let X, y 6 Eq. We axe going to distinguish three cases:

 (i)If9 = *

 ¿ 7o(x)Jo(y) = 7o_1(«)7 o~1(y)= ~CtX rt" =
 h=i Vt=i / J

 = G(/-l,¿-l) = rf- ^r?) =rr-l
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 (¡i) If l<«<ť(ifí>2):

 XNoMtŽM = E 7Ž(xh5(v) = C,-i,(grA r^ +
 h=l h-q - 1 'î=1 /

 + 2Cl-1=G(,-l,<-l) = r-'-l
 h=q

 (iii) If q = 1:

 ¿ 7o(*bo (y) = ¿ cã"1 = G{o,e- 1) = rra - 1
 /i=l h=l

 With this (a) is proved.
 (b) It can be obtained in the same way and following the same steps of (a).
 (c) As we said at the begining of the proof, we shall assume I > 2. From the definition of $ is clear
 that:

 p /p+i ' /p+i '

 U supporti lì *7 a) = (U E*ij X ļ^U E°"J
 Suppose first that x € Eaq, y € Eaj and 1 < j < q < p + I- We are going to distinguish two cases:

 (i) If 9 = P + 1:

 H 7a(xhì(y) = il(x)7 l(y) = r~°H(p,p)
 h=l

 (ii) If q < p + 1:

 S 7Ž(*)7S(y) = S 7Ž(®)7 a(y) = rā'H(q - 1 ,p)
 h=l h=q-l

 Now let X,ye Eaq, 1 < q < p+ 1, and we shall distinguish three cases:
 (i) If 9 = p + 1:

 £ TÍ(*)T¡¡(») = 7 î(*bî(») = r;'GÙU>)
 h=l

 (ii) If 1 < q < p + 1:

 S TS(®)7¿(») = S 7¿(®)7¿(y) = »'«'G:(í-l,p)
 /l=l /l=Ç - 1

 (iii) If 9 = 1:

 = rā4G(o.p)
 /1=1

 Finally, using the symmetry of the kernel and Lemma 3.5 one immediately obtains the desired
 result.

 (d) We shall prove it by induction on m. Using (a) it is clear that:

 T-i(x)7-l(») + h=i ¿ lí(*bí(») = j K l' ' ; ' ' lí,íř (10) h=i K '
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 For every i, 1 < i < ¿, 7,^(1)7,^(1/) has support in Ex x E¡. Then, using (b) and (10), we get:

 y ) = 7-i(«)7-i(v) + S 7o(xho(v) + SS 7i(*)7i(v) =
 h=l 1=1 A=1

 r~s + r^s(r~s - 1) , if x, y € 1 < », J < /
 = < r~s - r~s , if x G Eiq, y G £¿¿, 1 < i,j, q < £, j ¿ q

 0 , otherwise

 That is:

 v**-1/* ' ,š' - / rā" ' if e E°" û € S2
 1 ' ' ,š' - ļ 0 ' , otherwise

 and then (d) is true for m = 1. Suppose it is true for m - 1, that is:

 i/T ^ _ Í r~s , if x, y 6 £?«, a G
 i/T ^ _ ļ 0 , otherwise

 Then:

 irC..,^-i(x y) = iřW;ť-1(x1Í/)+ ]^7¿(*)7 a(y)
 <*es*>h=i

 and since UÍ=i supportiti x 7¿) = Ea x Ea, by the induction hypothesis and (b) we have:

 f rā' + r-a(r-' - 1) , if x, y G £<*, « € «Sļ, 1 < i < I
 i(x, y) = < r~* - r~' , if x e £?«„ y G Eaj, a e Si, I < q,j < ¿, q ¿ j

 0 , otherwise

 from which one immediately obtains the result.
 (e) We have that:

 Km+'(x,y) = H ¿ 7¿(®)7¿(»)
 <"€54+1

 a<0

 and one can notice easily that:

 [ V) E"> cceSi+1,a<ß
 Km+ 1 (».») = S Kk">e*-l(x,y) , if x, y G Ea, a G 5¿+1, a > /3

 [ 0 , otherwise
 Then, using (d), one obtains the desired result.
 (f) We may suppose, as we said before, that I > 2. The proof of this result is an immediate
 consequence of (c), (e) and the fact that:

 ,ifx,yeEQ, aeSi+i, a//?
 *&!(«.»)=< <;:í"V,y) + ELi7^)7^y) ,ifx,y€Eß

 „ 0 , otherwise

 □
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 We axe going to compute, in the following Lemma, the partial sums of the Fourier series of
 a function / G £1(£', H*).

 3.7. Lemma

 For every m > 1, ß e «S¿+1 and 1 < p < I - 1, we have:

 ti>(Eaą) ÍEaq f(y) dH'iy) , if X G Eaq , a G Si+1, a < /3, 1 <q<l
 J Eß f(y) dH '(v)+

 sßw ¿m+i / f(x) W - _ I .fe* f(y ) <*#%)-
 sßw ¿m+i / f(x) W - _ _ ^ /ļJf=+ļl ^ /(,) dH.(y) , if X G Eßq, 1 < q < p + 1

 H'(Eß) I Eß f(y) dH'(y) , if « 6 Eßg, p + 1 < q < £
 > fi'(Ēa) Se* f{y)dH"{y) , if X G Ea, a g Sļ+ļ, a > ß

 Proof: Since:

 SRj(x) = ļEf(y)K%p+1(x,y)dH<(y)
 and considering the result (f) of Lemma 3.6, we have:
 If X G Eaq, a G S¿+1, a < ß and 1 < q < t:

 s£ï,/(x) = jEí(y)rz'T;'xE.MiH'(y) = h^Ķ^Ļ
 because if HS{E) = 1, then H°(Ea) = r¿.
 If X G Eaq, 1 < q < p + 1:

 a íp+i r /p+i '_i
 î£ïi/(») a = 1-(Çr'j x*„<»)+

 + 1 + rr-(nr?) XEßq(y)+ ^ r/34j X^(î/)| dHs(y) =
 1 (p+1 e Ì

 = zj Ļf(y ) ^2xEßj(y) + XEßq(y)+ £ xs^í») +
 /»y 'i-i i=P+2 y

 + íEf(y)xE01(y)dHS(y)-

 1 r (p+1 '
 ~ -, rß 2^«=1 1 JE L r Y,XEß]{y) + XEßq{y)'dHs{y) / rß 2^«=1 JE 7=1 /

 /

 and we obtain the announced expression. The other two cases are similar to the first one. □

 We can state now the following theorem which can be obtained immediately by applying
 the Differentiation Theorem 2.4 to the expression of the partial sums obtained in Lemma 3.7.
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 3.8. Theorem

 For every function / 6 Ll(E, H3), the partial sums of its Fourier series, with respect to
 converges to / at H'-almost every point of E.

 3.9. Corollary
 The system $ is Z^-complete.

 Proof: Suppose that / £ 1}(E,E T5) is orthogonal to every function of the system $. Then, it is
 clear that:

 S%hf(x) = 0 , for all x € E

 for every m > 1, ß € S^+ļ and 1 < p < £ - 1. Then, using Theorem 3.8, we have that f(x) = 0 in
 #*- almost every x € E. □

 3.10. Remark: Since H'(E) < oo, we have that LP(E,HS) C Ll{E, Hs) for every p, 1 < p < oo.
 Then, Corollary 3.9 assures us that the system $ is Lp-complete, 1 < p < oo, and in particular
 that $ is /^-complete or that it is an orthonormal maximal system in L2(E,HS).

 We shall see now that the Fourier coefficients of every function of LX(E, H") converge, in
 some sense, to zero. Since the intersection of two different subsets of E of the same generation is
 empty, then the set E may be identified with S as follows. Given x € E there is a unique infinite
 sequence a(x) 6 <S¿, such that:

 OO

 ^ S P ^a(x)[m]
 m= 1

 We construct the sequence a(x) with the subindices of the sets of each generation which contain
 x. Conversely, given a G S^, we assign to a the unique point x 6 E such that:

 oo

 x £ f"ļ E a[m ]
 m=l

 Without the additional hypothesis that different sets of the same generation have empty
 intersection the identification may be done in the same way, but now there will be a set of points of
 null IP-measure and each one of them will be assigned with more than one sequence (such points
 may be excluded).

 3.11. Theorem

 Let / G Ll(E, Hs) and {a_i,ÛQ,a£} their Fourier coefficients with respect to $. Then, for
 H'- a.e. i € E:

 = 0

 for every h, 1 < h < t - 1.

 Proof: For every k > 1, a € Sļ and 1 < h < I - 1, we have:

 aka = jEf{y)lha{y)dH>{y) =

 = (¿ [ f(y)dH°(y) - / f(v)dH'(y) ) =
 'j=l jEa) ,=1 JE<*,h+i )
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 = „ ¡(s)iH'(y)-rluj^T- i f(,)dH'(y))
 'J Ujsi E<*J „ i= 1 JE«.h+i )

 If K = max{l , maxi</l</_1{r^1 ^=1 rf}}, then:

 l«il < C^r^Kj^ 'm'dH"(y) = C^rļKj^ļ^ 'f(y)'dH'(y)
 Since f £ L1, we have that |/| € L 1 and applying the Differentiation Theorem 2.4 we get that at
 H'- almost every iç£:

 i5o hhe' 11 V-^a(x)[m]J ,, ,) yŁa(i)[m] Ļ , l/wl dRģ(y) = 1/(1)1 11 V-^a(x)[m]J ,, ,) yŁa(i)[m] ,

 and since:

 lim r?, w , = 0
 771- ►OO úř(x)[mj

 we obtain the result of the theorem. □

 We shall now study, in the next theorems, the convergence in Xp-norm, 1 < p < oo, of the
 Fourier series of the functions / € Lp(E,Ha).

 Since $ is a Incomplete system, we can apply the classic results of the ordinary theory of
 Hilbert spaces (Bessel inequality, Riesz-Fischer theorem,...) and state, then, the following theorem:

 3.12. Theorem

 If / € L2(E,Hs) and {a_j, ûq, a¿} are their Fourier coefficients with respect to we have:
 W ll/lll = (a-.)2 + E&tò2 + EÊi Z„es<Zfc'(«ī)2 < oo.
 0>)l|i&i/-/llj - o-

 Moreover, if F € L2(E,H3) and {A_i, A¿} are their Fourier coefficients with respect to $,
 then:

 ¿-i oo e-i

 f mm dH'(y) = o., A., + E « + E E E "M
 JE /i=l k=la£S¿h=l

 where the last series is absolutely convergent.
 And if {c_i,Cq,c¿} is a sequence of real numbers which satisfies:

 l- 1 oo ¿-1

 (c-,)2 + EC'S)2 + E E Etò* < ~
 h- 1 À:=laç5^/i=l

 then there is a unique function / 6 L2(E,Ha) such that {c_i,Cq,c¿} are their Fourier coefficients,
 and then / satisfies (a) and (b).

 3.13. Theorem

 Let p, 1 < p < oo. If {c_i,Cq,c¿} is a sequence of real numbers which satisfies:

 t-' oo ¿-1

 k-.i + Etól-iiTolip + E E Etói-tàl»<«> (»)
 h= 1 fc=l <>€$< fc=l
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 then there is a unique function / € Lp(E,Ha) such that {c_i,Cq,c£} are their Fourier coefficients,
 and we have:

 Itííi/ - /llp - o
 Moreover, if we have a function / € Lp and their Fourier coefficients {a_i, a¿, verify (11), then
 the Fourier series of / converges to / in £p-norm.

 Proof: In order to simplify the notation we shall suppose that $ = {Tjfe}jk>i • Let {ck}k>i a
 sequence of real numbers verifying (11), that is:

 Ž M • IMI, < o» (12>
 k=l

 Since $ C Ip, by (12), it is immediate to check that if we denote:

 N

 fN(x ) = Y, Cklk(x)
 k= 1

 the sequence {/n}n> i is a Cauchy sequence in the Banach space Lp(E,Ha). Then there will be a
 function / 6 Lp such that:

 lim ||/jv - /Hp = 0 (13)
 N-*oo

 To see that {cfc}jt>i are the Fourier coefficients of / it is enough to consider (13), and the facts

 that $ C Lp> (1 + ķ = 1) and that 7* - »■n- 00 Ik in Zp'-norm, since in this case (see [4, pp.9]), for
 every k > 1, we have that:

 / f(y)lk(y)dHs(y) = N-oo lim Í /N(yhk(y)dHa(y) = ck Je N-oo JE

 The uniqueness of the function and the rest of the proof may be deduced from the Zp-completeness
 of $. □

 4. Examples

 We shall now see some examples in which we compute the Fourier coefficients of certain
 functions, and we build functions from their Fourier coefficients.

 In the rest of the paper E C [0, 1] C M will be the classic Cantor set and:

 $ = {7-1,70} U {7c : a 6 , k > 1}

 the system associated to it (see 3.2(d)).

 Example 1: If f : E - ► M , f(x) = x, then we are going to see that:

 /(X) = Ì7-.W - J70(X) - 1 1 jL

 with convergence at /P-almost every point x G E.
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 Proof: The computation of the coefficients is based on the two following facts, which are easy to
 check.

 (i) Let A G IR be a constant and g : E - ► JR. Then, for every k > 1 and a € S%:

 í [A + g(y)ha(y)dH*(y) = [ g(y)ja(y)dH3(y ) J E a JE«

 since ¡Ea7c,(y)dHa(y) = 0.
 (ii) If g : E - ► JR is such that g(x) = A + mx, being A, m 6 IR constants, then for every k > 1
 and a 6 S% we have:

 [ g(y)dHs(y) = g(5°(0)) + I g(5a(1» JEa I
 by the distribution of the üP-measure on the set Ea and because of Ea = [5a(0), 5a(l)] fi E.

 We shall compute the coefficients:

 «-I = ļEv<iH'ti)=^nš(E) = ļ

 since E' = [0, 5] n E and Eļ - [§, 1] fi E. And for every k > 1 and a € S% we have:

 aQ = = [ yfi,...,i(y)dHs(y) =
 jEx

 = 2 W ydH'(y) - 2? f ydHs(y) =
 JEi

 t/O + lł)'" 1 (i)*ž + (ž)* 1 '
 ' 2 2fc+1 2 2*+! / 3(3^2)*

 □

 Example 2: If we consider that c_i = cq = 1 and cQ = 2~k for every a € S%, k > 1, then:
 OO OO

 (c_i)2 + (co)2 + ^2 ^2 (c°)2 = 2 + 5^2 = 3 < +00
 fc=l otÇSj> k=l

 and by Theorem 3.12, there is a unique function / 6 L2(E,HS ), ||/||2 = '/3, whose Fourier
 coefficients are {c_i,co,ca}, and moreover:

 OO

 /(x) = 7-1(1) + 7o(x) + 53 2~fc S 7«00
 *=1

 with convergence in IP-almost every point and in Z2-norm. Using the definition of the system $
 (see 3.2(d)) we have:

 ~ (_iy*(*K
 /« = 1 - E „u tel L 2"="

 where a(x ) = (¿1, ¿2, ...) G «S¿ is the unique infinite sequence which determines x and a(x)j. = ¿j.,
 for all k > 1. n

 212



 Example 3: If we consider c_i = cq = 1 and for every k > 1 and a £ S%:

 f 1 , if a = (1,..., 1) €
 ,ifa€ĄJ'{(l,...,l)}

 then:

 (C_!)2 + (Co)2 + £ £ (Ca)2 = 2 + ¿ 1 = +00
 Ar=l ofg$2 k=l

 But if we compute the Z.p-norm, 1 < p < oo, of the functions of the system $ (see 3.2(d)), we have
 that:

 IIT-iIIp = IItoIIP = 1

 Il7.ll, = (/>l'^')' = (2¥^ +
 and then:

 OO

 Ic-.lllT-.IK + lcolll-rolli + E
 k= 1 aÇSjj fc=l

 Then, by the Theorems 3.12 and 3.13, there is a unique function / G Ll'L2 such that {c_i,co,ca}
 are their Fourier coefficients and:

 OO

 /(*) = 7-i(*) + 7o(z) + 7i,...,i(x)
 k=i

 with convergence in X1-norm and at ^'-almost every point. It is easy to check that:

 J[X) f( Ì = J ° , if X 6 ^2
 J[X) f( Ì = 'V2(2î-l) ,ifx€Ea2, a = (l,...,l)6S¿,k> 1

 □
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