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 On Riemann summable trigonometric series

 1. Introduction : It is known that if a trigonometric series is

 summable (R, k) , k = 2,3,4, then its (R, k)-sum is P^-integrable

 and the series is a P^-Fourier series (For k = 2 see [5] and for
 k = 3 or 4 see [3]). In the present paper we have introduced three

 integrals : the R -integrals, k = 2,3,4, which are more appropriate

 for (R , k) -summable trigonometric series than the P -integrals. Then

 we have shown that if a trigonometricseries is summable (R,k) its

 (R,k) sum is R -integrable. The advantages of these integrals are

 that they have the power of the first order integral, as in [4,7],

 and consequently the Euler-Fourier formulae for the coefficients

 of the trigonometric series can be written in its usual form. We

 have given the proof by obtaining first a result on formal multi-

 plication for Riemann summable trigonometric series analogous to

 that for Cesaro summable trigonometric series considered in

 [6, 13, p. 370] which has some importance in itself.

 2. Definitions and notation : Let f be a real valued function

 defined on the closed interval [a,b]. Let xQ€(a,b) and f(xQ) = aQ .
 If there exist real numbers a^, o^, ..., am depending on xQ but
 not on h such that

 m uT _

 f(x + h) = E rr a_ + o(hm) _
 r=o :
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 as h- *0, then a is called the Peano derivative of order m
 m

 of f at xÄ and is denoted by 7 f/ ' ( x) . Taking one sided limit o 7 im; o

 one gets the definition of Peano derivative at the end points of

 the interval.

 For a given integer s o and a number h > o let

 X + -I he (a,b). Then the s th central difference A ( f ;x .h)
 U ¿ o U

 of f corresponding to xQ and h is defined by

 As(f; xQ, h) = E (-1)J ( J f ) f(xQ + ( I - j)h). j=o J

 The upper Riemann derivate of f at xQ of order s is
 defined as

 RD f(x ) = lim sup
 O U

 h-* o h U

 Replacing 'lim sup' by 'lim inf' one gets the definition of

 the lower Riemann derivate RDSf ( xQ) . If RÕsf(xQ) = RDSf ( xQ) ,

 the common value is called the Riemann derivative of f at xQ

 of order s and is denoted by RD f(xQ).

 We shall write

 Ao(x> = i ao

 An(x) = an cosnx + bn sinnx, n 1

 EL(x) = b„ cosnx - a„ sinnx, n ' 1 ^ n n n '
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 The upper and lower (R, k) sums of the series

 ^ °o CO
 (T) "5 ao + ^ ^ an cosnx + sinnx) = E An(x)

 n=l n=o

 at xQ are defined to be the upper and lower limits of

 as h- > o. If they are equal and finite then the series (T)

 is said to be summable (R, k) at xQ to the common value.
 Let the series (T) be integrated term - by - term k times

 and let the integrated series converge everywhere to a

 continuous fuhction (J) . Then

 A, (è; X ,2h) , 00 . k

 - ¡5JT - - 2ao + ^ V*>-< S2rr- ' •

 Thus ĒDlc(ļ)(x0) and RD^^x ) are the upper and lower (R, k)

 sums of the series (T) at xQ .

 If f has the Darboux property in an interval I, then

 we shall write f £ in I. If E is Lebesgue measurable

 then 1 E| will denote the measure of E .
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 A function f is said to have the property T? (respecti-

 vely R) in an interval [a,b] if for every perfect set PC [a,b]

 there is a portion of P in which f r°strict»d to P is upper

 (respectively lower) semi-continuous and we write f e. R (respec-

 tively f € R) ir [a,b].

 Following Zygmund [e.g. see 13 , I, p. 53, p. 364, p. 366] we
 00 oo

 shall say that two series E u (x) and S v fx) are uniformly
 n=o n n=o n

 OO

 equi-summable (R, k) if the difference E [u (x) - v (x) ] is
 n=o n n

 oo

 uniformly summable (R, k) to zero and the series E u (x) and
 m OO n=o n m OO

 E v ( x) are uniformly equi-summable (R, k) in tne wider sense
 n=o

 OO

 if E [ u (x) - vn(x) ] is uniformly summable (R, k) (not
 n=o

 necessarily to zero) .

 3 . Convexity theorems :

 Lemma 3.1. Suppose that

 i) f is upper semi-continuous in [a,b]

 ii) RD f ^ O in (a,b) except on an enumerable set Sc(a,b)

 ^(f ;x,h)
 iii) lim sup

 h-»o + h

 Then f is convex in [a,bj.
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 This is proved in [13, I, p. 328, Lemma 3.20]. (In fact

 the result there is for continuous f but the same proof will

 suffice for upper semi-continuous f).

 Lemma 3.2. Suppose that

 i) f G. R O <25 in [ a , b]

 ii) RD

 A2( f ;x ,h)
 iii) lim sup

 h - o+ h

 Then f is con tinuous and convex in [a,b].

 Proof . Let G be the set of all points x in [a,b] such that

 there is a neighbourhood of x relative to [a,b] in which f is

 upper semi-continuous. Clearly U is open in [a,b]. Set

 P ss [ a , b] - 'G. Then P is closed. Clearly P cannot have isolated

 points. For, let xQ€ P be an isolated point of P. So, if

 xo£ (a,b) , there is a > o such that (xQ - o, xQ) 'J (xQ, xq+<j) cG.
 Since in these intervals f is upper semi-continuous, by Lemrr-a 3.1,

 f is convex there. Thereîorè, lim f(x) and lim f(x) exist and
 X- >X - X- *x +
 O o

 since f € <2T in [a,b], 1 iin f(x) = f(x ) = lim f(x). So,
 x->x0- x-x<)+

 xQ£ G, which is a contradiction. Similarly a and b cannot be
 isolated points of P. Thus P is perfect.

 Now we show that P is void. Suppose the contrary. Since
 f e R in t' a , bj , there is a portion of P , say JO P jz (1) , in which
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 f restricted to P is upper semi-continuous. Now the set J - P,

 the complement of P in J , is open (relative to J) and

 J - - ' P (J) . For otherwise J c P and by the property R there

 is an open interval J such that f is upper semi-continuous

 on which implies C. G and so P (ļ).This is contra-

 diction. If I is any component interval of J - P then f is upper

 semi-continuous in I . By Lemma 3.1 and Darboux property of f

 it is convex in the closure I of I and hence f is continuous

 in I . From this we conclude that f is upper semi-continuous in

 the whole of J. For, let C e P H J and [ £n ļ be any sequence
 converging to £ . If £ is an isolated ooint of P from one side

 and [ Cn } tends to £ from that side, then since f is continu-
 ous in the closure of each component interval of J' - P,

 lim = f(£ )• If for each n there is a component interval
 n->oo

 (sn, tn) C G such that sn < £n < tR and sn^ £ , tR -+ Ç ,

 then since f is convex in [sn , tn],f( <Cn) ^ max { ^ ( sn) ( tn) }

 and since f is upper semi-continuous on J HP relative to P,

 Lim sup f( £ ) f( C). Thus f is upper semi-continuous in J.
 n- >00 n

 So J H P is void, which is a contradiction. Thus P is void.

 Therefore f is upper semi-continuous in [a,b] and by Lemma 3.1

 f is convex in [a,b]. By the Darboux property of f, it is also
 continuous in [a,b].

 Theorem 3 » 1 . If ^(2) exis^s [s»b] and RD^f ķ, O everywhere
 in (a, b) then continuous and convex in [a,b].

 135



 Proof . We first supoose that RD4f > O in (a,b). Let [c,d]C (a,b)
 arid

 A2(f; X, 2 )
 (1) Fn^ x) =

 (2"n)

 For X e Cc, d]

 4 A4(f; X, 2h)
 O < RD f(x) = lim inf -

 - h-*0 16li

 , Ao(f;x,4h) A2(f;x,2h) ,
 = lim inf -n [ n - >j

 h- > o n (4hr (2h r

 -n-2
 Putting h = 2 we get

 4 . A2(f ;x ,2"n) A2(f;xt2-(n+1^)
 O < BD 4 fix) < li^nf -=*_,[ . _T?ÏÏ? ;x

 i.e., O < lim inf -727^3 fFr/x^ " Fn+l^x^ '
 Yl - *-oo 2

 So there is a positive number N(x) such that

 (2) Fn^ > Fn+1^ for n ^

 and hence the sequence { F ( x) } is auasi-nonincreasing in [c,d]

 (for definition see [10]). Since f^0^ exist, f is continuous in
 [a,b] and hence Fn is continuous in [c,d] for each n. From (l)

 v 3) lim Fn(x) = f(2)(x) for al! *€ [c,d].
 00

 Therefore, by a Lemma of Saks [10, %3] f^2) e Ř in [c,d].
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 From (2) and (3) we have

 (4) Fr/X) > f(2)^ for n >N(x).

 Now integrating A2(f(2)* twice, the first being in the
 . *

 CP-sense [1] and the second in the D - s^nse, we have

 2-n h 2~n
 f f A2(f (2) »x» ť^dt dh = j [^( i) ( X+h)~f ( i) ( x-h) -2hf ^ 2) ( y ) ^dh i o o

 = f(x+2"n)+f(x-2"n)-2f(x)-22nf(2)(x) •

 So, by (1) and (4)

 2~n h

 I Í ^2^f(2)' (Jh > 0 for n ^ N'(x)-

 Hence D2f^2)(x) ">/ 0 for xe £e»d]. Since f(2)e®^ in Í 9 1»
 by Lemma 3.2 f(o) continuous and convex in [c,d]. Since
 Cc,d]ç2(a,b) is arbitrary and f(2)€<^ f(2) continuo,:S
 and convex in [a,b]. Thus the theorem is proved for the special

 4
 case when RD f > O in (a,b).

 To complete the proof consider

 1 X4
 g(n , x) = f ( x) + - . -

 where n is a positive integer. Thon g^0^(n,x) exists in [a,b] and
 4 4 1

 RD g = RD f + - > O in (a,b). Hence, by the special case,

 g^2)(n»x) Is continuous and convex in fa,b] and since

 f(2)(x) is the uniform limit of g^in.x) as n -> « , f(2^(:<)
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 is also continuous and convex in [a, b] .

 Lemma 3.3. For every set E C (a,b) of measure zero and every

 £ > O there is a function J such that J/W exists, is non-

 decreasing, non-negative and continuous in [a,b] and

 RD4J(x) = » for X £ E, j'" (a) = 0 and j'" ( b) < ^ •

 Proof : Let £ > 0 and E be arbitrarily fixed. For each n let

 i "ì n be an open set such that E C Gn , Gn+ļ ^ and jGn| < ~ .
 Also let

 X Î r)

 = j j ļ I Gn fi [a,t]|dt drj d£ .
 n a a a

 Set
 oo

 J(x) = E <+> (x) .
 n=l

 Since the function | Gn fl [a,t]| is continuous, non-decreasirio and
 non-negative, kaj"' exists and oossesses these prooerties. The

 n oo ///
 condition |G I < imDlies that E /// converoes uni-

 n 2 n=l
 forrr.ly and hence j'" exists and possesses tho«-e pronerties and

 j" ( b) < £ . Finally, if x0^ E and N is any positive integer,
 t.h«n for sufficiently small h > o, [x -2h, x +2hj C Gkl . Since

 O O N

 C a , 1 3 1 is dif f erentiable on Gfļ with -g-ç |GnH [a,t]ļ = 1,
 IV t '

 we have t ' = 1 for x G Gn * H<?ncS' for 1 ^ r < N and
 o 4- öl 4 2 h we hove

 138



 xQ+a S Tļ

 ^ r (x0+a) = ļ ļ ļ lGr ii [a.tjļdt di) dÇ r a a a

 2 3 4
 = A0(x0) + A1(xo)a + A2(xo)o +A3(xo)a +

 where A^(x0), i = 0,1,2,3 does not deoend on a . This is alsc
 true for - 2h a 0 . Hence

 ł *0 2 . h)
 - it

 h4

 Since uj'" is non-decree sinn , uj is 4-convex [2] and therefore
 Tn n

 A4(JiX0,h) _ ~ A4(vťn;xo,h) N A„(HVVh)
 h n=l h n=l h

 Hence, RD4J(xQ) = » •

 Theorem 3.2. Suppose that

 i) f(2) exists everywhere in [a,b]
 4

 ii) RD f ' 0 almost everywhere in (a,b)

 4
 iii) RD f > - » everywhere in ( a , b) .

 Then ^(2) *s corctin-ious and convox in [a,b].

 Proof : Let EQ = {x: x e (a,b) , RD4f(x) < oļ . Then |E0I =0 .
 Let { en} be a positive null sequence and let J(n,x) be the func-
 tion of Lemma 3.3 corresponding to E^ and £ . Then the function on

 139



 f(x) + J(n,x) satisfies the hypotheses of Theorem 3.1. Menee

 f(2)(x) + J^2)^n,x^ continuous ."ind convex ir. [a, hj. Since

 J(2)(n»x) < (b-3)* £n i we have

 f (2) ( x) = li» t/(2)(y) + J(2)^n»x^] .
 n- »»o

 Therefore *(->) *s convex in [a,b]. The continuity of f'2)
 follows from the Darboux property of f(2) '

 Using Riemann derivate of order 3 we have

 Theorem 3.3. SupDOse that

 i) f(ļ) exists everywhero in la,b]
 3

 ii) RD f ^ 0 almost everywhere in (a,b)

 3
 iii) RD~f > - « everywhere in (a,b).

 Then continuous and convex in [a,b].

 This sharpens a result of [lOj , since is the ordinary first
 derivative of f.

 4. The I3!4 -integrals, k = 2,3,4.

 Let f be defined and finite almost everywhere in [a,b] and

 let B C [ a , b] be a measurable set ci measure b-a with a,b£B.
 U

 A continuous function Q is said to be a R -major function,

 k = 2,3,4, of f in [a,b] if

 i) exists everywhere in l a , b j

 ex i tr> on R

 lii' ^(k-l)^a^ = 0
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 iv) RD C ' f almost everywhere in (a,b)

 k /
 v) RD' Q > - » everywhere in (a,b). /

 A function q is a minor function of f if -q is a major function

 of -f . If k = 4 or 3 then it is cleor f rorr Theorems 3.1? nr 3. i

 that 0(1^2) "* c'(k-2) con*iru,ous ancl convp-x for «v^ry ^.ir
 of major and minor functionsQ and q . If k = 2 (the c-- rdi ti or

 (i) is redundant here) then clearly Q-q is continuous and convex

 (cf. [4, Theorem l.l]). Hence for k = 2,3,4, the function Q-q

 is k-convex and since ~ ^(k-i) exists on D,
 is increasing onß W.So , by (iii) we have

 Q(k_l)(b) >, !;ł(k_i)^b^ * This being true for every pair 0 and o

 (5) inf I sup ^(k_i)(b) •
 {Q} {q}

 If equality holds in (?) with em-al value h«ing finite then f is

 said to be R^-integrable in [a,b] with basis 3 and we write

 k £ F(b) = (R k , 3) f f(t)dt .
 a

 The following is clear:

 U

 Theorem 4.1. i) If f is R -integrable i ri [a,b] with basis 3

 and X € B then f is R '-integrable in [a,x] with basis BHfa.x]

 and

 M x.i (R"f '3 fi [a, x]) j f(t)dt .
 .T
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 (ii) The class of all Rk-in tegrabl e functions in [a,b] with
 basis B is a linear space containing constant functions.

 (iii) If f is Rk-intearahl e in [a,b] with basis B and f and g
 are almost everywhere equal then g is also R -integrable and

 b b

 (Rk,3) ļ f(t)dt = (RkfB) J g(t)dt .
 a a

 Theorem 4.2, Let G be continuous in [a,b] and lot

 i) G^k_2) exist everywhere in [a,b]
 ii) - <» < RD^G < RDkG < <» everywhere in (a,b).

 Then RD G exists almos t everywhere in (a,b) and there is a

 BC(a,b) such that G(ķ_ļ) exists on 8 wnere | B| *= b-a and
 k k

 for a^,bļ6 B with a^ < b^ , RD G is R' -inteorable with hasis

 B H [ a^ , b^ ] and

 bl

 (6) (Rk,BO[a1,b1]) j RDkG(t)dt = G( k-1) ( bl} " G(k-1) ( *
 al

 Proof : Since

 k k
 - <■> < RD G ( RD G < » everywhere in (a,b)

 by [ 8, Theorem l] RD G and ^ exist almost everywhere in
 (a,b). Let G(k_ļ) exist on Bc(a,b) whore | Bļ = b-a and let
 al » bļ G B. Then

 b(x) - G(k-l)<ai) * T~~~77
 v k-1 ) i
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 is both a rrôjor and 3 minor function of RD^G in [ a j » b, ] . K«rc<?
 k k
 RD G is- R -integrable in fa^.b^J v/iLh ^asis Biìfa^.b^j *nd
 the relation (6) holds.

 5. Formol mul tin I i cr> tion of Riera:, n su:»:rñ}-le omer.ri r

 series and applications

 The formal product of the sorios

 ļ CO CO
 (7) a + E (a cos nx + b sin nx) - Z A (x)

 2 o -» ì n n n -» n=l ì n=o

 and g(x) - Xcos px t n sin px wh?re and n are constants

 and p is a fixed positive interior, is tho series obtained by

 multiplying each term of (7) by g(x), reoiacincj the tri noncr etr : r

 products by sums of sines and cosines and then r »arrangine. the

 terms in the form

 1 » ou.
 (8) 2 uo + ^ ^un cos nx + vn s*n nx^ = " ^n^x^

 say, where

 u^ = ' a + pb
 o p r>

 (v) un = i f À(an-p + an+r) ~ M(bn-p " Vn)3 ' n * 1

 vn = 2 ^ ^ ^n-js + bn+p^ + ^ an-p " an+p^ ' > 1
 with the convention that a rr a 'n _ ~ .

 -s s » -s ~ _ ~ °«¡ •
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 Let the series conjugate to the series (8) he denoted by

 00 CO

 (10) Z (~vn cos nx + un s*n nx^ = - E ^n(x) *
 n=l n=l

 The series conjugate to the series (7) is

 « «■

 (11) E ( -b_ cos nx + a sin nx) = - Z B ( x ) .
 n =1 n n n =1 n

 The formal product of (11) anc g(x) can he obtained as

 above replacing aQ by 0 , a^ by -bn and bn by anfor n } 1 in (7)

 and noting that bQ is also zero. L-et the rormal product of (11)
 and g(x) be

 1 °° fJ° - 1 c + E ( c cos nx + d _ sin nx) = Z C 'x)
 2 0 n=l n _ n n=o

 where

 co = - Abp + Iiap

 cn = 5[" A(bn-p + Vp' - "(an-p " an+p)]" n * 1

 dn - èC A(an-p + 'n+p' " bn-P " bn+p)] • " 1 •

 Here, of course, b ^ = b„ , a = 0, a = - a
 - ^ S S o -S s

 Therefore

 cn = - vn for n > p

 and

 dn = un for n > p .
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 Thus we get

 Theorem 5.1. The series conjugate to the formel nrodnct of a

 trigonometric ceries and q(x) =■ Xccs px + |i sin pxf p beino a

 fixed positive integer and X, n being constants, is the formal

 product of the series coniuc-te to the cn von triaonor^tric series

 and g(x) plus a trigonometrie polynomial of orrier at '-ost r .

 The following result is analogous to that in f 6; 13, I,

 p. 370].

 Theorem 5 .2 . Suppose =■ oín01) = bn , o < o . Then for
 each positive integer m > a + 1

 Z U (x) and E A Ix).g(x)
 ^ ^ n ^ Ä n
 n-o ^ ^ n=o ^ Ä

 are uniformly equi-sunwahle (Rf rn) ; and

 E V n (x) and E 3 (x) .g(x) n=l n n==l n

 are uniformly equi-summable (R,m) in the wider sense.

 Proof : We suppose that m is even and m = 2k. The proof for
 odd m is similar. We have

 (12) (an cos nx + bn sin nx)( Xcos px + ^ sin px)

 = x[( 'an - nbn) cos( n+p ) x + ( /'ap> + nbn) cos( n-p) x

 "* ( ^ bn+nan) sin( r€fp) x + ( X b^-na^) sin( n-p) x]
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 and hence fron» (7) and (12)

 °° . 1
 (13) E An(x).g(x) . - - aQ( A. cos px + p sin ox)

 n=o

 1 co r
 + 71 T. [( r ' a -(abn) cos( n+p) X + ( 'a +|ib_ )cosln-f>)x ¿ y I I I 1 »111

 n=i y

 + ( A bn+^an) sin( n+p) X + ( À bn-nan) sin( n-o) x] .

 Integrating (13) torn- by- term 2k times nnd noting th-a.t the series

 obtained after integration converges absolutely, the right hand

 side of (13) becomes

 (14) (-l)k. ķa {'S2SJ2. * + n ■s-1g- S2S ) + z ( A a _-Kb) n n tcos(n"R,)x /. K »v * - ì n n / ' /. K
 P »v * P n=l - ì (n+p) / '

 + T. I Aa-n.b n n ).cos(n-g>* + ? ( 'b +M8 »' ).sin(nł£:x n-1 n n ( n-p) n=l 'b n +M8 »' (n«)2k
 n-Ap

 n¿p

 1 , *2k
 = ^ , (X a P + ^b P ) . P P (2k)|

 + (-l)' ¿r £ ( X a n -nb " ) + î ( 'ani-Mbn).^s(n-^;> n n n=o n " ( n+p)" n=l n n (n-t>)*k
 n^p

 + r Ub ina j -S'"n(n."lkX + * ( *-b n -na n ) .iin("-9)x ] . n=° ( n+p) n-1 n n ( n-p)
 nfp
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 Now

 «> cos(n+p)y 00 cos nx

 „r.0(* VV- (n+R)H "^p'^n-p-^n-p)-^ •
 00 cos( n-p) X
 1 { xan+iibn) . 2k
 n=l (n-p;
 n^p

 p-1 cos(n-p)x 00 cos(n-o)x
 = £ ( xs +l»bn).-
 n=l (n-p) n=p+l (n-p;

 p-1 cos nx 00 cos nx

 - nE=1UVn ^"p-n'-TT- + n-=1( Aan+P * "W -^F~ •

 «o sin(n+p)x 00 sin nx
 E (Ab + łia ) . ¿IT = JL(xbn-p ^ + ^an-p) * 2k n=o (n+p) n=p ^ n

 and

 00 s in ( n-p) X
 S Ub - nan) . -
 n=l (n-p)
 n^p
 p-1 sin(n-p)x » sin(n-p)x

 = Î (Ab n - na n ) . n~l n n ( n-p) ^r- n=p+l n n - (n-p)2k
 P-1 sin nx « sin nx

 = * "ap-n>- "TF" + „C=1Ubn+p " »W ' "

 Since, a =a, , b =-b , (14) reduces to -s s , -s s

 2k
 ì ( X a + |-i b ) . -
 2 P P . (2k)

 + (-l)k E L i 2 (X(a + a ) - u(b - b A ."ī,"" n=l 2 l n-P n+p' - n-p - b n+p J

 + 4 f À ( b _ + b ) + nia _ ^ 1 sin nx !
 ¿I n-p _ p+n' + n-p _ an+p; ^ J * "^2k - J !
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 and this is by (9)

 21' K k- lX K k- oo 2 1, *
 = Õ 2 u • Õ 2 0 • (2k)| n=l u_ n

 So, integrating

 oc

 (15) E [U ( x) - A (x).g(x)]
 n=o

 term-by-term 2k-times we get zero for all x. Therefore (15) is

 uniformly summable (R, 2k) to zero. Hence, the first part of the

 theorem is proved.
 For the second part, proceeding .as above with the series

 oo

 E Sn(x) and noting Theorem 5.1 we can conclude that integrating
 n=l

 OC)

 z [ V ( x) - B ( x) . g( x) ]
 n=l

 term-by-term 2k-times we get a trigonometric polynomial of order

 at most p and hence the result follows.

 Corollary 5.1 . Und^r the hypotheses o." Theorem 5.2 if tir? uocer

 and lower (R,ra) sums of E An(*) at x 0 are 7(x o ) and t(x ) n=o 0 o - o

 respectively then the unper and lower (R,m) sums of ? U (x) are
 _ n=o n
 f(x0).g(xQ) and f(xo).g(xQ) respectively when 9(x0) > 0 and

 are H*0).g(x0) and f(x0).g(x0) respectively when g(x ) <0
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 Proof : It is sufficient to note that the upper and lower (R,m)
 00 _

 sums of E An(x).g(x) at xQ are f(x0)*9lx0) ond £(x0)*9(x0)
 n=o

 respectively when glxQ) > O and are f(x0)»g(xQ) and f(xQ).q(x0)

 respectively v/hen g(xQ) < O and th.it if the unner and lo/.'er
 OO

 (R,m) sums of Z En(x) at xQ are ē(x0.) and e( xQ) respectively
 n~o

 00

 and if E D ix) is sumrnable (R,m) te Ü at x then the upper and
 n=o

 OO

 lower (R,m) sums of Z [En^x) + Dn(x)j at xQ are e(xQ) and
 n=o

 e(xQ) respectively.

 Lemma 5.1. If an = o(n) = bn and if the upper and lower (R,3)
 or (R,4) sums of (7) are finite at xÄ then the series Z A (x)/n^

 0 n=l
 converges .

 This is due to Verhlunsky |il , Lemma 7; a Lao 123-

 Theorem 5.3. Let an « o(n) = bn and let the series (7; hove
 finite upper and lower lR,k) sums everywhere (k = 3 or 4). Then

 V 7) is almost everywhere summa ble (R,k) to a function say f(x)
 and there is a periodic set C of period 2* and of full measure

 such that for a eC, the funćtions f ( x) , f(x).cos nx and f(x).sin nx

 are R' -integrable in [a, a + 2n ] with basis B = [a, a + 2n] fl C
 and

 a+2n
 1 k (

 an s ,B) J f(x).cos nx dx , n = 0,1,2,...
 a

 a +2 tí
 lk f

 bn * ïï'R J fix) .sin nx dx , n » 1,2
 a
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 Moreover, if an = o(na) = fc>n » o < a < 1 , then the result
 is also true for k - 2.

 Proof : Let k = 4. Let

 00 A (x)
 <ļ)(x) = E -V- *

 n=l n

 Since (7) has finite upror and lower (R, 4) surr-s, RD (J) and

 RD^ (J) are finite everywhere. So, by [ 8, Theorem l] RD ' $ and
 exist almost everywhere. Therefore (7) is sumrr.able IR, 4)

 00

 almost everywhere and Z
 n=l n

 everywhere. So

 14 4

 f(x) = - aQ + RU (p(x) , wnere HD (J) ( x ; exists.

 Let CQ be the set of points where exists, that is, whore
 ~ B (x)
 E - - - is sumrr.ahl e (R, 3) . Then C is periodic of period
 n=l n 0

 2-rt and of full measure.

 DC

 Mow consider the forrai product T. 'J (x) of the series (7)
 n=o 11

 and g( x) = ' cos px + jj. sin px, wh^re p is a fixed positive integer,
 X, n are constants, as defined in (8; and (9Ï. Sine* a = o(rO=b

 n n

 and (7) has finite uooer and lower (R, 4) sums everywhere , by

 Corollary 5.1 JT_Un(x) has finite upper and lower (a, 4) sums

 everywhere un = = v„ . Slnce F a (x) is almost every-
 where summable (Ft, 4) to f( *) , by Corol Ury Y 1 F U (vł ' 1. n '

 M--0
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 almost everywhere summa ble IR, 4) to f(x).'g(x). As above there

 is a periodic set say C of period 2n and of îull measure where
 » V (x) P
 E » - £

 n=l n p=o

 periodic of period 2TI and of ful] measure.

 oo A ( x)
 By Lemma 5.1, the series I - n - is convergent everywhere.

 n=l n^

 Let

 » A ( x) ~ B ( x)
 U ( X ) ~ - E n f H ( X ) = T. - - »T- •

 n=l n n=l r.

 Since an ■= o(n) = bn , by [13, I, p. 332, Theorem 2.6J DlH = G
 and by [13 , I, p. 320, Theorerr 2.8] H is smooth. Hence the

 symmetric derivative D^H is. the ordinary derivative h' and so

 H ' = G everywhere. By the sarüe argument (J)' = H everywhere.

 Hence (1) exists everywhere and equals G. Taking any point a «C

 and writing B = C O [a, a + 271 ] the function <|) is such that

 <t>'' exists in [a, a + 271 ]f g) exists on 3 and RD^<1), RD^(t)
 are finite in (a, a + 27Í ). Therefore by Theorem 4.2, RD4(ļ) is
 R -integrable in [a, a + 27T ] with basis B and

 a+2rt

 (R4,B) ļ RD4(()(x)dx = + 271 ) - $(3)(«) = 0
 a

 and hence by Theorem 4.1 (ii) - (iii)

 a+2ít

 CR4» B) ļ [f(x) - ¿ a0 ]dx = 0
 a
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 i.e.

 or+2lt

 aó 88 w (r4' B) ļ f(X)dx *
 a

 To determine an and bn , n } 1, we employ formal multiplica-
 oo

 tion and consider the series E U lx). Proceeding as above with
 n=o

 oo Ą
 the series E U (x) we see that f(x).g(x) is R -integrable in

 n=o n

 [a, a + 2TT ] with the same basis B and
 0C+2TI

 uQ = X ap + u bp = ~ (R4, 3) ļ f(x).q(x)dx .
 or

 Putting p = n, A. = 1 » n = O

 a+2Tt
 14 ť

 an = - (R , B) J f(x).cos nx dx
 a

 and putting p = n , '= O , |i = 1

 a+2Tt

 bn = ^ (R4,B) J f(x) .sin nx dx .
 a

 For k = 3, the proof is similar.

 If k = 2, the function

 00 A ( x )
 Vf(x) = Z -^ry-

 n=l n*~

 is continuous everywhere and nroceeding as above the proof c=in
 be completed
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