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On Riemann summable trigonometric series

l. Introduction : It is known that if a trigonometric series is

summable (R, k), k = 2,3,4, then its (R, k)=-sum is Pk-integrable
and the series is a Pk-Fourier series (For k = 2 see [5] and for

k = 3 or 4 see |3]). In the present paper we have introduced three
integrals : the Rk-integrals, k = 2,3,4, which are more appropriate
for (R,k)-summable trigonometric series than the Pk-integrals. Then
we have shown that if a trigonometricseries is summable (R,k) its
(Ryk) sum is Rk-integrable. The advantages of these integrals are
that they have the power of the first order integral, as in [4,7],
and consequently the Euler-Fourier formulae for the coefficients

of the trigonometric series can be written in its usual form. We
have given the proof by obtaining first a result on formal multi-
plication for Riemann summable trigonometric series analogous to
that for Cesaro summable trigonometric series considered in

[6; 13, p.370] which has some importance in itself.

2. Definitions and notation : Let f be a real valued function

defined on the closed interval [a,b]. Let x,€(a,b) and f(x,) = @ -

If there exist real numbers Ayy oy eoey X depending on Xq but

not on h such that

m T m
f(xo + h) = i T %r + o(h")
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as h-—o, then a is called the Peano derivative of order m

of f at 'xo and is denoted by f(m)(xo). Taking one sided limit

one gets the definition of Peanoderivative at the end points of

the interval.

For a given integer s ) o and a number h > o let

S

x, + 5 he (a,b). Then the s th central difference As(f;xo,h)

of f corresponding to X and h is defined by

As(f; XO’ h) = .

S
J:

075 kg + (5 - Dn).

The upper Riemann derivate of f at X of order s is
defined as
D (f Xo 0 h)

—s _ . S
RD f(xo) = lim sup s

h— o h

Replacing 'lim sup' by 'lim inf' one gets the definition of

the lower Riemann derivate ggsf(xo). If ﬁﬁsf(xo) = ﬂgsf(xo),
the common value is called the Riemann derivative of f at X

of order s and is denoted by RDSf(xo).

We shall write

1
Ao(x) = 3 9
An(x) = a, cosnx + b, sinnx, n ) 1
Bn(x) = b, cosnx - a_ sinnx, n » 1 .
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The upper and lower (R, K) sums of the series

A, (x)

(T) é a, + I (a, cosnx + b sinnx) =
= 0

1 n n

|| et

at X, are defined to be the upper and lower limits of

. k
A_(x) . Sin nh )

% a_ + T
=1 nh

n

as h— o. If they are equal and finite then the series (T)
is said to be summable (R, k) at Xq to the common value.
Let the series (T) be integrated term - by - term k times
and let the integrated series converge everywhere to a

continuous funhction ¢ . Then

. k
. sin nh )

AL (05 x_,2h) e
X 2 = 3 * i An(x) nh

= 2
(ZHf 2o n=1

Thus ﬁﬁkqxxo) and 52k¢(xo) are the upper and lower (R, k)

sums of the series (T) at X

If f has the Darboux property in an interval I, then
we shall write fe J in I. If E 1is Lebesgue measurable

then |E| will denote the measure of E .
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A function f is said to have the property R (respecti-
vely R) in an interval [a,b] if for every perfect set PC [a,b]
there is a portion of P in which f restricted to P is upper
(respectively lower) semi-continuous and we write f€ R (rosnec-
tively f€R) ir [a,b].

Following Zygmund {e.g. see 13, I, p.53, p.364, p.366] we

(-3

shall say that two series T un(x) and vn(x) are uniformly

n=o0 n=o
oo
equi-summable (R, k) if the difference I [un(x) - vn(x)] is
n=o
uniformly summable (R, k) to zero and the series £ un(x) and
oo Nn=0

z vn(x) are uniformly equi-summable (R, k) in tihne wider sense
n=o0

©0
if ¢ [un(x) - vn(x)] is uniformly summable (R, k) (not

n=o0

necessarily to zero).

3. Convexity theorems

Lemma 3.1. Supoose that
i) f is upper semi-continuous in [a,b]

=2 , )
ii) RD"f » O in (a,b) except on an enumerable set ZcC{a,b)
oy Lo (£3%,0)
iii) lim sup ——e—— »> O for xeE.

h—o~+ h

Then f is convex in [a,b].
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This is proved in [13, I, p.328, Lemma 3.20). (In fact
the result there is for continuousf but the same oroof will

suffice for upper semi-continuous f).

Lemma 3.2. Suprose that

i) feR NI in [a,b]

ii) ﬁﬁzf > O 1in (a,b) except on an enumerable set Ec(a,b)

Aﬁz(f;xoh)
1ii) 1lim sup > O for xeE,

h—> o0+ h

Then f is continuows and convex in [a,b].

Proof. Let G be the set of all points x in [a,b] such that

there is a neighbourhood of x relative to [a,b] in which t is
upper semi-continuous. Clearly G is open in (a,b]. Set

P = [a,b]‘~«G. Then P is closed. Clearly P cannot have isolated
points. For, let X, € P be an isolated point of P. So, if

X, € (a,b), there is o > o such that (xO - o, xo)LJ (xo, X +0) €G.
Since in these intervals f is upper semi-continuous, by Lemma 3.1,

f is convex there. Thererore, lim f(x) and lim f(x) exist and

X—-)Xo— X—>X0+
since fe & in [a,b), lim f(x) = f(xo) = lim f(x). So,
X=>Xy= x—>x°+

X, € G, which is a contraciction. Similarly a and b cannot be

isolated points of P. Thus P is perfect.

Now we show that P is void. Suppose the contrary. Since

fe R in [a,b], there ic a portion of P, say JNP £ ¢, in which
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f restricted to P is upper semi-continuous. Now the set J — P,
the complement of P in J, is open (relative to J) and

J~P% ¢ . For otherwise JC P and by the property R there
is an open interval JlC J such that f is upper semi-continuous
on J; which implies J, C G and so J; = J, N P # ¢.Thisis contra-
diction. If I is any ccmponent interval of J ~ P then f is upper
semi-continuous in I. By Lemma 3.1 and Darboux property of f

it is convex in the closure I of I and hence f is continuous
in I . From this we conclude that f is upper semi-continuous in
the whole of J. For, let £€ PN J and { £n] be any sequence
converging to €'. If & is an isolated point of P from one side
and {'Sh } tends to E from that side, then since f is continu-

ous in the ciosure of each component interval of J~ P,

lim f(gn) = f(& ). If for each n there is a component interval
n-»
(sn, tn)C G such that s, < €n < t and sn—>€' , tn—>€ ,

then since f is convex in [sn , tn],f( En) £ max {f(sn),f(tn)}

and since f is upper semi-continuous on JNP relative to P,

lim sup f( Qn) & f(€). Thus f is upper semi-continuous in J.
N—»co

So JN P is void, which is a contradiction. Thus P is void.
Therefore f is upper semi-continuous in [a,b] and by Lemma 3.1

f is convex in [a,b]. 8y the Darboux property of f, it is also

continuous in [a,b].

Theorem 3.1. If f(2) exists in [a,b] and §Q4f > O everywhere

in (a, b) then f(2) is continuous and convex in [a,b].
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Proof. We first suprose that 5Q4f > O in (a,b). Let [c,d)C (a,b)
and
o D x, 27D
(1) Fn(X) = 5 ) xe€ [c,d].
(27M

For x € [c,d]
Au(f; x, 2h)

0 < RD*(x) = 1lim inf x
h—0 16h
1 Do(f5x,4n)  As(f5x,2h)
= lim inf =5 - - -
h—0 h (4h) (2h)
-n=2
Putting h = 2 we get
A L Do(x,2T) Ay(gsx,27 (0t
O < RD f(x) € lim inf - . ]
- -Z2n-4 -n, < l
N> 2 (277) (2'(n+l) )

i.e., 0 < lim inf ==z [F (x) = F_ ()] -
N —poo 2

So there is a positive number N(x) such that
(2) F (x) > F oe1(x)  for n 3 N(x)

and hence the sequence {Fn(x)} is quasi-nonincreasing in [c,d)
(for definition see [10]). Since f(o) exist, f is continuous in

[a,b] and hence F, is continvous in [c,d] for each n. From (1)

\3) lim F_(x) = f(z)(x) for all xe [c,d].
N—> oo

Therefore, by a Lemma of Saks [10, $3] f(2) € R in [c,d].
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From (2) and (3) we have

(4) F (x) > foy(x) for n 3 N(x).

Now integrating AQ(f(o); x,t) twice, the first being . in the
»*
CP-sense [1] and the second in the D - sense, we have
o=N p -n
- . - -h) =2 , dh
o © o

f(x+2‘”)+f(x-2‘”)-2f(x)-22”f(2)(x).
So, by (1) and (4)
27" h
J 5 A2(f(2); x,t)dt dh > O for n » N(x).
(e} o
D

Hence 2f(2)(x) » 0 for xe [e,d]. Since f(2)e;ZS in [ec,d] [ 91,

by Lemma 3.2 f(5) is continuous and convex in [e,d]. Since
[c,d]c (a,b) is arbitrary and f(z)e & ir [a,b], f(2) is continucus
and convex in [a,b]. Thus the theorem is proved for the snecial

case when 524f > 0 in (a,b).

To complete the proof consider

4
x_

gln, x) = f(x) + g

Sl

where n is a positive integer. Then g(q)(n,x) exists in [a,b] and

4 4 . .
X3 'g = RDf + % > O in (a,b). Hence, by the special case,

9(2)(n,x) is continuous and convex in [a,h] and since

f(2)(x) is the uniform lirit of g(2)(n,x) as n— o , f

(2) (")
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is also continuous and convex in [a, b].

Lemma 3.3. For every set E C (a,b) of measure zero and every
€ >0 there is a function J such that Jm exists, is non-

decreasing, non-necative and continuous in [a,b] and

1

RD%J(x) = = for xeE, J" (a) =0 and J" (b) ¢ ¢

-~

Proof : Let € > O and E be arbitrarily fixed. For each n let

r~ ~ ' e
Sn be an open setl such that EC G, » bn+l C Gn and |Gn| < ;ﬁ .
Also let
x & 1
Y(x) = 5 S SIGnﬂ[a,t]Idt dn d¢
n a a a
Set
J(x) = © ¥ (x)
n=1

Since the function lGn(W [a,t]] is continuous, non-decreasing and

: 17 . . -
non-negative, \P exists and rossesses these pronerties. The
n )
s . 1" .
condition IGnl < 5% implies that T Lv; converges uni-
2 n=1

" . .
formly and hence J exists and possesses thoce oronmerties and

D

I (b) <€ . Finally, if Xx,€ E and N is any positive integer,

then for sufficiently small h > o, [x°-2h, xo+2rd C G, . Since

=z

16,0 [a,t]] is differentiable on G, with 3¢ |G N [a,t]} = 1,
\v
we have P (x) =1 for x€G_ . Hence, for 1 < r < N and

o< a<f 2h we havae
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X ¥ £ 7
Y (xo+a) = S f g IGrf\ [a,t}|dt dn dg
r a a a

2 3
Ao(xo) + Al(xo)a + A2(x°)a + A3(xo)a + Tl

where Ai(xo)’ i =0,1,2,3 does not devend on a . This is alsc

true for - 2h & a € O . Hence

DLW 5 xg , h)

9 = 1, r=1,2,...,
4
h
Since LP"' is non-decreasing,  is 4-convex [2] and trerefore
n n
D ,(I5%,h) = AL\ ixg,h) N Dy 3%g.h0)
Z = 1 : R Z = N.
h n=1 h n=1 h

Hence, RD4J(x°)

|
8

Theorem 3.2. Suppose that

i) f(2) exists everywhere in [a,b]

ii) .ﬂg4f > O almost everywhere in (a,b)

iii) 5Q4f > = = everywhere in (a,bj.

Then f 5y is continuous and convex in [a,b].

v ; 4 N
Broof : Let E  ={x: xef{a,b), RD"f(x) < 0Y, Then IEjl =0 .
Let {en} be a positive null sequence and let J(n,x) be the func-

tiorn of Lemma 3.3 corresnonding to Eo and €, - Then the function
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f(x) + J(n,x) satisfies the hyootheses of Theorem 3.1. Hence

f(2)(x) + J(2)(n,x) is continuvous and convex in [a,b). Since

3(2)(n,x) < (b-a). E, » Wwe have

foy(x) = 1im [£5)(x) + J5)(n,x)] |

n —» o

Therefore f,) is convex in [a,b]. The continuity of fi2)

follows from the Darhoux proverty of f(z) .

Using Riemann derivate of order 3 we have

Theorem 3.3. Suppose that

i) f()) existseverywherc in la,b]

ii) 523f > 0 almost everywhere in (a,b)
iii) ngf > - o overvwhere in (a,b).

Then f(l) is continuous and convex in [a,b].

This sharpens a result of [10],since f(l) is the orainary first
derivative of f.

4. The d‘-integrals, k = 2,3,4.

Let f be defined and finite almost everywhere in [a,b] and
let B C,[a,b] be a measurahle set cf measure bh-a with a,bh eR.
A continuous function Q is caid to he a RX

R -major function,
k = 2,3,4, of f in [a,b] if

i) Q(k-?) z2¥ists everywhere in [a.b]

ii) Gik-1) exists on B
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iv) RD'C » f almost everywhore in (a,b)

v) RD'Q > - = everywhere in (a,b).

A function q is a minor function of f if -q is a major function

of =f . If kx = 4 or 3 then it is clear from Theorems 3.0 or 3.3
51 - . i inuous & convex for every aair

that Q(k-2) q(k—&) is continuous and conv r nTy,

of major and minor functionsQ and q . If ¥ = 2 (the c.nditian

(i) is redundant here) then clearly Q-q 1is contiruous and convex

(cf. [4, Theorem 1.1]). Hence for k = 2,3,4, the function Q-q

Ve Lo . - 5.
is k-convex and since Q(k~l) A(g-1) exists on 8,
Q(g-1) = I(k-1) is increasing onB[2.S0, by (iii) we have

Q(k-l)(b) bY q(k-l)(b) . This being true for every pair Q and o

(8)  inf Q. 4y(6) % sup qi_;y(b).

{a} {a)

If equality holds in (&) with eaval value heing finite then f is

said to be Rk-integrable in [a,b] with basis B and we write

b
F(b) = (Rk, B) f f(t)dt .
a

The tollowing is clear:

Theorem 4.1. i) If f is Rk-integrable in [a2,b] with basic 3

: k. . . <
and x € 8 then f is R -intearable in [a,x} with basis anla,x]

and

. 4 X
F(x) = (RY, B0 [a,x]) I f(t)dt .
N
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(ii) The class of all Rk-integrable functions in [a,bh] with

basis B is a linear srace containing constant functions.

(iii) If f is RN-intearahle in [a,b] with hasis 8 and f and g
are almost everywhere eaual then g is ealso Rk-integrable and

b b
(Rk.s) f f(t)dt = (Rk,B) g g(t)dt .
a a

Theorem 4.2, Let G be continuous in [a,b)] and leot

i) G(k-2) exist everywhere in [a,b]

ii) = =< gng < RBXG ¢ = everywhere in (a,b).

Then RDkG existsalmost everywhere in (a,b) and there is a
Bc(a,b) such that G(k-l) exists on B wnere |B| = b-a and

for al,ble B with a, < bl , RDkG is Rk-intearable with hasis
BN [a;,b;] and

(6) (Rk,Br1[al.bl}) RO*G(t)dt = Gyx-1)(by) = Grp_pylay) -

(=

Proof : Since

k — L
-« < RD“G ¢ RB*G ¢ = everywhere in (a,h)

, k )
by [ 8, Theorem 1] RD'G and G(k-l) exist almost everywhere in

(a,b). Let G(k-l) exist on Bc(a,b) where |B| = b-a and let
al,ble B. Then

k-1
G("’-l)(al). —x—”—-

(k=1)

G(x) -
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is both a mzjor and 3 minor functicn of RDX in [a],b,]. serce
RD"G is. Rk-integrahle in [al,bl) with hasis Br\[al.bl] and

the relation (6) holds.

5. Formsl multiplicotion of Rierarn sumralle trignremecnvyic

series and apnlications

The formal product of the serics

(7)

N =

(8]
a_ + T (a_ cos nx + b, sin nx)

: A (x)
o n=1 N n n

o

!
il ™18

and g(x) = Acos nx + p €in px whare A and p are constants
and p is a fixed positive integer, ic tha sericc ohtained hy
multiplying each term of (7) bv g(x), repmlacing the triscneretric
products by sums of sines and cosines and then rearrancing the

terms in the form

oo

1 gl
(e) = u_ + L (u_cosnx +v_sinnx) = £ U {x)
2 "o nel N n neo N
say, where
UO = Kap * p'b_[’»
(9) u_ = i-[ A(a + a ) - u(k - b \
n 2 n-p n+p “n-p “n+n’ ? nyl
v =2 [ x(b ) ]
n -2 n-p"'bn-o-p _""*(anp'an_,,P)J ’ n >l
with the convention that 2 s T 3d . b = - b, .
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Let the series conjugate to the series (8) be denoted by

(10) T (-vn cos nx + u  sin nx) = - T Vn(x) .
n=1 n=1

The series conjugate tc the series (7) is

(11) nil(-bn cos nx + a  sin nx) = - n;an(X)

The formal product of (l1) anc g(x) can be obtained as

above replacing a_ by G, a

o n

and noting that bo is also zero. Let the formal product of (11)

by -b, and b, by anfor n 1l in (7)

and g(x) be
o 20
1 ¢ + T (c_cos nx +d_sinnx) = L Z {x)
2 0 n=1 " n n=o "
where
= - +
s Abp pap
l ) -
¢, =5l-Alb o+ b)) -kl -2, )], nii
l )
d, = 5[ A(an_p + an+p) - l--(bn_rJ - bn+p)] y n 31l
Here, of course, b_S = bs y 3, = o, a_, = - as .
Therefore
Ch T = VvV for n > p
and
dn = u, for n>p



Thus we get

Theorem S.1. The series conjugate to the formal nroduct 27 a3

trigonometric series and a(x) = Accs ox + p sin px, p being a

fixed positive integer and A, p being constants, is the formal

precduct of the seri=as coninczte to the aiven triaonoretric series

and g(x) plus a trigonomatric polynemial of order at =ost r
The following result is analogous to that in [ 6; 13, I,

p. 370].

Theorem 5.2. Supposec a, = o(na) = b, » © < a . Then for
2ach positive integer m > a + 1
ot Un(x) and i An(x).g(x)

n=0 n

are uniformlv eaui-summable (R, m); and
© 20
L Vn(x) and T Bn(x).g(x)

n=l ::l

are uniformly equi-summable (R,m) in the wider sense.

Proof : Ne suppose that m is even and m = 2k. The proof for

odd m is similar. We have

(12) (an cos nx + b_ sin nx)( XNcos px + p sin px)

1
5[( Aa - pbn) cos(n+p)x + ( Aan + pbn)cos(n-p)x

+ Abptea )sin(r+p)x + { lbn-uan)sin(n-p)x]
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and hence from (7) and (12)

(13) A (x).qg(x) = La (Acos px + p sin ox)
neo N 2 ‘o
+ 1y [( Aa -pb )cosin+n)x + ( Na_+pb_)cosin-n}x
2 n~H°n " InTHE =

n=1

+ (A.bn+pan)sin(n+p)x + (7\bn-uan)sin(n-p)x}

Inteaqrating (13) term=by-term 2% times and noting that the series
obtaired after integration ccnverges ahsolutely, the right hand

side of (13) vecomes

cos(n-p)x

k 1 cos px sin px ~
(14)  (-1)7. zlag(A=5g= + p Z5R2 ) + 0 T (Aa b)),
P p n=1 (n+p)
+ ;(Aawb)-‘ﬁs—(kg—i-’f m(kbwa).ﬂiﬂiﬂi";,)ﬂ
n=1 (n-p) =1 n n (n+n)2*
nN&p
+ ;(Kb -pa \,s_im.—_ﬁ_.o)x ] +-(7\a +b ). x2l{
n=1 n n (n=pn) k "p (2k)l
n#p
2k
1 X
= 5 (XNa_ + pb ).
PP (2k)
+ (-1)k. _’_[ ; (Na -pb.). COM‘)EI + g ( xa +ib ). cos{n=
# n=o " ()T ns (n- o)é‘
n#p
+ T (Ab ntha) . S’”(_.g.k_“'“ ) x ; (Ab - s1n(n-8,x
n=o (n+p) n=1 “on) - (n-p) I
n#p
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Now

oo cos(n+p)» ol ( ) cos nx
L (Aa-kb ) ———m— = I (Xa __ = kb __)e—mr— ,
n=o NN (n+p) n=p n-p n=P" n
e cos(n-p)x
£ ((na +ub ) . ———m—
n=1 M (n-p)
n#p
p-1 ) cos(n=-p)x oo ( ) cos({n-p)x
= ¢ (A2 _+ub — T xa_+pub_). —%
n=1 (n-p) k n=p+1 n (n-p)
-1 COS nx o ( COS nx
= - ¥ AT
B n£=l(7\ao"n ™Pp-n K ’ n=1 enwp T Honep n<’
w sin(n+p) x oo ( ) sin nx
> (Ab + pa_). - = r (Ab - + Ha _ )
n=o " n (n+p) 2K n=p P n-p n
and
=) sin(n-p)x
T (Ab_ - pa_).
n=1 " n (n-p) >
n#p
p-1 ) sin(n-p) x oo ( ) sin(n-p)x
= L (Ab, - ha). ———— + I (Ab - pa ). ——m—
n=1 " n (n-p) <K n=p+l " n (n-p)
p-1 sin nx S . sin nx
= nil(_}\bp_n - pap_n) . ?1(_— + nil(?\bn"'p - l-"an+p) . —?r-
Since,a__=a_ , b_ ==bg ., (14) reduces to
2k
1 X
(Aa_ + pub ). =——0
2 P Po (2k)
1" 7L d ces nx
+ (- = + - -
nel 2 { %n-p an+p) u(bn-p bn+p).} '—;QF__
1 .
+ sin nx
’2{7\(}3” o) tule - 'an+p)} ST
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and this is by (9)

1 X hag . 2k
= F u_. + (=1) £ (u. cos nx + v_ sin nx)/n“"
N PIS) n=l " n
So, integrating
(15) L [Up(x) = Ap(x) g(x)]

n=o0

term-by-term 2k-times we get zero for all x. Therefore (15) is

uniformly summable (R, 2k) to zero. Hence, the first part of the

theorem is proved.
For the second part, proceeding as ahove with the series

(- -]
T Bn(x) and noting Theorem 5.1 we can conclude that integrating

n=1

(=<

n)il[Vn(X) - B (x).g(x)])

term-by-term 2k-times we get a trigonometric polynomial of order

at most p and hence the result follows.

Corollary S.1. Uncer the hypotheses of Theorem 2.2 if *he unrer

! (- V]
Pal ) ¥
and lower (R,m) sums of nioAn(x) at x are f(x_) and l(xo)
respectively then the unper and lower (R,m) sums of ; U (x) are
n r
n=o

f(xg).q9(x, ) and £(x,) «9(x,) resrectively when g(x,) > 0 and

are f£(x.).q(x,)

3

and f(xo).g(xo) resrectively when g(xo) <0
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Proof : It is sufficient to note that the unper and lower (R,m)

sums of nioAn(x).g(x) at x_ are f(xo).g(xo) and i(xo).g(xo)

respectively when a(x ) > O and are i(xo).g(xo) and f(xo).q(xo)
respectively vihen g(xo) < 0 and that if the unper and lower

[- -]
(R,m) sums of £ En(x) at x, are e(xo) and g(xo) respectively
n=:0

[- -]
and if I Dn{x) is sumrmable (R,m) to O at x
n=o0 : ‘

oo ) -
lower (R,m) sums of I [En(x) + D (x)] at x_ are @(x,) and
n=o

o then the upper and

e(x,) respectively.

Lemma 5.1. If a_ = o(n) = b, and if the upper and lower (R,3)

©o
or (R,4) sums of (7) are finite at X, then the series £
n=

. 2
lnn(X)/n
converges.

This is due to Verhlunsky fI1 , Lemma 7; also 12].

Theorem 5.3. Let a = o(n) = b, and let the scries (7) hsve

finite upner and lower (R,k) sums everywhere (k = 3 or 4). Then

(7) is almost everywhere summable (R,k) to a function say f(x)
and there is a periodic set C of period 2n and of full measure
such that for a« €C, the funttionsf(x), f(x).cos nx and f(x).sin nx

are Rk—integrable in [a, a + 21 ] with basis B = [a, a + 2n] N C

and
a+2n

a, = %(Rk,a) I f(x).cos nx d» , n = 0,1,2,...
a

a+21%

On =

A=

(Rk,B) j f(x).sin nx dx , n

112, o e o
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. a . .
Moreover, if a_ = o(n") = by » O < oo <1, then tne resu't

is also true for k = 2

Proof : Let k = 4., Let

O(x) = ‘o:o—nq—-
=1 n

— 4
Since (7) has finite uprer and lower (R, 4) sums, RD ¢ and

-

4
324 ¢ are finite everywhere. So, by [ 8, Theorem 1] RD ¢ and

®(3) exist almost everywhere. Therefore (7) is summahle (R, 4)
oo En(X)

2 -
=1 n

almost everywhsre and

is summabhle (R, 3) alrost
n
everywhere. o

=

f(x) = ag * RD4¢(X) , Wnere HD4¢(x) exists,

& N

Let C0 be the se

= B (x)

T is sumrable (R, 3). Then C
n=1 n o

of noints where O(Q) exists,that is,wh~re

is periodic cf reriod
21 and of full measure.

o

T Un(x) of the series (7)
n=0

and g(x) = AN cos px + p sin px, where p is a fixed positive integer,

A, & are constants, as defined in (8) and (9). Since a
n
and (7) has

Mow consider the formal sroduct

) n
i 1 ni te uoner al I‘.l- 1'."""‘? - ( 'l ’ |) JU«'-IO eV‘. Y yWhC‘- e 9 I‘V

(=)
Corollary 5.1 z‘Un(x) has f

I inite upper and lower (R, 4) sums
evervwhere and = ) = 3 .
ywhe rd u, =o(n) = v, « Since [ An(x) 1is almost every-
‘ n=o0
wnere summahle (R, 4) to f(x)’hy Corollarv 5.1 - U {x) i
‘ Y . o \ N :

A nt o
n=o0
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almost everywhere summable (R, 4) tc f(x).g(x). As above there

is a periodic set say Cp of period 2n and of tull measure where
V_(x)

f D is summable (R, 3). Let C =

n=1 n

8

C . Then C is
op

periodic of period 2N and of full measure.

i

o A (X)
By Lemma 5.1, the series I —— 1is convergent everywhere.
n=1
Let
w A (x) o 2 {x)
G(X) = - I — H(x) = ¢ -1 .
n=1 n n=l n
Since a_ = o(n) = b, , by [13, I, p.332, Theorem 2.¢] D = G

and by [13, I, p.320, Theorer 2.8] H is smrcth. Hence the

symmetric devivative DM ic the ordinary aerivative H' anc so
H/ = G evervwhere. 3y the :ame argument ¢' = H everywhere,
Hence ¢" exists everywhnere and equals G. Taking any point a €C
and writing B = C N [a, a + 2T ] the function ¢ is such that
¢" exists in [a, a + 2T ], ¢(3) exists on 3 and 354¢, 324¢
are finite in (a, a + 27 ). Therefore by Theorem 4.2, RD4¢ is
R4-integrablc in [a, a + 27T ] with bacis 8 and

a+21

(R*8) [ ROM(aax = o5 (a+2m) =950 = o
a

and hence by Theorem 4.1 (ii) - (iii)

a+21C
(r%, B) S [£(x) - % a
a

o]dx = 0
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i.e.

a+2TC
1 4
ag = 3 (R, B) j f(x)dx .
a

To determine an and bn' n ) 1l, ~e employ formal multinlica-
tion and consider the series [ Un(x). Prcceeding as above with
n=o0

the series ; Un(x) we see that f(x).g(x) ic R4-inteqrable in
n=o0

[a, @ + 27T) with the same bhasis B and

a+2TC
1 4
ue = Ay +upy = = (%9 [ f(0.at0ex .
a
Putting p = n, A=1], p =0
a+27
a_ = i (R4 B) f(x).cos nx dx
n T ' : ‘
a
and putting p = n, A=0, p =1
a+2T
b= + (R*,B) [ £(x).sin nx dx
n — n ’ . [
o

For k = 3, the proof is similar.

If k =2, the function
, = A_(x)
\'P(x) = r -—2——

n=1 n

is continuous everywhere and rroceeding as above the procf can
be completed
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