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 On non-dif f erentiable measure-preserving functions

 1 . Introduction

 Let M be a collection of all continuous probability

 measures on the interval [0,13 with support equal to the

 interval [0,13. For p e M let CC pD consist of all continuous

 p-preservi ng functions from CO, 13 onto CO, 13 , i.e. CCpD =

 ^ f : C0,l"3 -> [0,13,f is conti nuous , VA £ [0,13: ¿¿CAD=/jCf 1CADD y
 In what f ol 1 ows , CC /j) will be endowed by the uniform metric p.

 The purpose of this note is to prove the existence of

 non-di f ferenti abi e functions in the complete metric space

 CCpD. Our main result is Theorem 4 , which states a general

 result analogous to one of V. Jarník [13. A construction of

 Besicovitch function preserving the Lebesgue measure ' is

 also presented.

 2. Residual sets in CC ^

 In this section we study residual sets in CC/uD.We start

 with some auxiliary results.

 Proposition A. CCpD,. endowed by the uniform metric p , is a

 complete metric space.

 Proposition B.

 feCC/jD iff VC- ,5o:mCC- , 5. D D =/jC f _iCC -
 2m 2n 2m 2n 2m 2n

 The following lemmas will be useful when proving the main

 resul ts .

 Lemma 1 . The set of piecewise linear functions is dense in

 CC >o .
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 Proof. Fix f€CC'} » £>0. We shall construct a piecewise linear
 ķt

 function d eCCXD with local extremes at rational points only,

 and such that pCd Pf}<£.

 First of all, we shall construct a piecewise linear function d

 C maybe dc£!C'30 with local extremes at rational points only,

 with properties :

 CID pCf.cD<!
 C2D for the homeomorphi sm hCxD='Cd 1CCO,xDDD defined on [0,1]

 it holds pCh,idD<^
 Let n be a positive integer such that - <-. For

 2n 2

 k €< 0 , 1  0n ^ m m
 c: cl m

 V k k 1
 )Cb -a D =- . There exists a positive integer N such that
 Z, m m n k
 m cL

 Nk
 le k 1 £

 C 3D ) Cb -a ) >- - -
 A mm _ n _ n+1
 m=l d* d.

 Nk k k
 Define a function d for xe I J Ca ,b 3 as follows :

 m= 1

 if fCakD-fCbkD=0 , then
 m m

 fCxS-fCaS
 dCx)=fCa )+

 m k k m mm
 X -a
 m m

 fCxS-fCbS
 ^ , k ^ m m ^ k^ r k . k_

 dC xD ^ =f C , b D ^ +

 m k , k m mm
 X -b ,
 m m

 k
 where x is the point in which f attains its extreme on the

 m

 interval Cak .bScsince feCCXD and f C ak3 -f CbS =0 . there has to
 mm mm

 exist at least one such x D ;
 m

 if fCak3-fCbkD=- , then
 m m

 fCbS-fCaV
 dCxD=fCa D+

 m , k k m mm
 , b -a
 m m

 n N

 2~ 1 L- ^
 For the set M= I v J ' I Ita ,b ] it holds pCf.dIX-. There exists

 v - '

 k = O m= 1
 /N

 a function d defined on CO, 13 such that d. =d, whereby d is
 I ^

 continuous piecewise linear function with properties C1D,C2D
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 Cto obtain C2D use C3) } è We may suppose that d has local

 extremes at rational points only C use a small perturbation).

 Obviously, using C2D we have pC h od , TD < pC h «d , cD +pC d , fD < ¿:. The

 function hod is piecewise linear with local extremes at

 rational points, and since XCd"1Ch"iC ADD= XChCh-1C A})D='C A)
 we have hodeCCXD. Thus, we put d =h®d and our construction of

 ķļ
 the function d is finished.

 C ]

 Lemma 2. The set of piecewise monotone functions is dense in

 CC .

 i i oo

 Proof. Let ^ i i r j- ± a sequence of piecewise linear
 functions dense in CC'} Csee Lemma ID. It is well-known that

 geCCpD iff g=h 1of oh for some feCCXD and homeomor phi sm h
 defined by relation hC xD =pC C 0, xl D C g,f are topologi cal 1 y

 conjugated}. Hence the sequence -{h 1od.oh is dense in
 CC /lO .

 C 1

 For aeC0,lD, a positive integer n and /?€C O , } define
 2n

 the function k •. C 0 , 1 3 -►[ 0 , 1 3 as follows :
 n , a, p

 r 1 ; x=l . x=2k ** C 1 - oů , ke<0,l,
 2n

 O ; x=^C 1 -oů , k e< O ► 1

 k _C xD = ■ 2n „
 n,a 1 -a ; x=l-a+2n/?, x=

 2n
 continuously, linearly; ot her wiseC with a constant
 slope on the connected component)

 Obviously k ^eCCXO.For a positive y define on the interval
 n .a. ft

 [0,^3 the function k ^ by J k Ä CxD= yk r' * Ckķ p ^ * y J r*,CA,p9y Ä n , ot , /? y

 Remark. In the following lemma, the function h is defined on
 M

 [ a , b] by h C x:> =pC C a , x3 D .

 Lemma 3. Let M , Ca,b3xCc,d3£ CO,132, f : [ a , b3 -♦[ c , d 3 is a

 strictly monotone continuous function such that fCCa,b3D=

 Cc,d3. For ^=h Cb2)-h CaD denote g = g =f oh ^ oh ,
 fJ ļJ n ļJ fj

 g C x+óD -g C xD

 k = X€ta,b3; 3óeCO,jO: -

 ó
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 that A and f *CAD are /^-measurable. Then

 C4D for every n,a,f? : /jCf 1CADD=/jCg ±CA!)D
 n

 C5D for every positive c and positive integer k there are

 n,a,^3 such that

 v>C M , D > iX! [ a , b] D -e
 n » , k

 Proof . Suppose that f is on Ca,b] an increasing function

 Cfor a decreasing function the proof is similar}. Clearly,

 the property C4D follows from the fact that the function

 k preserves the Lebesgue measure on [0,y] . We shall

 prove the property C5D.

 There exists a> etc,d] such that

 C 6} vC[f_:lCwD ,blī<£

 h Cf_1Cw5D
 u

 Put a=l - - y g yn,cx,/? . '
 If K =max^x€[a»b) 1 ; g C xD =d V ' then obviously K <b.It is easy n 1 n ' n

 to verify that

 C7D lim K =f_1CwD . C fosC 0.aC 1 ~°° D 3>
 n 0n n -»00 2

 For the prei mage g *C [ c » o¿3 D we have
 n

 n
 2-1

 C 8} Cg-1C [ c , oo] Dnt a , K ]D2CCa,K ]' I JJ D
 n n n ?

 J = 1
 n

 2-1

 where J are intervals and I JJ = g C C co, dl D ní a , f CoOl. For
 J j=i J

 a fixed n, the properties of u imply
 n

 2-1

 C 9} lim PC I JJ.)=0
 ft-o j = i J

 From C 6D , C 7D , C 9!) we conclude that for sufficiently large n

 and sufficiently small /?,
 n

 2-1

 CI OD yCCa.K ]' I JJ D > K[a,b])-£r
 n j = t J

 Thus, C8D and CI OD imply that to prove C5D it is sufficient

 to show that

 M Cg-1C [c,w])n[a,K ]D
 n , k n n
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 for any k and suitable nCkD. Indeed, for every k^ there
 exists n Ck D such that for xeCg 1 [c,w])n[a,K ]D we can

 11 r* » CX , /? n
 1 1 1

 find yeCx.x+rO for which g Cy}=d. Then k n
 1 1

 g C yO -g C xD
 n n

 CI ID -

 y-x i

 Now, if k satisfies the conditions
 i

 C 1 2D k >k, k C d-coD > k
 i i

 then from CI ID and Cl 2D we obtain

 M ,DCg JL [c,io]Dn[a,K 3D
 n , k n , Ot , f 1 n
 11 1

 The proof of C5D is complete.
 [ 3

 We recall that by a knot poi nt of function f we mean a

 point X where D*f C xD =D~f C xD =+oo and D f CxD =D f CxD =-oo . In
 + -

 addition, CCjjD with the uniform metric p is by Proposition A

 a complete metric space.

 Theor em 4 . CCpD -typical function has a knot point at y-almost

 every point.

 Proof. Denote M+CgD =-{xet 0, 1 ] ; D*gC x} = +<x> G+ = { geCC ;u>CM+CgDD=l '

 CM+, G^, M , G , M , G analogously !> . If we put for positive
 integers p,q

 E =■{ i f eCC /jD ; » vC •{ i X€t 0 , 1 3 ; • VógC O , -3 : f c 5 ~f c <pp>^l. ' p.q i ; » i , ; • , p 5 ' q"

 then G* = (~' I f^CCCpDNE I D. We shall show that G* is residual lp I lq I p, q

 in CC /jD .

 I. Denote M f1 =-{xe[0,13 ;V¿€C0.-3: f C x+<S^~f ó C x3<p I 1 Let Jf ' K ■ 00 be f1 p ó 1 ' k ■ k= 1
 a sequence of functions from E , f -*f uniformly. It is easy

 p » q k

 to verify

 n lJMf SM. M v>C n LJMf 5< KMf) l>o k>l k M l>o k>l k
 ,i.e. f <=E and E is closed,

 p» q p» q

 II. Fix feCCpD and e>0. By Lemma 2 there exists in CC /jD a
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 piecewise monotone function g for which

 CI 3D pCf ,g!><|

 For a positive integer r, consider the partition O=xo<..<x=l
 of CO,l] such that for every j€<l ,2» . . ,r> the following

 conditions are satisfied :

 C14D g is on I =C X ,x.] monotone
 j J-i J

 C15D |gCx. 3)-gCx.}|<-
 J-i J 2

 Since gjj satisfies the conditions of Lemma 3 we can replace
 j

 on I the function g by g =g according to Lemma 3D
 j n<j> ^n<j>,cc,/?

 such that

 g .Cx+óD-g C xD
 C 1 6} uC ł ' xel ; 3<5<eC O . ^ ' J . P 6 ' j rq

 /■S A

 Define on [0,1] a function v g by g._ = g _ Then
 g v g._ 1 1 . g n<j> , Ot<j> , (?< _ j)

 J A

 from the properties C13D,C14D and C15D we conclude pCf,g}<£,
 A

 and by C4D we obtain g €CC/jD. Finally, the property CI 65

 i mpl i es

 gC x+óD -gC x}
 iX!{x<=[0.1] ; BóeC 0 . :

 P 6 q
 A

 i.e. geCCC/jDXE D and E is nowhere dense.
 p.q p>q

 Similarly we can show that the sets G ,G ,G are residual and
 + -

 therefore the set

 G = gV> G+n G~n G_=-{g€CC/jD ; v>CM+n M+n M~n M )=1 ļ
 is residual as well.

 [ ]

 Cor ol 1 ary. CC /jD -typi cal function maps at least one i^-null set

 onto [0,13.

 Proof . It is easy to see that any level set of any

 continuous function contains a point which is not a knot

 point of the function f.
 C ]

 Remark. By means of Theorem 4 it is possible to show that

 there exists an absolutely continuous measure /j such that

 124



 CC/lO contains a function with a level set of positive

 Lebesgue measure.

 Theorem 5. All level sets of CC ¿O -typi cal function, are

 u»-null sets.

 Proof. Denote F^= -jf ; 3y: v»Cf "iCyDD>^. It is known that
 F is a closed set Csee C2], p. 325, 1 . 1 . 2. D . From Lemma 2 it

 n

 follows that F is nowhere dense for every positive integer n
 n

 00

 hence the set F=^_jF =«{ f eCC /jD ; By: v>C f 1CyDD>0ļ- is a set of the
 n= 1

 first category in CC/jD.
 [ ]

 3. Besicovi tch functions in CCXD

 We recall that by a Besi covi tch f uncti on we mean a

 function which has nowhere unilateral derivative C finite or

 infinite!). In 1932 S. Saks [3] proved that the collection of all

 Besi covi tch functions is of the first category in the space Č

 of all continuous functions on [0,13. A similar result holds

 in CC/lD C using Theorem 4 D. We shall show that there exist

 Besi covi tch functions in CCXD. The following construction of

 Besi covi tch function from CCXD is a slight modification of

 that in C 4Í .

 Construction

 Let k>4. Let us construct in a discontinuum
 m

 00 2- 1

 D = C O , ' L , where L = I J I Jr * , 2 - - * m , p
 m= l p = l

 and the open intervals r =Ca , b D are constructed
 m , p m » p m » p

 as follows :

 Ca) d = CO.ļ] 2 , r £ d . 'C r 3 =577 2k , 1,1 2 , 1,1 1,1 . 1,1 2k
 b is the center of d
 1,1 1,1
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 CA?D if d , . ,d n-i are Cfrom left to rights th© intervals
 n , 1 n , 2

 n 2 - i

 of the set CO.-] ' M l_Jr » then r £ d » b is
 2 q,p n , p n » p n,p

 q= 1 p= 1

 the center of d and XCr } =- -
 n,p n,p 2kn

 It is easy to verify that

 XC L:> ~2C k -2D * XC DD =2Ck-2D

 Remark. For k<4 it is impossible to use this method for a

 construction of discontinuum D.

 1
 Define a function <p: C O » - 3 -*C 0 , 1 3 by

 <pc xD =2C XC DnC 0 , xD D

 Obviously <£C0}=0, 0C~i)=l, <p is continuous, nondecreasi ng

 2p- i
 function, constant on every interval r , <bCr D = *( - - -

 m , p m , p 1 1

 Define a function p: C 0 , 1 3 -*C 0 , 1 3 by

 pC xD =<pC xD , X€tO,^3 ,

 pC x} =<£C 1 -xD , xet^,13
 The function p and the interval CO, 13 form the well-known

 step triangle C43.

 The above described procedure will be called a construction

 of a step triangle with base C0,13, height 1 and parameter k.

 The set C x, pC xD D ; xeC O , - 3 ļ- is the left side of triangle,

 analogously the set -ļ C x, pC xD D ; xeC - , 1 3 J- is the right side of

 triangle. Further, put u^=«{C x, y} ; xeC 0, 1 3 ^ and let gCfD be a
 graph of a function f. Now, we can construct a function f

 as f ol 1 ows :

 Ccq) construct a step triangle with the base CO,13, height 1
 and parameter k ; the sides of the step triangle define

 a function f
 o

 Cc D construct step triangles whose bases are intervals of
 n- l

 2 U2 -i the set 1 J - - - -i n gCf 3D, height ~ and parameter k
 n-i 2 0n P= i 2 2 0n
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 C constructed triangles are placed inwards the bigger

 triangle on whose side have their bases) ; the union of

 sides of all so far constructed triangles define a

 function f
 n

 Finally» put f=lim f Cobviously pC f ,f D =- D
 n -»00 n n n-1

 The function f is Besicovitch function. We shall not prove

 this fact; it is possible to use a modification of proof

 presented in [4]. We shall prove

 Theorem 6. feCC'D.

 Proof . By Proposition B it is sufficient to show that for

 any positive integer n and ke<0, 1 , . . 2n-l> we have

 CI 7} XCf-1CC- ,*^01}=-
 2n 2n 2n

 From the construction of the function f it is clear that for

 n,k mentioned above and positive integer s we have

 f"1 cc- .^-DD=f_1CC-
 n+s 2n 2n n 2n 2n

 i.e. it suffices to verify C17D only for a function f .We
 n

 shall prove it by induction. It is easy to see that

 X.Cfö1CCO»lDDD=l . Suppose that for every ke<0, 1 , . . . , 2n-l > the
 equality XCf"4 CC-

 n-i 2n_i 2n l 2n l °

 U2k + 1 m 2k +1
 Observe that  n-i >- ' k k 1 ' cL k= 1 2

 a suitable positive integer. Let ke<l,..,m> be fixed. There
 2k _ 2k +2

 exist xef""1 C - - D and yef"1 _ C - - - D such that
 n-i ^n n-i ^n

 xt = rninCx.yD < u < vt < maxCx.y) = y, k k k k

 2k 2k +2

 0=Cx, ,u, )ncf_1 C - -IMJf-1 C - - - 3) k k n-1 n-i

 2k 2k +2

 0=C v, ,y DnCf"1 C k k n-1 n-i

 For x ,u , vt , yt we shall distinguish four cases : k k k k

 CO <VV5 • • r„-.cv < '„-W
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 CIO C VV2 = UK ' rr,-,CV >

 CiiO Cxk»yk3L = Vk , < fiH(yļ)

 C i vD C X +y O ~ = v. , f Cx O > f CyD ^ k k 2 k , n-l k n-1 ^ k

 Consider for example Ci i i} C the others are similar}. Obviously

 a triangle constructed on the base -{Cw,f C w3> D , wet ut » v. 3 V
 ^ 1 n-i k k 1

 with height ~ tends down. Then
 2n

 2k 2k +1

 f łCC

 n g0 2n k k k k
 2k 2k +1

 n CX^y^3D = V^= ?

 and since C Cx. , y, DnCx, , y, D =0 !)
 k k k k
 11 2 2

 2k 2k +1 m 2k 2k +1

 f_1CC -

 n 2n 2" k=i n 2n 2n k k
 we have

 2k 2k +1 m „
 XCf_iCC n - -, - _n - - D D D = yky.-O A „ dL k k n _n A dL k k

 2 2 k = 1

 We can easily verify that

 2k 2k +2 m

 f"1 CC - - - - DD = - J ' C x , y ^ k D n-l _n 0n v; - ' k , ^ k ČL d. k = 1

 and, by induction hypothesis,

 5 = l i^-v = ^ 2 • k = l 2

 The proof of Theorem 6 is complete.
 C ]
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