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On non-differentiable measure-preserving functions

1.Introduction

Let M be a collection of all continuous probability
measures on the interval [0,1]] with support equal to the
interval [0,1]. For e M let CCu consist of all continuous
py-preserving functions from [0,1] onto [0,1] ,i.e. CCu) =
{f:00,17 + [0,1],f is continuous,VA € [0,1]: pCA)=pCdeA)D}.
In what follows,CCu) will be endowed by the uniform metric p.

The purpose of this note is to*prove the existence of
non-differentiable functions in the complete metric space
CCud. Our main result is Theorem 4 , which states a general
result analogous to one of V.Jarnik [1]. A construction of
Besicovitch function preserving the Lebesgue measure A 1is

also presented.

2.Residual sets in CCd

In this section we study residual sets in CCud.We start

with some auxiliary results.

Proposition A. CCw, endowed by the uniform metric p , is a

complete metric space.

Proposition B.

fecCud iff Vv ¢ .25 pucct (2 55=pcr™ et L2050
2™ 2" 2" 2" 2™ 2"

The following lemmas will be useful when proving the main

results.

Lemma 1.The set of piecewise linear functions is dense in
CCAD.
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Proof.Fix feCCAd) , &£>0. We shall construct a piecewise linear
function d*eCCkD with local extremes at rational points only,
and such that pCd“.f)(s.

First of all,we shall construct a piecewise linear function d

C maybe deClAd) with local extremes at rational points only,

with properties
£
15 p(f.d)(;

(2> for the homeomorphism th)=chf1C(O.x))) defined on [0,1]
it holds p(h.1d><§

Let n be a positive integer such that ln<§. For
2
- +
ke<0,1,...,2"-1> it holds f’(En.E—%) = l_JCa;.b:) and
2 2 m
EFbk-ak)=l . There existse a positive integer N such that
m m n k
m 2
& k _k 1 £
&<>) ZCb —a’> > - £
mE m m ah an
“ Nk k k
Define a function d for xel|_Jla b 1 as follows
- m
m=1

if £Ca¥>-rcb*>=0 , then
m m

. . £ -rca’ g .
dCxd=fCa D+ o " (x-a ) , xe [a ,x )
m k k m m m
X —a
m m
. ) £Cx5>-rCb*> . .
dCx)=fCb D+ m M (x-b"> , xe [x ,b" ]
m k k m m m
xm—bm

where x; is the point in which f attains its extreme on the
interval Ca®,b¥>Csince feCCA\) and fCak>-rCbX>=0, there has to

exist at least one such xi J;

if fca’>-rep*>= , then
m m n
2
~ By -rcay § .
dCxd=fCa D+ s T (x-a ) , xe [a ,b )
m k k m m m
b -a
m m
271 Nk k k N E
For the set M=|_J |_Jta ,b 1 it holds p(f,dd<>. There exists
k=0 m=1

a function d defined on [(0,1] such that d|“=d. whereby d is

continuous piecewise linear function with properties (153,C2)
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Cto obtain (2) wuse (3 ). We may suppose that d has local
extremes at rational points only C use a small perturbationd.
Obviously, using (2) we have poChed,fJ)<{pChed,dd+o(d,fd<e. The
function hed is piecewise linear with local extremes at
rational points, and since ACd 'Ch™'CAdd= AChCh™'CAYID=ACAd

we have he.deCCAd. Thus, we put d*=hod and our construction of

the function d is finished.
()

Lemma 2. The set of piecewise monotone functions is dense in
CCd.
Proof. Let {dih?t be a sequence of piecewise linear
functions dense in CCAD) (see Lemma 1). It is well-known that
geCCud) iff g=Hdofoh for some feCCAd> and homeomorphism h
defined by relation RCx)=uC [0, x1D C g,f are topologically
conjugated). Hence the sequence {Hdodfh }j?‘ is dense in
CCud.

[

For «e(0,1), a positive integer n and ﬁeCO.—gSlE—gzb define
' 2
the function k :00,11+4(0,1] as follows
n,a, 3
c1 o x=1, %= 0100, ke0,1,.... 2"
an
o . x=§§c1-a>.ke<o.1.....a“">
k Cx) =¢ 2
neosf3 1-a ; x=1-a+2"f3, x=§5%l(1—a):ﬁ, ke<O,1,..,2" 11>
2
[ continuously,linearly;otherwiseCwith a constant

slope on the connected component)

Obviously kn o ﬁeCCX).For a positive y define on the interval

X
{O0,y») the function kn.a.ﬁ.y by kn.a.ﬂ,yCXD- Ykn.a.ﬁcy)'

Remark. In the following lemma, the function hy is defined on
fa,bl by hy(x)=u([a,x]).

Lemma 3. Let u,ve M, [a,blxlc,d)S [0,112. f:fa,bl-+lc,d) is a

strictly monotone continuous function such that fCla,bld=

lc.d). For y=h Cbd-h Cad denocte g = =foh 'ok oh ,
LY H 97 nanp HoonoLfBay
1 g (x+8>-g (x>
M ={ xela,bl; 36eC0,?>: o A >k }. Further, suppose
' S
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that A and f 'CA) are p—measurable. Then

C4d for every n,o,f3 : ny-‘CA))=,uCg:CA))

(@D for every positive £ and positive integer k there are
n,a,3 such that
VCMn.k) > v(la,bld-¢

Proof. Suppose that f is on [(a,bl] an increasing function
Cfor a decreasing function the proof is similard. C(Clearly,
the property (4> follows from the fact that the function
kn.a.ﬁ.y preserves the Lebesgue measure on [0,y]. We shall
prove the property (5).

There exists w e€lc,d] such that

Ced vCIf W ,bld<e

h ¢f 'Cwdd
Put a=1- £ and consider g for suitable n,p.

Y y oL, 3
If Kn=max{xe[a.b); gan)=d}» then obviously Kn<b.It is easy

to verify that

7 lim K =r7*cw, Cpeco,2E=® 5

n
n-+00 2

For the preimage g;%lc.w]) we have

n
2-1
c8d ngC[c.w])ﬁ[a.K 1D2Cla,K IN | _JJID
n n n PR |
n J-1
2-1 —a -
where J are intervals and LJJ}= g, CCw,dldnla,f Cw]. For
j —
i=1
a fixed n, the properties of v imply
273
9 lim vCL_JJD=O
ﬁ-oo )j=1 J

From C¢6>,C7>,C9 we conclude that for sufficiently large n
and sufficiently small fj3,

n

2-1
10> vCla,K IN |UJJD> > »(la,b)d-¢

n j:l )

Thus, (8 and (10D imply that to prove (8) it is sufficient
to show that

M > Cg 'Clec,wldnla,K 1D
n, k n n
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for any k and suitable nCk>. Indeed, for every k1 there

exists n1Ck1) such that for xng;1 C[c.w])n[a.Kn 1> we can

oo r 1
find ye(x.x+%) for which gnCy)=d. Then
1 1
9, Cy)—gn <xd
C11d : ! > k Cd—wd
y-x 1

Now, if k1 satisfies the conditions
12> k1>k. k1Cd—w)>k ,
then from C11)> and C12) we obtain

Mn 'kDCg

C[c.w])n[a.Kn 1D
1

n‘,a,ﬁ 1

The proof of (85) is. complete.
1

We recall that by a knot point of function f we mean a
point x where D'f(x=D f(x)=+m and D*fo) =D f(x>=-o . In
addition, CCud with the uniform metric p is by Proposition A

a complete metric space.

Theorem 4. CCud -typical function has a knot point at v-almost
every point.
Proof.Denote M'C(gd)={xel0,1);D'glx)=+w},G ={geCCud;vCM'C(gdd=1}
CM+. G*, M, G, M, G_ analogously D>. If we put for positive
integers p,q

E  ={feCCud; vC({xel0,1];V¥5eC0, >, [EXE 0O
P.q P

1
<pP2=},

then G’=[ ]( ]CCC;.D\E D>. We shall show that G’ is residual
p''q P»q
in CCud.

1, FCx+&E-TCxD ®
= . -~ . <
1. Denote Mf {xel0,11;V¥6eC0,=>: 5 <p}. Let {t‘k}k_1 be
a sequence of functions from E‘p Q' fk-of uniformly. It is easy

to verify

— . . 1 ——
ﬁ L_JM S M_ , -< vC(_’] _JM >< vC(MLD
120 k21 Tk £ 9 120 k31 'k £
,i.e. feE and E is closed.

II. Fix feCCud and &£>0. By Lemma 2 there exists in Clud a
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piecewise monotone function g for which
€13 p(f.g)(f

For a positive integer r, consider the partition O=xo<..<xr=1
of [0,1) such that for every je{i,2,..,r> the following

conditions are satisfied

C14> g is on Ij=[xr1.xj] monotone

£
15> lngj_.t)—ngj)K2

Since gII satisfies the conditions of Lemma 3 we can replace

Caccording to Lemma 3

on Ij the function g by gmp=gmﬁ.a.ﬁ

such that
1 g()Cx+6)—g()Cx) 1
16> wv({xel ;36eC0,=>: -2 >PP > wId-
J P & J rq
Then

Define on [0,1] a function a by ;II.= gmﬁ.adh{%p
from the properties (13),C14) and CiS) we conclude p(f.&)(s,
and by (4> we obtain 5 eCCwd. Finally, the property (16D
implies

gl x+8d -gC x> 1
v({xel0,11;36eC0, =D >pp d1- =,
P P q

i.e. geCCCuONE D and E is nowhere dense.
pP.q P.-q
Similarly we can show that the sets G*,G-.G_ are residual and

therefore the set

G = 6'n 6N G N G ={geCd;LCM'N M N M N MD=1}
is residual as well.
(1

Corollary. CCud-typical function maps at least one v-null set
onto (0,11].

Proof . It is easy to see that any level set of any
continuous function contains a point which is not a knot

point of the function f.

)
Remark. By means of Theorem 4 it is possible to show that

there exists an absolutely continuous measure g such that
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CCu) contains a function with a 1level set of positive

Lebesgue measure.

Theorem 5. All level sets of CCu-typical function, are
v-null sets.

Proof. Denote Fn= {feCCu);By:vaqu))zi}. It is known that
F‘n is a closed set (see (2], p.325, 1.1.2.0. From Lemma 2 it

follows that F’n is nowhere dense for every positive integer n
L
hence the set F=L_JFn={feCCp);By:vcdey))>O} is a set of the
n=1
first category in CCud.
01

3.Besicovitch functions in CCA)

We recall that by a Besicovitch function we mean a

function which has nowhere unilateral derivative (finite or
infinited.In 1932 S.Saks[3] proved that the collection of all
Besicovitch functions is of the first category in the space €
of all continuous functions on [0,1]. A similar result holds
in CCuwd) C using Theorem 4 D>. We shall show that there exist
Besicovitch functions in CCAD. The following construction of
Besicovitch function from CCAD is a slight modification of
that in [4].

Construction

Let kZ4. Let us construct in [O.L] a discontiﬁuum

2
m
1 o 2-1
D = [0,5] \NL, where L = |_J [‘er o .
m=1 p=1
and the open intervals r =Ca »b D) are constructed
m, p m, p m, p
as follows
= 1 =1
Cod d"‘— [0.2] , r"tg dx.x’ k(r"‘)-ak ,

b is the center of d
1,1 1
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i3> if d ».»d n-1 are (from left to rightd the intervals
n

» 1 n,2
n 291

1
f th t [(0,3) N\ r », then r € d , b i
o e se > ::{ ::{ anp np e p e is

the center of d and ACr )=
nep P2k

It is easy to verify that

I S k=3
ML=z ¢ MDD Tes
Remark. For k<4 it is impossible to use this method for a

construction of discontinuum D.

Define a function ¢;IO.%]»[O.1] by
k-2
¢(x)=2(;:§)ACDr(O.x)D

Obviously @C0>=0, ¢(%D=1. ¢ 1is continuous, nondecreasing

2p-1
am

function, constant on every interval r
. m

ST

»

Define a function p:10,11-4(0,1] by

pCxd=¢pC x> , xeto,%] ,

pCxd=¢C1-%0 , xe[%.l]
The function p and the interval (0,11 form the well -known
step triangle [(4].
The above described procedure will be called a construction

of a step triangle with base (0,11, height 1 and parameter k.

The set {(x.p(x));xeto.%]} is the 1left side of triangle,

analogously the set {Cx.p(x));xe[%.l]} is the right side of

triangle. Further, put uy={Cx,y);xe[O.1]} and let gCf) be a

graph of a function f. Now, we can construct a function f

as follows

CCOD construct a step triangle with the base (0,11, height 1
and parameter k ; the sides of the step triangle define

a function fo

Ccn) construct step triangles whose bases are intervals of

n-1
2 u

the set |__J 2P"1 ~ gCcf D), height L and parameter k
P; A an ) n-1 an
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Cconstructed triangles are placed inwards the bigger
triangle on whose side have their bases);the union of
sides of all so far constructed triangles define a
function fn

Finally, put f='1‘£g\° fn Cobviously pCf“.fh p] p]

=L
-7 on

The function f is Besicovitch function. We shall not prove
this fact; it is possible to use a modification of proof

presented in [4]. We shall prove

Theorem 6. feCCAD. -
Proof. By Proposition B it is sufficient to show that for
any positive integer n and ke(O,1,. .2"-1> we have
17> N e PR
2 2 2
From the construction of the function f it is clear that for

n,k mentioned above and positive integer s we have

£t coK Kyt K KA,
n+8 ah ah n an ah
i.e. it suffices to verify (17> only for a function fn . We
shall prove it by induction. It is easy to see that
ka:(CO.l)))=1. Suppose that for every ke0,1,...,2"-1> the
equality ACr ™t ccX— K 551 _ 1 01ds and fix k_e€0,..2"%
n-1 n-1’ _n-1 n-1 o
2 2 2
Y2k v m 2k _+1
Observe that T N ngn_1)=Lk:£[uk.kax{—aT—}. where m is
a suitable positive integer. Let ke(1,...m> be fixed. There
-y ako s 2k0+2
exist xef " (—> and yef " C D) such that
n-4 n n-1 n
2 2
x, = minCx,y) < u, < vk< maxCx,yd) = Y,
- ako . 2k +2
O=Cx ,udCf ~ C—DOUf = C 3D
k k n-1 n n-1 n
2 2
-1 ako — 2k +2
9=Cv ,y dXrCf = C—>Duf "~ C ]
k k n-1 n n- n
2 2
For X UV Y, we shall distinguish four cases
;- 1 _
cid ka+yk)a =u fn_‘ka) < fn_1Cyk)
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. 1 _
Ciid ka+yk)2 u |, f‘n_‘ka) > fn CykD

k -1
g 1 _
Ciiid ka+yk)a =V fwd(xk) < qucyk)
. 1 _
civd ka+yk)a =V fn_1(xk3 > f‘n_1CykD

Consider for example (iiidCthe others are similar). Obviously
a triangle constructed on the base {Cw.fwde)),we[uk.vk]}

with height l} tends down. Then

2
- ako 2k +1
fh((‘TT" - D) N [xk.ykl = [xk.vk] , i.e.,
2 2
-1 Zko 2k +1 1
kar'CC—:—. — DD N [xk.yk]) = VX T é(yk—xk)

2 2

and since (C ka,yk)r(xk.yk)=0 p]
1 1 2 2

. ako 2k +1 m . Bko 2k +1
£ cC——m, o= |__Jof ‘cc—r, D) N Ix ,y 1D .
n an an o n 2“ an k k
we have
. Bk, 2k +1 "‘1
ACE fcc—2, 33 = zécyk—ka
n 2" 2" k=1
We can easily verify that
_ ako 2k0+2 m
£t cc—=, > = L_Jox.y)d
n = a" k=1
and, by induction hypothesis,
m
1 1
z Cy, -%x D = =
k__.‘a k "k 2"

The proof of Theorem 6 is complete.
1
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