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On category bases: Abstract

In an effort to unify properties which are common for measure and cate-
gory, John C. Morgan II defined the concept of category base. Namely, C is
said to be a category base on X if C is a family of nonempty subsets of X,
called regions, satisfying the following axioms: (1) UC = X, (2) if R C C and
A € C are such that |R| < |C|, R is disjoint and A N B contains no region
for each B € R, then there exists a region D such that D C A\ (UR). For
a survey of results from the theory of category bases the readeris refered to
Morgan’s book [2]. With respect to a given category base C on X, one can
classify the subsets of X in the following way. A set E C X is singular if
each region contains a subregion disjoint from E. A set M C X is meager
if it is a union of countably many singular sets; the family of all meager sets
contains a subregion A such that either ANS or A\ S is meager; the family
of all Baire sets for C is denoted by B(C). Two category bases C; and C; on
X are equivalent if M(C,) = M(C;) and B(C,) = B(C,).

A standard example of a category base is the family of all sets of positive
measure with respect to a o-finite complete measure. In this case the meager
sets coincide with the sets of measure zero and the Baire sets coincide with
the measurable ones. In general, we have the following characterization,
which is a partial soultion to Morgan’s Measurability Problem.

Theorem 1 (See [3].) Let (X, M,p) be a complete measure space with the
finite subset property and let N = {F C X : p(F) = 0}. There ezists a
category base C on X such that M(C) = N and B(C) = N if and only if the

measure p is decomposable.

Let us recall that a measure p is decomposable if there exists a disjoint
family R C M of sets of nonzero finite measure such that (i) X \ (UR) is a
zero set, (ii) if p(A) > 0, then there exists B € R such that u(AU B) > 0,
(iii) if Y € X and YN B is measurable for each B € R, then Y is measurable.

Another standard example of a category base is any topology (without
the expty set). In this case the meager sets coincide with the sets of first
category and the Baire sets coincide with the sets with the Baire property.
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Theorem 2 (See[1].) Let C be a category base on X such that X is not
meager. Then C is equivalent to a topology on X if and only if there ezists a
lower density function on the o-field R(C) with respect to the ideal M(C).

Let us recall that a function f from a field K into K is called a lower
density with respect to a ideal I C K if for any pair A, B in K one has: (i)
f(A)AA, (ii)) AAB implies f(A) = f(B), (ii) f(@) = 0, (iv) f(AN B) =
7(4) N £(B).

For a given category base C on X, we say that R is a category decomposi-
tion of X if R is a disjoint family of regions such that each region intersects
a member of R in a non-meager set.

Theorem 3 (See [1].) Let C be a category base on X such that each region
contains a subregion with property P. Then there exists a category decompo-
sition of X consisting exclusively of regions with property P.

Let C be a category base on X. Following Morgan [2] we say that a set
E C X is an essential hull for a set S if the following conditions are satisfied:
(1) E is a Baire set, (ii) S\ F is meager, (iii) if F is a Baire set and S\ F'is
meager, then E \ F is meager.

Theorem 4 (See [1].) If C is a category base of X, then there ezxists an
essential hull for any subset of X.

From Theorems 3 and 4 the next theorem follows easily.

Theorem 5 (J. Morgan and K. Schilling) R(C) is closed under operation
(4)-
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