P. Keller, Mathematics Dept., U. C. Santa Barbara, CA 93106

Countable Collections of ω-limit sets for Darboux Baire 1 Functions

In [BCP] Ceder proved that any nonempty closed subset F of I = [0,1] is an ω -limit set for some \mathfrak{DB}_1 function $f:I \rightarrow I$. Given any collection \mathfrak{F} of such nonempty closed sets, is there an $f \in \mathfrak{DB}_1$ with $\Lambda(f) \supseteq \mathfrak{F}$? ($\Lambda(f)$ denotes the collection of ω -limit sets of f.) To answer this question for some countable collections of nonempty closed sets, the following lemma is useful.

LEMMA (Bruckner). Consider $g:D \to D$, where countable $D \subset I$. For each $n \in \mathbb{N}$, let $D_n = \{x \in D: osc_g(x) \ge 1/n\}$. clD_n is countable for each $n \Rightarrow$ there is an extension of g to some $f:I \to I$ with $f \in \mathcal{DB}_1$.

THEOREM 1. Suppose \mathcal{F} is a finite collection of nonempty closed subsets of I. Then there is an $f \in \mathcal{DB}_1$ with $\Lambda(f) \supseteq \mathcal{F}$.

THEOREM 2. Suppose \mathfrak{F} is a countable collection of closed subintervals of I. Then there is an $f \in \mathfrak{OB}_1$ with $\Lambda(f) \supseteq \mathfrak{F}$.

THEOREM 3. Suppose, for some $\varepsilon > 0$, \mathcal{F} is a countable collection of closed subsets of I with each $F \in \mathcal{F}$ being a union of intervals of diameter ε . Then there is an $f \in \mathcal{DB}_1$ with $\Lambda(f) \supseteq \mathcal{F}$.

Common to the proofs of each theorem is the construction, for each $F_i \in \mathfrak{F}$, of an orbit $\{x_{i,j}\}_{i=0}^{\infty}$, with closure F_i , where, for N=card(\mathfrak{F}),

 $D=\bigcup_{i=1}^{N} \{x_{i,j}\}_{j=0}^{\infty}$. Each orbit is constructed by stepping along I near F_i , the size of the ith step close to something like 1/(i+j), taking care to keep each orbit disjoint from the other orbits. Large steps spanning complementary open intervals of the F_i are strategically placed so clD_n remains countable. For $g(x_{i,j})=x_{i,j+1}$ for each $x_{i,j}\in D$, the lemma gives its extension to some $f\in \mathfrak{DB}_1$.

[BCP] A. M. Bruckner, J. G. Ceder and T. L. Pearson, On ω -limit sets for various classes of functions, Real Analysis Exchange (to appear).