
 Fractals determined bv the Weierstrass functions

 ( Summary of a lecture given at the Annual fleeting of the

 American Mathematical Society; San Antonio, Texas, January 198 7).

 The term "fractal" was coined by Benoit Mandelboot for sets

 E whose "dimension" is greater than the topological dimension.

 There are many apparently different ways of defining dimension,

 but I have suggested (see [7]) that we should reserve the name

 fractal for those sets which are sufficiently regular to ensure

 all those definitions produce the same answer. This is a mild

 regularity condtion which is usually satisfied (when it can be

 checked) by examples related to the physical world. Our object

 is to reformulate some old problems related to the class of

 functions defined by Weierstrass each of which is continuous but

 nowhere dif ferentiable. We believe that a solution to some or

 all of these problems should now be accessible. For a recent

 summary of analytic results, the reader is referred to [3]. The

 paper [7] surveys the definitions of fractal measures, including

 packing measure defined first in [6], so we do not repeat those.
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 Suppose 0<a<l, b>l and $: R - »R is continuous and periodic

 with period 1. Define

 00

 f(t) = f ' b(t) = Z b~an$(bnt) (1) ' n=0

 and consider the planar set G - {(x,f(x)): x € [0,1]} and the

 linear sets E = {x « [0,1]: f(x) = c>. Weierstrass considered
 O

 $(x) = cos 2wx, and van der Waerden-Tagaki considered

 $ (x) = dist ( x , z ) .

 It is not too difficult to prove from known results that the

 packing dimension of G satisfies

 Dim G = 2 -a

 so G is a fractal if and only if the Hansdorff dimension

 satisfies

 dim G = 2 -a .

 This is known to be the case whenever f satisfies a strong

 self-simularity condition; for example, if f(x) = $ ^x) -§ 2<x)

 where §ļ(x), are coordinates of a Peano space filling
 curve, Kono [4] proves that

 0<s3/2-m(G)<s3/2-p(G)<x~ (2)

 so G is a fractal of index 3/2.

 Let me now state the main conjecture.

 CONJECTURE 1. For a vide class of Including the Weierstrass
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 case, (1) defines a continuous f whose graph G is a fractal of

 index 2-a .

 In order to prove the conjecture for a particular $, it is

 sufficient to show that the Hansdorff dimension satisfies

 dim G > 2-01. (3)

 Whenever a = 1, the result corresponding to (3) is trivial, so we

 do know that dim G = Dim G =1. However, this G is not a fractal

 since it also has topological dimension 1. For some recent

 progress in the analysis of this critical case see Anderson and

 Pitt [1]. Recently, Mauldin and Williams [5], showed that

 dim G > 2-a-c/log b whenever b is large enough. As pointed out

 by Kono [4], (3) would also follow for the Weierstrass functions

 if we could show that f has a continuous occupation density. For

 a survey of the connections between properties of the occupation

 density and those of the function f see [2]. There is every

 reason to believe this is the case, but no one seems to have

 proved it.

 If conjecture 1 is true one could ask whether there are

 exact growth functions which give G finite positive Hansdorff

 measure or packing measure. In particular, is the analogue of

 (2) true with 3/2 replaced by (2-a)A?

 CONJECTURE 2 For a wide class of $, includ ing the Veierstrass

 functions, (1) defines a funciton f whose level sets or either

 empty or are fractals of index 1-a.
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 Meaningful but partial information exists for the critical

 case a » 1. General section theorems would yield information

 about most level sets if conjecture 1 were established.

 It is well know that, if f is replaced by a standard

 Brownian motion, then the graph is a fractal of index 3/2 a.s.,

 and the non-empty level sets are fractals of index - . In fact,

 exact Hansdorff measure functions are known for both G and E see
 c

 [7]. It is less well known that the introduction of random

 factors in the definition (1) allows us to prove the behaviour

 which we conjecture for the deterministic case.

 THEOREM Suppose (Xn> is a sequence of independent N(0,1)
 random var iables and

 CO

 f ( t , w ) = I b^^ib^JX
 n=0

 where $: R - is continuous, periodic and not constant . Then,

 with probability 1, the graph G of f(t,w) satisfies

 dim G = Dim G = 2 -a

 S . James Taylor
 Department of Mathematics
 University of Virginia
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