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 EQUIVALENCE OF THE GENERALIZED RIEMANN

 AND RESTRICTED DENJOY INTEGRALS1

 It has been known for some time that the restricted Denjoy integral

 (D^ integral) and the generalized Riemann integral (GR integral) are

 equivalent. That is, a function is integrable if and only if it is GR

 integrable and the integrals are equal. The early proofs of this fact

 ([1] and [3]) proceeded by proving that the GR integral is equivalent to the

 Perron integral. The result then follows since the Perron integral is

 equivalent to the integral [8]. In the last few years two papers ([4]

 and [9]) have appeared that offer direct proofs. However, both of these

 papers have an error in the proof that the indefinite GR integral is ACG .

 The purpose of this paper is to present a direct proof of the equivalence-

 of the and GR integrals. For completeness and consistency of notation

 the definitions of the integrals and proofs of all the main results are

 included. We feel that this is necessary since the proofs are scattered

 throughout the literature and some of the proofs are lacking in detail.

 We begin with the definitions of the integrals. In order to define the

 integral the concepts of bounded variation and absolute continuity must be

 extended. The necessary extensions appear in the definition below. If f is

 defined on [c,d], then cü(f,[c,d]) = sup {|f(t)-f(s)| : c < s < t < d} is

 the oscillation of f on [c,d].

 ^This material is to be included in the author's doctoral dissertation under
 preparation at the University of Illinois under the direction of J. J. Uhl, Jr.
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 DEFINITION l: Let f : [a,b] - > R and let EC [a,b].

 (a) The function f is BV^ on E if sup o(f , [a^ .b^])} is finite
 i

 where the supremum is taken over all finite collections of non-overlapping

 intervals that have endpoints in E.

 (b) The function f is BVG^ on E if E can be expressed as a countable

 union of sets on each of which f is BV^.

 (c) The function f is AC^ on E if for each £ > 0 there exists 5 > 0

 such that ^ <d(f , [a^ ,b^]) < £ whenever {[a-.b^]} is a finite collection of
 i

 non-overlapping intervals that have endpoints in E and satisfy

 Ī (b. - a.) < Ô.
 i

 (d) The function f is ACG^ on E if f is continuous on E and if E

 can be expressed as a countable union of sets on each of which f is AC^.

 (e) The function f is AC on E if for each £ > 0 there exists ö > 0

 such that ^ |f(bj) - f(a^)| < £ whenever {[a. .b^]} is a finite collection
 i

 of non-overlapping intervals that have endpoints in E and satisfy

 I - aj) < 6.
 i

 The basic properties of these functions can be found in Saks [8]. We

 will require the following two theorems. The first is a slight modification

 of Saks' Theorem 9.1 on page 233 of [8]. Its proof is quite similar to the

 proof given by Saks. The second is Saks* Theorem 8.8 also on page 233 of [8].

 Recall that a portion of a set E is a nonempty set P of the form

 P = E fi I where I is an open interval.
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 THEOREM 2: Let E be a closed set in [a,b] and let f : [a,b] - ► IR be

 continuous on E. Then f is BVG^ (ACG^) on E if and only if every

 perfect subset of E contains a portion on which f is BV^(AC^) .

 THEOREM 3: Let E be a closed set with bounds a and b and let

 f : [a.b]

 BV^ on E.

 It is well-known that an AOG^ function is dif ferentiable almost

 everywhere [8, p. 230]. Thus, the definition of the integral is a direct

 extension of the descriptive definition of the Lebesgue integral.

 DEFINITION 4: The function f : [a,b] - » IR is integrable on [a,b]

 if there exists a function F : [a,b] - » IR such that F is ACG^ on [a,b]

 and F' = f almost everywhere on [a,b].

 The definition of the generalized Riemann integral extends the Riemann

 integral by using variable mesh size as opposed to insisting on a uniform mesh

 ([2] and [4]). This seemingly minor modification has far reaching

 consequences. Before defining the GR integral we develop some notation and

 terminology.

 DEFINITION 5: Let 5(*) be a positive function defined on the interval

 [a,b]. A tagged interval (s,[c,d]) consists of an interval [c,d] C [a,b]

 and a point s € [c,d]. The tagged interval (s,[c,d]) is subordinate to ô

 if [c,d] C (s - ô(s),s + Ô( s)). Script capital letters such as & and 2)
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 will be used to denote finite collections of non-overlapping tagged intervals.

 Let 9 = {(s^ , [Cj ,d^]) : 1 < i < N} be such a collection in [a,b].
 (a) The points {s. : 1 < i < N} are called the tags of 9s.

 (b) The intervals {[c^.d^] : 1 £ i i N} are called the intervals of f.

 (c) If (Sj,[Cj,dj]) is subordinate to 5 for each i, then we write $
 is sub Ô.

 N

 (d) If [a,b] = U [c.,d.], then 9s is called a tagged partition of
 i=l 1 1

 [a.b] .

 (e) If ¡P is a tagged partition of [a,b] and if 9 is sub Ô, then we

 write ^ is sub 5 on [a,b].
 N

 (f) If f : [a,b] - » IR, then f(0) = ^ Lt f(s.)(d. 11 -c.). 1  Lt 11 1
 i=l

 (g) If F is defined on the intervals of [a,b], then
 N

 FW = Y F([c.,d.]).
 1 = 1

 DEFINITION 6: The function f : [a,b] - ► IR is GR integrable on [a,b] if

 there exists a real number a with the following property: for each £ > 0

 there exists a positive function õ on [a,b] such that | f (3^) - a| < £

 whenever & is sub ô on [a,b]ē The function f is GR integrable on

 E C [a,b] if fx£ is GR integrable on [a,b] where Xg is the
 characteristic function of E.

 The GR integral has the usual properties of ail integral; uniqueness,

 integrability on subintervals, and linearity. The proofs of these facts can

 be found in McLeod [5].
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 Let f be GR integrable on [a,b] and let F(t) = f f; that Is, F
 ^a

 is the indefinite GR integral of f. We adopt the convention that F is an

 interval function when defined on tagged intervals. Thus, F(s,[c,d]) =

 F(d) - F(c) = if.
 Jc

 Let f and F be as in Definition 5 and let Ô be a positive function

 on [a,b]. Then (s,[c,d]) is sub ö if and only if {(s,[c,s])t ( s » [s , d.] ) }

 is sub Õ and we have

 f(s)(d - c) = f(s)(s - c) + f(s)(d - s)

 F(d) - F(c) = F(s) - F(c) + F(d) - F(s).

 Therefore, if 9 is sub Ô on [a,b] the values of f($) and F (9^) remain

 unchanged if we assume either (1) or (2) below.

 (1) All of the tags of 9* occur as endpoints.

 (2) Each tag of $ occurs only once.

 It will sometimes be convenient to make one of these assumptions.

 The next result, which is often referred to as Henstock's Lemma, plays a

 crucial role in the theory of the GR integral. The proof is not difficult

 and can be found in McLeod [5].

 LEMMA 7 (Henstock's Lemma): Let f : [a,b] - » IR be GR integrable on

 f*
 [a,b] and let F(t) = f. Given z > 0 choose a positive function 5 on

 ^a

 [a,b] so that | f (3^) - F(b) | < z whenever $ is sub 5 on [a,b]. If 2) =

 {(s ,[c ,d ]) : 1 < i < N} is sub Ö , then
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 N

 |f (3) - F(»)| <£ and J |f(s )(d - c ) - (F(d ) - F(c ))| < 2e.
 i=l

 We first prove that every integrable function is GR integrable.

 The idea for the proof is due to Yee and Naak-in [9]. It is a creative proof,

 but some of the details are missing and the function 6 is not clearly

 defined. The proof below eliminates these difficulties.

 THEOREM 8: If f : [a,b] - > IR is integrable on [a,b], then f is

 GR integrable on [a,b] and the integrals are equal.

 Proof: Let F(t) = (D^) f f. Then F is ACG^ on [a,b] and F' = f
 -'a

 almost everywhere on [a,b]. Let {E^} be a collection of pairwise disjoint
 sets such that [a,b] L J = U E. and F is AC on each E.. Let H be the L J . i * i

 i

 00

 set of measure zero such that F' = f on Ta.b] - H and let H = U H
 1 n n=l 1

 where Hj = {t € H : |f(t)| Ś 1} and Hr = {t € H : 2n~2 < |f(t)| < 211"1}
 for each n > 2. For each pair of positive integers i and n write

 k
 E. fi H = G. U {t. 1 } where G. consists of all the points of E. il H i n in 1 mJ m i n

 that are limit points of E^ fl on both sides. The remaining points of

 E^ fl form a countable set. (See [8], p. 260).
 Let £i > 0 and let £ = s.fb v - a + 5) J Choose ô. >0 so that 1 1 v J m

 ^ w(F# [aj fßj]) < s2 n * whenever {[ctj.ßj]} is a finite collection of
 J

 non-overlapping intervals that have endpoints in E^ fl and satisfy

 )(ß.-a.)<ß. v . Let 0. be an open ^ set containing E. fl H such that L v j j' m . in open ^ i n
 j
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 u(0. ) < miniò. 1 , z2 2x1 i}. ' For each t € G. choose c? and d? in in' 1 in , ' in in in

 E. n H such that c? < t < d* and [c? L ,d! 1 C 0. . Use the continuity in m in L m inJ in

 of F to choose r ^ >0 so that |F(s) iv/ - F(t^ v in/ ) ļ i < e2 n * ^ whenever in iv/ v in/ i

 1 Is - t^ I < r/f and s € [a,b]. L J 1 m' m L J

 Now we define Ö on [a,b].

 (i) If t € [a,b] - H, then choose Ô(t) >0 so that

 |F(s) - F(t) - f(t)(s - t) I < e |s - t|

 whenever s € (t - Ö(t), t + 5(t)) fi [a,b].

 (ii) If t € , then 6(t) = min{t - c*n> d*n - t}.
 k k

 (iii) If t = t^ , then choose 5(t) >0 so that Ö(t) < 17 ^ sind

 (t - ô(t), t + ô(t)) c o.n.
 This defines 5 on all of [a,b].

 We must show that | f (3^) - F(b) | < £j whenever & is sub Ô on [a,b].
 Let & be sub 5 on [a,b] and assume without loss of generality that each

 tag occurs only once. Let 9^ be the subset of 2ř that has tags in [a,b] -
 H and let 3^. be the subset of 9^ that has tags in E. fi H . Let tt be
 in in

 the set of pairs (i,n) for which 8^ ¿ 0. Then

 |f(0) - F(b) I = |f(^d) + I f(^.n) - F(#d) - l F(2řin) I
 TT TT

 < |f(#d) -F(^d) I + I |f(^ln)|+ } |F(^in) I -
 TT TT

 If (s, [u, v]) € ¡řj, then

 |F(v) - F(u) - f(s)(v - u)| < |F(v) - F(s) - f(s)(v - s) |

 + I F( s ) - F(u) - f(s)(s - u) I
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 < e(v - s) + e(s - u)

 = £ (v - u).

 This result, along with the fact that l^(^ļn)l ^ V(0jn) < £2 n
 implies that

 (1) |f(#) - F(b) I < £(b - a) + e + I |F(#in)|.
 TT

 For each (i,n) v ' € ir let be the subset of 9^. that has tags & in v ' in in &
 k 1c

 G. and let be the subset of for which the tag & is t. . Let in in in & in

 3^n= {(s j , [u . , Vj]) : 1 Í J Í m} sind assume without loss of generality that
 S1

 s. < s.,- for each J i. Let u' = c. and for 2 - < j j - < m let J s.,- J+1 J 1 in - j -
 s .

 u'. = max{s. 1 1fc.J}. inJ Now {[u'., lL s.] : 1 "~ < i < m} is a collection of J 1 J-l inJ lL J Jj "~

 non-overlapping intervals that have endpoiints in fl H^. In addition,
 m

 Y s Y ) (s. v - u'.) < ô. since all of the intervals are inside 0. . Let v' = d. L v j y m m . mm
 j=l

 s .

 and for 1 ~~ < j < m - 1 let v'. = minis. 1 1fd.^}. Now {[s.,v'l lL : 1 ~" < j < m} ~~ j 1 j+1 mJ lL j nJ ~"

 is also a collection of non-overlapping intervals that have endpoints in

 m

 E. fi H . In addition, ) (v'. - s.) <5. since all of the intervals are
 in . ¿ J j in

 j=l

 inside 0. . We thus have
 m

 m

 (2) |F(3ř' in )| < ) |F(v ) - F(u .) I in j j
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 m m

 < y |F(v J .) - F(s J .) I + l |F(s J .) - F(u J .) I j=l J J j=l J J

 m m

 Í J W(F,[Sj.VJ]) + J w(F . [Uj , Sj])

 < 2e2-n_i .

 k k

 Let S^n = {(t^t [u,v])} and compute

 (3) |F(^n) I = |F(v) - F(u) I

 Ś |F(v) - F(t^n) I + |F(t^n) - F(u) I

 < 2£2~n-i~k.

 le

 Let ir^n = {k : 3^ ^ 0). Then (1), (2), and (3) together imply that

 |f(2ř) - F(b) I < £(b - a + 1) + l |F(2ř'ln) | + j J |F(^n) |
 TT TT TT.

 in

 < e(b - a + 1) + 2e + ^ 2£2~n-1
 TT

 < £(b - a + 5)

 = er

 Therefore, the function f is GR integrable on [a,b] and

 (GR) r f = F(b) = (Dh)| f. Ja Ja
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 Next, we will prove that every GR integrable function is

 fť
 integrable. Let f : [a,b]

 -'a

 We must show that F' = f almost everywhere on [a,b] and that F is AGG^

 on [a,b]. We begin by proving that F is continuous.

 THEOREM 9: Let f : [a,b] - » IR be GR integrable on [a,b], If F(t) =

 rť
 f, then F is continuous on [a,b].

 ^a

 Proof- Let tß € [a,b). We will prove that F is continuous on the right at

 tg. Let £ > 0 and choose a positive function ô on [a,b] so that

 |f(#) - F(b) I < e/3 whenever # is sub 5 on [a,b]. Let 17 = min{õ(tQ),

 (1 + I f ( t^) I ) 1£/3} and fix 2) sub Ö on [a.t^]. Let s € [a,b] fl

 [tQ.to + r¡) and let i' = 8 U (t^, [t^.s]). Then 2)' is sub 5 on [a,s]
 and using Henstock's Lemma we obtain

 |F(s) - F(t0)| = |F(s) - f(2ö') + f(t0)(s - t0) + £(fl) - F(t0)|

 < |f(2>') - F(s) I + |f(t0)|rj + |f(S) - F(t0)|

 < £/3 + £/3 + £/3 = £ .

 Thus, the function F is continuous on the right at t^.
 Similarly, we can prove that F is continuous on the left at each point

 of (a,b]. Hence, the function F is continuous on [a,b].
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 We turn now to the proof that F' = f almost everywhere. Henstock [1]

 and Kubota [4] prove this result using the variational integral defined by

 Henstock [1]. Pu [7] accomplishes the same result but his proof is lengthy

 and follows an argument similar to the proof for the indefinite Perron

 integral. In [6] McShane offers an elementary proof but his proof is

 complicated by the fact that he avoids the use of the Vitali Covering Lemma.

 (McShane* s proof applies to the GR integral even though his definition of

 integral is not as general as the one used in this paper). The simplest proof

 that F' = f almost everywhere is found in Yee and Naak-in [9]. The proof

 has an easily corrected error. In [9] the potential problem is that the

 elements of their Vitali covering may be too large to guarantee the necessary

 properties. Our proof follows their argument and avoids this ambiguity.

 THEOREM 10: Let f : [a,b]

 F(t) = f, then F' = f almost everywhere on [a,b].
 ■'a

 Proof: Let A+ be the set of all points t in [a,b) such that either

 F+(t) does not exist or F+(t) ^ f(t) where F+(t) is the right-hand

 derivative of F at t. For each t € A+ there exists > 0 with the

 following property: for each ß > 0 there exists v^ € [a,b] fl (t,t + ß )
 such that

 |F(vJ) - F(t) - f(t)(v* - t)| > T7t(vJ - t).

 Let A+ = {t 1 € A+ : r¡. > - }. We will show that ¡j*(A+) ^ y = 0 for each n n 1 r¡. 't nJ ^ y ir
 & + +

 where jj. (A^) denotes the outer Lebesgue measure of A^.
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 Fix a positive integer n and let z > 0 be given. Choose a positive

 function <5 on [a,b] such that | £ (3^) - F(b) | < ^ whenever 9^ is sub 5

 on [a,b]. The collection of intervals $ = {[t,v^] : t € A*. ß < S(t)}
 forms a Vitali covering of A*. By the Vitali Covering Lemma there exists a

 finite collection {[c^cL] : 1 < i < N} of disjoint intervals in $> such
 N

 that ji*(A*) < ^ cļ) + £^* Note that each (c.,[c^,d.]) is sub 5
 i=l

 and that

 (di - c.)T7c < |F(d ) - F(c ) - f(c )(d - c.)|.
 i

 Using Henstock's Lemma we obtain

 N N

 1 <di - cť < I r- |F(di' - F(ci' - f(ci)(di - ci51 1=1 i=l 'c.
 i

 N

 i n I |f(c )(d - c ) - (F(d ) - F(c ))|
 i=l

 x 2e
 i x n * T~

 T~ 4n

 = e/2.

 & +

 It follows that ļi (A ) < £ and since £ > 0 was arbitrary we conclude that

 fx*(A+) = 0.
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 + + a +
 Since A = U A we see that fi (A ) = 0. In sin analogous manner we can

 n

 ^ _ _

 show that 1JL (A ) = 0 where A is the set of all points t in (a,b] such

 that either F (t) does not exist or F (t) ^ f(t) where F (t) is the

 left-hand derivative of F at t. Since the set of all points t in [a,b]

 for which either F' (t) does not exist or F' (t) ^ f(t) is contained in

 A+ U A it follows that F' = f almost everywhere on [a,b].

 It remains to be shown that F is ACG^ on [a,b]. The technique of the

 next proof is used in [4] and [9] to prove this fact. This technique will be

 used in the proof of the next theorem to show that F is BVG^ on [a,b].

 However, this argument fails to prove that F is ACG^ on [a,b] since the

 sets Ejm which appear in the proof depend on the choice of Ô and hence on

 e. A separate proof that F is ACG^ on [a,b] is required.

 THEOREM 11: Let f : [a,b]

 F(t) = Í f, then F is BVG^ on [a,b].
 -'a.

 Proof: Fix a function ô on [a,b] with 0 < Ô(t) < 1 for all t € [a,b]

 such that |f(3^) - F(b) | < 1 whenever & is sub ô on [a,b]. For each pair

 (j,m) of positive integers define

 Ejm = {t € [a,b] : j - 1 Ś |f (t) | < j and ^ < ô(t) < 1} .

 00 00

 It is clear that [a.bl = U U E . . To complete the proof it is sufficient
 j=l m=l Jm

 to prove that F is BVG„ on each E . .
 * jm
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 Fix a particular nonempty Ejm and choose a positive integer L such
 that a + ^<b<a ~ + . For each k = 1, 2, . . . , L let = E . fi 2m ~ 2m . . . . , jm jm .

 [a L + -TT- , a + ) 7 and let E^+* = E. fl L [a + bl. J Then E. = U E^ L -TT- 2m , 2m 7 jm jm L 2m J jm jm

 and we claim that F is BV on E. for each k.
 * jm

 Let {[c^,d^] : 1 < i < N} be a collection of non-overlapping intervals

 that have endpoints in Ejm- Since F is continuous we can select points

 u.,v. € [c.,d.l with u. < v. such that |F(v.) 1 v - F(u.)| v 1 = <d(F, VLi [c . ,d. iJJ ]) . i i i i i i 1 v r v i' 1 VLi . iJJ

 Note that the tagged intervals (c^, [c^,u.]), (d^.f [v^, d^]), and

 (Ci, [Ci, di]) are subordinate to ô. Using Henstock's Lemma we obtain

 N N

 I g»(F.[c .d ]) = I |F(ui) - F(v1) J
 i=l i=l

 N

 < Y {|F(u.) - F(c.) - f(ci)(ui - Cj)! + |f(c.)(u. - ci)|
 i=l

 + |F(c.) - F(d.) + f(c.)(d. - c.)| + |f(c.)(d. - c.) I

 + |F(d.) - F(v.) - f(d.)(d. - v.)| + |f(d.)(d. - v.)|}

 N

 = I |F(d.) - F(c.) - f(c.)(d. - c.)|
 i=l

 N

 + Y ílF(ui) " F^ci) " f(cļ)(ui " ci)l
 i=l
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 + |F(d.) - F(v.) - f(d.)(d. - v.)|}

 N

 + I {|f(c )|(u - c ) + |f(d.)|(d. - Vļ)}
 i=l

 N

 + I in^Kdi-c,)
 1 = 1

 i2 + 2 + 3 .¿+ i

 = 4 + A.
 m

 Therefore, the function F is BV on and the proof is complete.
 * jm

 In order to give a direct proof that the indefinite GR integral is

 AOG^ (see Theorem 18) a few preliminary results are needed. The next theorem

 is interesting in its own right in the theory of the GR integral. It has

 been proved for the Perron integral ([8], p. 249), the integral ([8], p.

 257), and Henstock's variational integral ([1], p. 118 and [4], p. 515). We

 present what we hope is the first direct proof of this fact for the GR

 integral .

 THEOREM 12: Let E be a bounded, closed set with bounds a and b and let

 {(a^,b^)} be the sequence of intervals in [a,b] contiguous to E. Suppose
 that f : [a,b]

 is GR integrable on [a,b] If f' ^k'hk^) < "• then f
 k '
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 and J1" f = J* fxE + J f.
 a a k '

 Proofs Let g = f - f'£. We will prove that g is GR integrable on [a,b]

 and that t g = Adding fxg to both sides will give the desired
 a k ^ a

 result.

 Given an interval I let 1^ = I fl define a function G on

 the intervals of [a,b] by G(I) = ^ J f. If I and J are
 k Xk

 non-over lapping interval s , then

 G(I U J) = I j { = I (J f f J f)
 k (IUJ)k k k k

 - ī J, • * H,, • k k k k

 = G(I) + G(J)

 since the series are absolutely convergent. Hence, the function G is

 finitely additive. Note that G([a,b]} = ^ J ^ f .
 k %.
 00 ft

 Let e > 0 and choose N so that ^ <j( f.fa^.b^]) < e/4. For
 k=N+l %.

 each k choose a positive function 6^ on so |g(^) ~
 i - k-2

 Gfta^.b^]) i I < e 2 whenever £ is sub on Define õ on
 [a,b] as follows:
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 (i) If t € then ô(t) = min {¿>k(t), t - ~ t}.

 (ii) If t € E - U {^«^}« then choose ô(t) >0 so that (t - 5(t),
 k

 t + 5(t) ) D [a . ,b .] =0 for 1 < j ś N.
 J J

 (iii) If t = a^ and if t is not an isolated point of E, then choose
 Ô(t) >0 so that 5(t) i min {Ô, (t),b, - t} and (t - ô(t), t) D [a.,b.] = 0

 K K J J

 for 1 £ j Ś N.

 (iv) If t = and if t is not an isolated point of E, then choose

 ô(t) >0 so that ô(t) < min {ô^(t), t - a^} and (t, t + Ô(t)) fi [a^.b^] =
 0 for 1 < j < N.

 (v) If a, = t = b, , then ô(t) = min{5, (t), b, - t , 5 (t) , t - a, } .
 K1 *2 1 1 2 2

 This defines Õ on [a,b].

 Let & be sub 5 on [a,b] and assume without loss of generality that

 all of the tags are endpoints. Let 9^ be the subset of & that has

 intervals in C2^»^] n°te that 3^ is sub 5^. Let ^ = & - U 9^
 k

 and note that I fl = ® ^or 1 < k < N if I is an interval in

 In addition, if k > N, then intersects at most two intervals in

 Let 7T = {k : 8^ ï 0} and use Henstock's Lemma to compute

 |g(0) - G([a.b])| = |g(#E) + I g(¡* ) - G(#e) - I G(#k)|
 TT TT

 < } |g(') - G(#k) I + |G(ay I
 IT

 00 rt

 < J e2~k~2 + 2 J gj(I f . [ak , bfc] ) .
 T k=N+l %
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 By the choice of N we find that |g($) - G([a,b]) | < £. Hence, the function

 g is GR integrable on [a,b] and J g = ^ f# This completes the
 a k ®k

 proof .

 The functions and that appear in the next definition correspond

 to the major and minor functions in Perron integration. However, as we shall

 see, the full power of major and minor functions is not required.

 DEFINITION 13: Let f : [a,b]

 defined on [a,b]. For each t € (a,b] define

 Ug(t) = sup {f (#) : # is sub Ô on [a,t]}
 and

 Vg(t) = inf {f(^) : & is sub Ô on [a,t]},

 the values +°° and -« being allowed. For completeness let U^(a) = 0 =

 V6(a).
 If f is GR integrable on [a,b], then it follows from Definition 6

 and Lemma 7 that there exists a positive function Ô on [a,b] such that

 and Vg are finite-valued. The next lemma lists some of the properties of

 Ug and Vg. The proof is based upon the definition of the GR integral and
 is not difficult.

 LEMMA 14*. Let f : [a,b] - » IR be GR integrable on [a,b] and let ö be a

 positive function defined on [a,b] for which and are

 f inite-valued.

 568



 (a) If [c,d] C [a,b], then

 Ug(d) - Ug(c) > sup (f(2P) : & is sub ö on [c,d]} > P f

 and

 Vg(d) - V5(c) < inf (f(0) : 0 is sub Ô on [c,d]} < | f.

 (b) If F(t) = f f, then the functions F - and Vg - F are -'a

 nonincreas ing on [a , b] .

 Let E be a closed subset of [a,b] with bounds c and d and let

 f : E  L j v n riJ lv n nJJ
 n

 the intervals contiguous to E. Define g : [a,b] - > IR as follows*.

 (i) If t € [a,c], then g(t) = f(c).

 (ii) If t € [d,b] , then g(t) = f(d).

 (iii) If t € E, then g(t) = f(t).

 f(d )-f(c )
 (iv) v J If t € (c v ,d nJ ), then g(t) &v J = v J v n nJ &v J d -c v nJ v n'

 n n

 In this case we say that g is the function that equals f on E and is

 linear on the intervals contiguous to E. The next three lemmas are concerned

 with such functions. The proofs, although not difficult, are tedious and will

 be omitted.

 LEMMA 15: Let E be a closed set with bounds a and b and let

 f : [a,b]

 equals f on E and is linear on the intervals contiguous to E, then g

 is BV^ on [a,b].
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 LEMMA 16: Let f and g be functions defined on [a,b] and let E be a

 closed subset of [a,b]. Let fj and be the functions that equal f
 and g on E, respectively, and are linear on the intervals contiguous to

 E. If f-g is nonincr easing on E, then f j - gj is nonincr easing on
 [a,b] .

 LEMMA 17: Let E be a closed subset of [a,b] and let f : E

 be the function that equals f on E and is linear on the intervals

 contiguous to E. If t^ is both a right-hand and left-hand limit point of

 E and if f has a derivative with respect to E at t^, then g is

 differentiable at t^ and g' (t^) = where is t*ïe derivative

 of f with respect to E at t^.

 We are now in a position to prove that the indefinite GR integral is

 A0G*-

 THEOREM 18: Let f : [a,b] - » IR be GR integrable on [a,b]. If

 F(t) = f f, then F is ACG^ on [a,b].
 ^a

 Proof: We will use Theorem 2 to prove that the continuous function F is

 ACG^ on [a,b]. Let E be a perfect set in [a,b]. Since F is BVG^ on

 [a,b] there exists an interval [c,d] C [a,b] such that c,d € E,

 E fi (c,d) ¿ 0, and F is BV^ on E fi [c,d] (Theorem 2). Let G be the

 function that equals F on E fl [c,d] and is linear on the intervals

 contiguous to E fi [c,d]. By Lemma 15 the function G is BV^ on [c,d].

 To complete the proof it is sufficient to prove that G is AC on [c,d].
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 For then F is AC on E fi [c,d] and by Theorem 3 it follows that F is

 AC^ on E fi [c , d] .

 To this end let [c,d] - E = U(c ,dn) and define g : [c,d] - * IR by
 n

 F(dn)-F(°n)
 d -3 -c v n n'
 n n

 g(t) = -

 f(t) if t € E fi [c,d]

 Then by Theorem 10, Lemma 17, and the definition of G we see that G' = g

 almost everywhere on [c,d]. Since G is BV^ (and hence BV) on [c.d]

 the function g is Lebesgue integrable on [c,d] and it follows that f is

 Lebesgue integrable on E fi [c,d]. Define 0 : [c,d]

 I*
 G(c) - g. To prove that G is AC on [c,d] it is sufficient to prove

 -'c

 that 0(t) = 0 for all t in [c.d].

 Let £ > 0 and choose a positive function 5 on [a,b] such that

 |f(#>) - F(b) I < £ whenever 2ř is sub 6 on [a,b] and let U(t) = U^(t)

 and V(t) = Vg(t). Let and Vj be the functions defined on [c,d] that
 equal U and V, respectively, on E fi [c,d] and are linear on the

 intervals contiguous to E fi [c,d]. By Lemma 14(b) the functions F - U and

 V - F are nonincreasing on [a,b] and by Lemma 16 the functions G - and

 Vj - G are nonincreasing on [c,d].
 The next step is to prove that

 (4) V^t) - V^c) Ś (L)p g < U (t) - Ux(c) Jc
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 for each t in [c,d]. Now ^ w( f f, Ccn»d ]) < 00 since F is BV^ on n Jc
 n

 E fi [c,d]. Furthermore, the function f is GR integrable on E fi [c,d]

 since it is Lebesgue integrable on E il [c,d]. Hence, the hypotheses of

 Theorem 12 are satisfied. There are two cases to consider.

 (i) If t € E fl [c.d], then

 (GR) f f = (L) f fxE + J (GR) fn f = (L) f gXE + ] (L) fn g = (L) f g. c c d Kt c c gXE d Kt c Jc
 n" n n" n

 By Lemma 14(a) we obtain

 V (t) - V^c) = V(t) - V(c) Ś (GR) P f = (L)P g i U(t) - U(c) = U (t) - U^c). Jc Jc

 (ii) If t € then using (i) and Lemma 14(a) we obtain

 (L) Jc g = (GR) Jc f ♦ * k -c,. k « - <=k) Jc Jc k -c,. k

 U(4 )-U(c )

 í U(<y - U(c) ♦ « k (t - ck)
 K K

 = U^t) - U^c)

 and

 ft fCļ^ F(d )-F(ck)
 (L)jc ft g = (GR)jck fCļ^ f + ĻCk )-F(ck) (t - ck)
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 V(<y-V(0
 > v(°k) - + - °k)

 = Vļ(t) - V^c).

 Thus, equation (4) is established.

 Since V(c) < F(c) Ś U(c) by Lemma 14(a), since -e < F(d) - U(d) Ś F(d)

 - V(d) £ e by Henstock's Lemma, and since the functions G - and - G

 are nonincreasing on [c.d] we obtain

 0(t) I 0(t) - [U^t) - u^c) - (Dp g]
 JC

 = G(t) - U^t) + Ux(c) - G(c)

 i G(d) - Ux(d) + lye) - G(c)
 = F(d) - U(d) + U(c) - F(c)

 > -e

 and

 0(t) i 0(t) + [(Dp g - (V^t) - v^c))]
 JC

 = G(t) - V^t) + V^c) - G(c)

 < G(d) - Vj(d) + V^c) - G(c)
 = F(d) - V(d) + V(c) - F(c)

 i e.

 These inequalities are valid for each t in [c,d]. Hence, we see that

 |0(t) ļ i e for all t in [c,d]. Since e > 0 was arbitrary we conclude

 that 0(t) = 0 for all t in [c,d]. This completes the proof.
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 Theorems 10 and 18 prove that every GR integrable function is

 integrable and that the integrals are equal. Thus, the converse of Theorem 8

 has been established.

 I would like to thank the referees for making several helpful

 suggestions.
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