
 Rea¿ AnaíyòÁi Exchange Vo¿. 12 WumbeA 2 {19S6-S7)

 Edward M. Arnold, Department of Mathematics, Eastern Montana College,
 Billings, Montana 59101-0298.

 AN L1 VERSION OF THE GAUSS INTEGRAL THEOREM

 1.0 Introduction

 This paper presents a generalized version of Gauss' integral theorem in

 the form:

 f u(s)f, (s)ds = f (y)dy (1)
 3 (x+R) * x+R yk

 for all X e Fn.

 Here f ķ is the k**1 component of the outer unit normal to the region R
 translated by a point x e Rn. The usual version of this theorem requires u

 to be C1 on the closure of some fixed x + R and that the boundary of

 x + R be composed of finitely many C1 simple hypersurfaces. See Kellogg

 [6] for details. In this case ds is the usual element of surface area defined

 in advanced calculus, (see (3) below).

 More general versions of this theorem have been found by numerous

 authors. For example for n = 2, the papers of Verblunsky [11], Potts [8],

 and Menger [7] give extensions of Greens theorem in the plane, to which (1) is

 equivalent. The article by Gray and Morris [4] gives a good bibliography of

 work along these lines and surveys some of the results. As an example, let C

 be a simple closed contour in the pląne with K the closure of the bounded

 region determined by C. Let P, Q be real valued functions on IR2

 satisfying:

 1. 4^ » exist and are continuous on K 3y » 3x

 2. P, Q are continuous on K.

 3. e l,(K).
 3x By

 Then

 ic P dx + Q dy = JJk (JŠ - f|) dx dy .

 541



 Another sort of generalization of Gauss' theorem aims at reducing the

 hypotheses on the integrands in question with price of stronger hypotheses

 on R. For example, again in F2, a theorem of P.J. Cohen [1] states that

 hypotheses (1) (2) (3) above may be replaced by:

 (1'> % • % • IS • I? °n K
 (2) |jļ-H«I'<«
 (3) P, Q continuous on K

 when K is a rectangle.

 The purpose of this paper is to present a result in Rn which reduces

 the hypotheses on both u and R in (1). A function u e Lx(Rn) is said

 to have an L1 first partial derivative with respect to if there is a

 function Ux^ e L1 (R11) satisfying for hjj = (0, ... ,0,^,0, ... ,0) :

 r |u(* + hļ) h" - u(x) . k ļ = hk^o V h" . k
 Our version of (1) will require u to have L1 first partial derivatives.

 2.0 Gauss' theorem as a convolution equation

 When f is an L1 function and m is a finite Borei measure on Rn,

 the convolution f*M is defined for almost all x by:

 (f #m)(x) = Í f(x - t)dM(t)
 Rn

 The integrals in (1) can be recognized as convolutions with appropriate

 measures. This idea is behind much recent work on reconstructing functions

 from knowledge of their averages over hyperplanes and spheres. See the

 survey of Zalcman [12] for a discussion of some of these interesting results.

 For the present, the region R will be assumed to satisfy the following

 hypotheses

 (i) ďR is a simple closed C1 curve

 (ii) 0 € int(R) (interior of R) (2)

 (iii) the surface measure ds on 3R is given by:
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 ds = |f (u, v) I du dv, where f(u,v)

 is the outer unit normal to the point on 9R specified by parameters u,v in

 a C1 parametrization. These hypotheses will be substantially reduced below.

 Before the first proof of (1) is given, a simple lemma (See Stein and

 Weiss [10], p. 4) will be provided for completeness. We define the Fourier

 transform of an Ll function g by:

 ¿Cx) = J e"2*1*-1 *<t)dt .
 VP

 Ļ§»a_l. If f c L1 (R11) and fx^ is its L1 partial derivative, then

 *xk = 27Tixkf(x) .

 Proof:

 |j e~2nix't fxk(t)dt - f e"2"1"'' dt i

 ' J |fXk(t) - |dt -» 0
 as h^ -» 0 .

 Hence by the translation properties of the Fourier transform:

 |fx (X) - f(x) re27rih>- 1]| -* 0
 hk

 i.e. i"xk(x) = 27Tixkf(x) .

 So as to be able to consider the normal component ¿k(s) as a signed
 density function, we define:

 f ^ (x + R, X + s) = k**h component of unit outer normal
 to X + R at X + s if s c 3R

 0 , if s i 3R

 Then £k(x + R, x + s) is a measurable function on Rn x Rn which by (2) is

 continuous on Rn * 3R. Also note that, from geometry
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 fk(x + R, x + s) = £k(R,s)
 (3)

 ík(R,-s) = -*k(-R,s)

 To write (1) as a convolution equation, let m be Lebesgue measure on

 -R = {-x: X € R}, and let /*k be the signed measure:

 "H = -«k<-"'t)x3(-R)(t)dt

 with dt denoting Lebesgue measure on Fn. There follows:

 I = J uyk(t) Wt)dt
 x+R

 = J Uyk(t)x_R(x - t)dt

 = J Uyk(x - t)x_R(t)dt

 = (Uyk*M)(x) .

 The surface integral in (1) becomes:

 J u(s)fjt(s)ds = J u(t)ik(x + R,t)x3^x+Rj(t)dt è (x+R)

 = J u(t)*k(x + R,t)x3^_Rj(x-t)dt

 = J u(x - t)^k(x + R,x-t)Xj (_R) (t)dt

 = J u(x - t) fk(R»-t)Xj (_R) (t)dt

 = -J u(x - t) fk(-R, t)Xj (-R) (t)dt

 = (u*Mk)(x) .

 Now an L1 version of Gauss' theorem can be proved.

 Theorem 1. Let the region R satisfy the conditions (2). If u c L'C11)

 has L1 first partial derivatives Uyk then for almost all x e IRn;
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 í Uy, * (t)dt = f u(s)f,(s)ds k x+R * 3 (x+R) k

 Proof:

 J uyk(t)dt = (uyk#M)(x) and
 x+R

 (uyk#M)*(w) = Uyk(w)¿(w) = 2ttíw]{ Û(w) J e 27riw,t d^(t)

 = 2ttíw, u(w) f e 27r*w * dt
 K -R

 "/ ' r 3 -2wiwt j. = -u(w) "/ ' J TT e dt j.
 -R k

 ^-û(w) J e 27riw*ť fk(-R,t)x3^_Rj(t)dt .

 The last equality follows from Gauss' theorem for C1 functions on R. To

 complete the proof, notice that the Fourier transform of the surface integrad

 is:

 (f u(s)f, (s)ds)"(w) = (u#/0*(w)
 3 (x+R) * k

 = -û(w) J e 27riw,t fk(-R,t)x3^_R^(t)dt .

 Hence (uyk#A») (w) = (u*A*k) (w) f°r all w, and consequently (uyk*iO(x) =

 (u*Mk)(x) f°r almost all x.

 3 . 0 Generalizations

 Our first goal is to relax the conditions on the region R in (1). An

 examination of the above proof shows that if a Gauss theorem for the function

 t <-> exp(-2mwt) is available for a more general region R, then it can be

 inserted at the equality marked with the asterisk (*) and (1) will hold for

 such regions.

 The elements to be generalized are the notions of surface measure and

 unit outer normal. Quite general regions can be admitted in Gauss' theorem
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 provided the vector field in question is Lipschitzian and n - 1 dimensional

 Hausdorff measure is considered the surface measure. The most general

 theorem of this kind known to the writer is due to DeGiorgi and Federer.

 (See Federer [3].) To state this theorem, a few preliminaries are needed. We

 follow the treatment in Federer [3] in these matters. For any S c Fn and

 non-negative real number m, let

 = inf I a(m)[dia?(T)]m
 TcG

 where the infimum is taken over all countable coverings G of S with

 diam(T) < 6 for T € G. The normalization constant «(m) is given by:

 «(■) = r(|)m / r(| + l)

 The m dimensional Hausdorff (outer) measure of S is defined as:

 H°(S) = lim .
 <5-»0

 From these definitions it is seen that the special cases

 H*(S) = counting measure of S

 Hn(S) = Lebesgue measure of S

 obtain. Henceforth we denote Lebesgue measure on Fn by ^n to avoid
 confusion with other measures.

 Now let R be any £n measurable subset of Rn. An entirely measure

 theoretic definition can be given for the unit outer normal f(R,b) at b e 3R

 in terms of the metric density of restrictions of £n (denoted £n/S).

 For any £n measurable set S let

 •V/8,b) = Ī5 *"<B(b'r> " s>
 r-»0 a(n)rn

 where B(b,r) is the ball of radius r centered at b. The density ©" is
 defined by replacing lim by lim. When 0° = 0*n the common value is denoted
 by 0n. The exterior unit normal n of R at b e 3R is defined to be a

 vector of unit Euclidean length which satisfies:
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 0n(£n/{x:(x - b) • u > 0} n R»b) = 0

 0n(£n /{x: (x - b) • u < 0} n Rc,b) = 0

 It can be shown there is at most one such u. Finally, let

 l(R,b) = u if R has an exterior unit normal at b

 = 0 otherwise .

 The following extension of Gauss theorem can now be stated. See Federer [3]

 p. 478 for a proof.

 Theorem 2. (DeGiorgi and Federer).

 Let R be £n measurable and suppose Hn_1(K n 3R) < « for every

 compact K c Rn. If f is a Lipschitzian vector field on IP1 with compact

 support then

 Í 3x = J í(x)fk(R,x)dHn_1(x) .
 k

 With these tools Theorem 1 can be improved to the following result.

 Theorem 3.

 Let u e L1(Rn) have L1 first partial derivatives Uy^. If R
 satisfies the hypotheses for Theorem 2 then:

 J Uyk(t)d£n(t) = j' u(t)fk(x + RjtJdH11 *(t)
 x+R

 for £n almost all x € IRn.

 Proof.

 The measure theoretic normal fļt(R,t) can be used to define a function

 £n(x + R,x + s) on IRn x IR" as before. The translation and notation

 invariance of £n implies that the symmetry conditions (3) are satisfied by

 ffc. This time we define the Borei measure:

 d/^U) = -ťk(-H,t)xa(_R)(t)drfl"1(t)

 and we let the surface integral in (1) be written as
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 I u(t)ÉR(R + x, x + sJdH11 1 (s)

 = J u(t)fk(x +

 The proof now proceeds exactly as in Theorem 1 with Theorem 2 invoked at

 the equality marked with an asterisk (*).

 Next, a proof of a special case of Theorem 3 will be given which offers

 different possibilities for generalization. Furthermore this proof doesn't rest

 on any previous versions of Gauss' theorem. Let S(x,a) be the sphere

 {y:|y - x| = «}. If u € L1(Rn) has L1 first partial derivatives then for

 fixed « > 0,

 J uy,(t)dt = J u(s)f.(s)ds (4)
 B(x,a) S(x,a)

 for £n almost all x.

 (Alternative) Proof of (4):

 Define m and Mk as before with R = B(x,«). A direct calculation of a*
 A

 and Mk (for which see Stein and Weiss [10] p. 153 and Ch. 10 in Erdelyi et

 al [2] for some necessary Bessel function identities) results in:

 2rrixkM(x) = ^(x) (5)
 using this fact we obtain

 = ŪPļj = 27Tixk¿¿

 = óXk¿ = (uXk*M)' ,

 so (ufc/ifc) (x) = (uxk#A»)(x) for £n almost all x, and (4) is proved.

 Remark: The relation (5) expresses the fact that ¿¿k the distributional

 derivative of and can be established for regions with simple bounding

 hypersurfaces. (See Hormander [5], p. 60). The ball B(x,ot) was chosen as

 the domain of integration in (4) for the purpose of stating the following

 problem: Is the Gauss formula (4) true for every « > 0 for £n almost all

 x? This is perhaps the simplest case of a possible generalization of Theorem 1

 which seeks to allow the integration domains x + R to vary for each x.

 There are some measure theoretic subtleties to be faced to even make sense of

 the surface integral in (4) in this simple case.
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 Since Mk is a finite Borei measure, the convolution u*/¿k is defined and

 can be represented by the surface integral in (4) for £n almost all x.

 However the measure Mk depends on «, so we can't conclude that the

 convolution is the surface integral for every a > 0, for £n almost all x.

 The following lemma, whose proof can be found in Stein and Wainger [9], gives

 meaning to the surface integral for every a > 0, for £n almost all x.

 Lemma 2. If n * 3 and f is £n measurable on R11, then for £n

 almost all x, f restricted to S(x,«) is Lebesgue measurable on S(x,«) for

 every « > 0.

 Remarks:

 1. Lebesgue measure on S(x,a) is the rotation invariant measure of

 unit mass on S(x,a).

 2. It is not known to the writer whether n * 3 can be changed to

 n ^ 2 in the above lemmas.

 Finally, a suggestion for improving Theorem 1 from an anonymous referee

 is gratefully acknowledged.
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