F.S. Cater, Department of Mathematics, Portland State University Portland, Oregon 97207

SOME ANALYSIS WITHOUT COVERING THEOREMS

Let f be a function of bounded variation on the interval [a,b] and for a $\leq x \leq b$ let t(x) be the total variation of f on [a,x]. Let E denote the set of all points $x \in (a,b)$ such that either f or t has no finite or infinite derivative, or f and t have derivatives at x and t'(x) > |f'(x)|. Let m denote the Lebesgue measure and m_e denote the Lebesgue outer measure. A theorem attributed to de la Vallée Poussin [3, (9.2), (9.6) (ii) pp. 125, 127] states:

Theorem 1 (de la Vallée Poussin). Let f, t and E be as above. Then mt(E) = m(E) = 0.

The equation mt(E) = 0 is harder to prove than m(E) = 0, in part because t might map sets of measure 0 to sets of positive measure. Nevertheless, the former equation is important in real function theory. Witness chapters VII and IX of [3].

be any subset of (a,b). We say that Now let Е x is a right (left) point of density of E if $\lim m_{e}((x, x + h) \cap E) = 1$ **h↓**0 $(\lim m_{e}((x - h, x) \cap E) = 1).$ We say that x is a point of density of E if h↓0 it is both a left and right point of density of E. A well-known "density" theorem states:

Theorem 2. Almost all points of any set E are points of density of E.

It is known that if f is an arbitrary real valued function on [a,b], the set of points at which f has an infinite derivative is a set of measure 0. In [3, (4.4), p. 270] the contingent of plane sets is used to generalize this statement. We generalize again to obtain: **Theorem 3.** Let $E \in (a,b)$ be a nonvoid set and let f be a real valued function defined on E such that for each $x \in E$ which is a right accumulation point of E, we have

$$\lim_{u \in E, u \neq x} |f(u) - f(x)| (u - x)^{-1} = \infty$$

Then m(E) = 0.

Theorems 1, 2 and 3 can be proved by means of results that depend on the Vitali covering theorem. Sometimes Sierpinski's covering theorem is applied (consult [4, (11.41)] and what follows). The proof of Theorem 1 in [3] uses, moreover, integration of derivatives and other results that take time to develop. Theorem 2 can also be proved by arguments that are much like Banach's proof of the Vitali covering theorem [2, Theorem 3.20]; in [5], for a measurable E, a proof is given that does not require covering theorems. In this note we give relatively simple proofs of Theorems 1, 2 and 3 where no covering theorems, integration or contingents of plane sets are used. Our proof of Theorem 2 is different from the proof in [5].

Here is one principle we will use repeatedly explicitly and implicitly. If $S_1 \, \subset \, S_2 \, \subset \, S_3 \, \subset \, \cdots$ is an expanding sequence of sets, then $\lim m_e(S_n) = m_e(v_n \, S_n)$.

We begin with a key lemma whose order of difficulty is roughly the same as the Vitali covering theorem.

Lemma 1. Let F and f be nondecreasing functions on [a,b] and let $E \in [a,b]$. Suppose that for each $x \in E$ there exists a sequence of positive numbers (h_n) converging to 0 such that $F(x + h_n) - F(x) \ge f(x + h_n) - f(x)$ for each n. Then $m_eF(E) \ge m_ef(E)$.

Proof. Let c and d be numbers with 0 < c < d < (b-a)/2. Let

$$\begin{split} \mathbf{E}_{\mathbf{C}} &= \{\mathbf{x} \in \mathbf{E}: \text{ there is an } \mathbf{h} \in [\mathbf{c}, \mathbf{d}] \text{ such that} \\ &\quad \mathbf{F}(\mathbf{x} + \mathbf{h}) - \mathbf{F}(\mathbf{x}) \geq \mathbf{f}(\mathbf{x} + \mathbf{h}) - \mathbf{f}(\mathbf{x})\} \\ \mathbf{X} &= \{\mathbf{x} \in [\mathbf{a}, \mathbf{b}): \ \mathbf{m}_{\mathbf{e}} \mathbf{f}((\mathbf{a}, \mathbf{x}) \cap \mathbf{E}_{\mathbf{c}}) \leq \mathbf{F}(\mathbf{x}+) - \mathbf{F}(\mathbf{a}+)\}. \end{split}$$

Then $a \in X$. Let $v = \sup X$.

We claim that $v \ge b - d$. To prove it, assume that v < b - d. It follows routinely that $v \in X$ and that v is a right accumulation point of E_c . Let (w_n) be a decreasing sequence of points in E_c converging to v. There are numbers $h_n \in [c,d]$ such that $F(w_n + h_n) - F(w_n) \ge f(w_n + h_n) - F(w_n + h_n)$ f(wn) for each n. Without loss of generality, we may assume that the sequence (h_n) converges; let H = lim h_n . Then c \neq H \neq d so that $\mathbf{v} < \mathbf{v} + \mathbf{H} < \mathbf{b}$ There is a nonincreasing sequence (k_n) and a nondecreasing sequence (k_n') such that $\lim k_n = \lim k_n' = v + H$ and that $k_n' \neq w_n + h_n \neq k_n$ for each n. Then for each sufficiently great n, $F(k_n+) - F(v+) \ge F(w_n + h_n) - F(w_n) \ge f(w_n + h_n) - f(w_n) \ge$ $m_ef((v,v + H) \cap E_c)$. Hence $F((v + H)+) - F(v+) \ge m_ef((v,v+H) \cap E_c)$. This, together with $F(v+) - F(a+) \ge m_{e}((a,v) \cap E_{c})$, implies that

$$F((v + H)+) - F(a+) \ge m_e f((a,v+H) \cap E_c) .$$

So $v + H \in X$. This contradiction proves that $v \ge b - d$.

Now we choose an $x \in X$ with x > b - 2d. Then $F(b-) - F(a+) \ge F(x+) - F(a+) \ge m_e f((a,x) \cap E_c) \ge m_e f((a,b - 2d) \cap E_c)$. Letting first c and then d approach 0, we obtain $F(b-) - F(a+) \ge m_e f(E)$.

Let U be any open set containing F(E) and let I_1 , I_2 , I_3 , ... be the components of U. Each $F^{-1}(I_n)$ is a subinterval of [a,b], and we obtain from the preceding paragraph $m_e f(E \cap F^{-1}(I_n)) \leq m(I_n)$ for each n. Therefore

$$\mathbf{m}_{\mathbf{e}}\mathbf{f}(\mathbf{E}) \leq \sum_{\mathbf{n}} \mathbf{m}_{\mathbf{e}}\mathbf{f}(\mathbf{E} \cap \mathbf{F}^{-1}(\mathbf{I}_{\mathbf{n}})) \leq \sum_{\mathbf{n}} \mathbf{m}(\mathbf{I}_{\mathbf{n}}) = \mathbf{m}(\mathbf{U}) .$$

Finally, we approximate $m_eF(E)$ with m(U) and obtain $m_ef(E) \leq m_eF(E)$. \Box

Lemma 1 is essentially all we need to prove Theorem 1.

Proof of Theorem 1. Our strategy is to prove it first for right derivatives. The result for left derivatives is found by substituting -t(a + b - x) for t(x) and -f(a + b - x) for f(x). Finally, there are at most countably many points where a function has left and right derivatives but has no two-sided derivative [1, (17.9)]. We proceed in three steps.

1. Let S be the set of all points x such that t has no right derivative, finite or infinite, at x. We claim that $m_et(S) = 0$. To prove this, choose rational numbers c and d with c > d and define

$$S_0 = \{x \in S: D^{\mathsf{T}}t(x) > c, d > D_{\mathsf{T}}t(x)\}$$
.

.

Applying Lemma 1 to F = t and f(x) = cx, we obtain $m_e t(S_o) \ge cm_e(S_o)$; with F(x) = dx and f = t we get similarly $m_e t(S_o) \le dm_e(S_o)$. Hence $m_e(S_o) = m_e t(S_o) = 0$. It follows that m(S) = mt(S) = 0.

2. We prove that $m_{e}t(E) = 0$. Assume to the contrary that $m_{e}t(E) > 0$. By part 1 we have also $m_{e}t(E \setminus S) > 0$. Each point $x \in E \setminus S$ satisfies the strict inequalities $t'_{+}(x) > D_{+}f(x)$ and $t'_{+}(x) > -D^{+}f(x)$. It follows that there is a $c \in (0,1)$ such that $m_{e}t(E_{o}) > 0$ where

$$\mathbf{E}_0 = \{\mathbf{x} \in \mathbf{E}: ct'_+(\mathbf{x}) > D_+ \mathbf{f}(\mathbf{x}) \text{ and } ct'_+(\mathbf{x}) > -D^+ \mathbf{f}(\mathbf{x})\} .$$

Let $a = u_0 < u_1 < \cdots < u_n = b$ be a partition of [a,b] such that

(1)
$$t(b) - t(a) - \sum_{j=1}^{n} |f(u_j) - f(u_{j-1})| < (1 - c)m_e t(E_0)$$

Let $\alpha_j = -1$, if $f(u_{j-1}) < f(u_j)$, and $\alpha_j = 1$ otherwise (j = 1,...,n). Let g be a function on [a,b] such that

$$g(x) = t(x) - \sum_{i=1}^{j-1} |f(u_j) - f(u_{j-1})| + \alpha_j(f(x) - f(u_{j-1}))$$

for $x \in [u_{j-1}, u_j]$ (j = 1,...,n). It is easy to see that g is a nondecreasing function on [a,b] and that g(b) - g(a) equals the left-hand side of (1). Hence $g(b) - g(a) < (1 - c)m_et(E_o)$.

It follows from the definition of E_o that for each $x \in E_o$ there exist two sequences of positive numbers, (h_n) and (k_n) , each converging to 0, such that

$$ct(x + h_n) - ct(x) > f(x + h_n) - f(x)$$

and

$$ct(x + k_n) - ct(x) > -f(x + k_n) + f(x)$$

and hence either

$$g(x + h_n) - g(x) > (1 - c)(t(x + h_n) - t(x))$$

or

$$g(x + k_n) - g(x) > (1 - c)(t(x + k_n) - t(x))$$

for all n for which x, $x + h_n$ and $x + k_n$ lie in the same subinterval $[u_{j-1}, u_j]$. By Lemma 1, $m_{eg}(E_o) \ge (1 - c)m_{et}(E_o)$. But

$$\mathbf{m}_{e}g(\mathbf{E}_{o}) \neq g(b) - g(a) < (1 - c)\mathbf{m}_{e}t(\mathbf{E}_{o}) .$$

This contradiction proves that $m_et(E) = 0$.

3. We prove that $m_e(E) = 0$. Now $E = U_{C>0} E_C$ where $E_C = \{x \in E: D^+t(x) > c\}$. It suffices to prove that $m_et(E_C) = 0$ for any c > 0. Applying Lemma 1 to F = t and f(x) = cx we obtain $m_et(E_C) \ge cm_e(E_C)$. But $m_et(E_C) = 0$ by part 2, so $m_e(E_C) = 0$. This completes the proof. \Box

In Theorem 1 we see that if f is a function of bounded variation on [a,b] then f' exists almost everywhere on [a,b]. In fact f' is finite almost everywhere on [a,b] [1, (17.17)], and this can be deduced from Lemma 1 as follows. Let c be a positive number and let $S = \{x: t_{+}^{+}(x) = \infty\}$. Apply Lemma 1 to F = t and f(x) = cx to obtain $m_{e}t(S) \ge cm_{e}(S)$. But c is arbitrary, so $m_{e}(S) = 0$.

We also have mf(E) = 0 in Theorem 1. To prove this, let \forall be an open set containing t(E) and let $I_1, I_2, ...$ be the components of \forall . Then $t^{-1}(I_n)$ is a subinterval of [a,b] and

$$\sup f(t^{-1}(I_n)) - \inf f(t^{-1}(I_n)) \leq m(I_n)$$

Hence $m_e f(t^{-1}(I_n)) \neq m(I_n)$. Finally,

$$m_e f(E) \leq \sum_n m_e(E \circ t^{-1}(I_n)) \leq \sum_n m(I_n) = m(\forall)$$

Since mt(E) = 0 we have also mf(E) = 0.

It is worth noting that Lemma 1 is an easy consequence of the Vitali covering theorem. To see this, let U be an open set containing F(E). Without loss of generality, we delete from E any point where F or f is not continuous. Use the Vitali covering theorem to cover almost all of f(E) with mutually disjoint intervals of the form [f(x),f(x + h)] where $[F(x),F(x + h)] \in U$ and $F(x + h) - F(x) \ge f(x + h) - f(x)$. Then

$$\mathbf{m}_{\mathbf{e}}\mathbf{f}(\mathbf{E}) \leq \sum (\mathbf{f}(\mathbf{x} + \mathbf{h}) - \mathbf{f}(\mathbf{x})) \leq \sum (\mathbf{F}(\mathbf{x} + \mathbf{h}) - \mathbf{F}(\mathbf{x})) \leq \mathbf{m}(\mathbf{U}) ,$$

so $m_e f(E) \leq m_e F(E)$.

Thus a relatively short development of Theorem 1 from the Vitali covering theorem goes as follows. Prove Lemma 1 as in the preceding paragraph, then prove Theorem 1 as we did here.

Proof of Theorem 2. We will prove it only for right density. The proof for left density, then, is obtained by considering the set $\{-x: x \in E\}$.

Define the function $f(x) = m_{\Theta}((a,x) \cap E)$ for $a \le x \le b$. It suffices to prove that $f'_{+} = 1$ almost everywhere on E. But $D^{+}f(x) \le 1$ for any x, so it suffices to prove that $m_{\Theta}(S_{C}) = 0$ where $S_{C} = \{x \in E: D_{+}f(x) < 1 - c\}$, for any positive number c.

Put g(x) = x - f(x) for $a \le x \le b$. Then g is nondecreasing on [a,b]and $D^+g(x) > c$ on S_c . By Lemma 1, $m_eg(S_c) \ge cm_e(S_c)$. But $g(b) - g(a) = b - a - m_e(E)$, so $cm_e(S_c) \le b - a - m_e(E)$.

Now let U be any open set containing E and let I_1 , I_2 , ... be the components of U. By the preceding paragraph,

$$\operatorname{cm}_{e}(\operatorname{I}_{n} \cap \operatorname{S}_{c}) \neq \operatorname{m}(\operatorname{I}_{n}) - \operatorname{m}_{e}(\operatorname{I}_{n} \cap E)$$

for all n, and

$$\operatorname{cm}_{e}(S_{c}) = \sum_{n} \operatorname{cm}_{e}(I_{n} \cap S_{c}) \neq \sum_{n} \operatorname{m}(I_{n}) - \sum_{n} \operatorname{m}_{e}(I_{n} \cap E) = \operatorname{m}(U) - \operatorname{m}_{e}(E) .$$

We approximate $\operatorname{m}_{e}(E)$ with $\operatorname{m}(U)$ and obtain $\operatorname{m}_{e}(S_{c}) = 0.$

We include a lemma that is so elementary that it requires neither the Vitali covering theorem nor our Lemma 1. We state it for the sake of completeness.

Lemma 2. Let $E \in [a,b]$, let c be a positive number, and let f be a function defined on E such that each $x \in E$ which is a right accumulation point of E satisfies $\lim_{u \to x} \sup_{u \in E} |f(u) - f(x)| (u - x)^{-1} < c$. Then $m_e f(E) \leq cm_e(E)$.

Proof. Fix a number d > 0. Let

$$\mathbf{E}_{\mathbf{d}} = \{\mathbf{x} \in \mathbf{E} : |\mathbf{f}(\mathbf{u}) - \mathbf{f}(\mathbf{x})| < \mathbf{c}(\mathbf{u} - \mathbf{x}) \text{ for any } \mathbf{u} \in \mathbf{E} \cap (\mathbf{x}, \mathbf{x} + \mathbf{d})\}.$$

Let U be any open set containing E_d and let I_1 , I_2 , ... be the components of U. Partition [a,b] into finitely many disjoint intervals J_1 , J_2 , ..., each of length $\langle d$. Now if u, $v \in E_d \cap I_i \cap J_j$, then $|u - v| \langle d$

and hence |f(u) - f(v)| < c|u - v|. Thus it follows that

$$\sup f(\mathbf{E}_{d} \cap \mathbf{I}_{i} \cap \mathbf{J}_{j}) - \inf f(\mathbf{E}_{d} \cap \mathbf{I}_{i} \cap \mathbf{J}_{j}) \leq \operatorname{cm}(\mathbf{I}_{i} \cap \mathbf{J}_{j}) ,$$

and hence $m_e f(E_d \cap I_i \cap I_j) \leq cm(I_i \cap J_j)$.

It follows that

$${}^{\mathbf{m}} {}^{\mathbf{f}(\mathbf{E}_{d})} \stackrel{\boldsymbol{\epsilon}}{=} \sum_{ij} {}^{\mathbf{m}} {}^{\mathbf{f}(\mathbf{E}_{d} \cap \mathbf{I}_{i} \cap \mathbf{J}_{j})} \stackrel{\boldsymbol{\epsilon}}{=} \sum_{ij} {}^{\mathbf{cm}(\mathbf{I}_{i} \cap \mathbf{J}_{j})} = {}^{\mathbf{cm}(\mathbf{U})} .$$

We approximate $m_e(E)$ with m(U) and obtain $m_ef(E_d) \leq cm_e(E)$. Letting d tend to 0 we obtain $m_ef(E) \leq cm_e(E)$.

Thus if f is defined on [a,b] and f is differentiable at each point of E and $|f_{+}(x)| < c$ for $x \in E$, then $m_{e}f(E) \leq cm_{e}(E)$. See also [1, (17.27)]. Lemma 2 is what we need to prove Theorem 3.

Proof of Theorem 3. It suffices to let f be bounded on E because $E = \bigcup_{n=1}^{\infty} f^{-1}(-n,n)$. For each integer N > 0, let

$$E_{N} = \{x \in E: |f(u) - f(x)| > u - x \text{ for all } u \in E \cap (x, x + N^{-1})\}.$$

It suffices to prove $m_e(E_N) = 0$, because $E = \bigcup_{N=1}^{\infty} E_N$. We may suppose that $b - a < N^{-1}$ because the interval [a,b] is the union of finitely many intervals of length $< N^{-1}$.

So we may assume, without loss of generality, that |f(u) - f(v)| > |u - v| for u, $v \in E_N$. Let g be the inverse function f^{-1} of f from $f(E_N)$ to E_N . For positive numbers c and d, put

$$S_{cd} = \{x \in E_N: |f(u) - f(x)| > c(u - x) \text{ for } u \in E_N \cap (x, x + d)\}.$$

If r, s ϵ f(S_{cd}), then |g(r) - g(s)| < |r - s|; if furthermore |g(r) - g(x)| < d, then $c^{-1}|r - s| > |g(r) - g(s)|$. By Lemma 2,

$$c^{-1}m_ef(E) \ge c^{-1}m_ef(S_{cd}) \ge m_eg(f(S_{cd})) = m_e(S_{cd}).$$

Letting d tend to 0 we obtain $c^{-1}m_ef(E) \ge m_e(E_N)$. But f(E) is bounded. So let c tend to ∞ and obtain $m_e(E_N) = 0$.

In particular, if f is defined on [a,b] and if $f'(x) = \pm \infty$ for each $x \in E$, then m(E) = 0. See also [3, (4.4), p. 270].

REFERENCES

- 1. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, 1965.
- 2. J.C. Oxtoby, Measure and Category, Springer-Verlag, 1971.
- 3. S. Saks, Theory of the Integral, second revised edition, Dover, 1964.
- 4. E.C. Titchmarsh, The Theory of Functions, second edition, Oxford, 1939.
- 5. L. Zajiček, An elementary proof of the one-dimensional density theorem, Amer. Math. Monthly 86 #4 (1979) 297-298.

Received June 9, 1986