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 SOME ANALYSIS WITHOUT COVERING THEOREMS

 Let f be a function of bounded variation on the interval [a,b] and

 for a < X * b let t(x) be the total variation of f on [a,x]. Let E

 denote the set of all points x c (a,b) such that either f or t has no

 finite or infinite derivative, or f and t have derivatives at x and

 t'(x) > |f'(x)|. Let m denote the Lebesgue measure and me denote the

 Lebesgue outer measure. A theorem attributed to de la Vallée Poussin [3,

 (9.2), (9.6) (ii) pp. 125, 127] states:

 Theorem 1 (de la Vallée Poussin). Let f, t and E be as above. Then

 mt(E) = m(E) = 0.

 The equation mt(E) =0 is harder to prove than m(E) = 0, in part

 because t might map sets of measure 0 to sets of positive measure.

 Nevertheless, the former equation is important in real function theory.

 Witness chapters VII and IX of [3].

 Now let E be any subset of (a,b). We say that x is a right

 (left) point of density of E if lim me((x,x + h) n E) = 1
 h^O

 (lim me((x - h,x) n E) = 1). We say that x is a point of density of E if
 h^O

 it is both a left and right point of density of E. A well-known "density"

 theorem states:

 Theorem 2. Almost all points of any set E are points of density of E.

 It is known that if f is an arbitrary real valued function on [a,b], the

 set of points at which f has an infinite derivative is a set of measure 0.

 In [3, (4.4), p. 270] the contingent of plane sets is used to generalize this

 statement. We generalize again to obtain:
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 Theorem 3. Let E c (a,b) be a nonvoid set and let f be a real valued

 function defined on E such that for each x e E which is a right

 accumulation point of E, we have

 lim |f(u) - f(x)|(u - x) 1 = ® .
 ucE, u¿x

 Then m(E) =-0.

 Theorems 1, 2 and 3 can be proved by means of results that depend on

 the Vitali covering theorem. Sometimes Sierpinski's covering theorem is

 applied (consult [4, (11.41)] and what follows). The proof of Theorem 1 in [3]

 uses, moreover, integration of derivatives and other results that take time to

 develop. Theorem 2 can also be proved by arguments that are much like

 Banach's proof of the Vitali covering theorem [2, Theorem 3.20]; in [5], for a

 measurable E, a proof is given that does not require covering theorems. In

 this note we give relatively simple proofs of Theorems 1, 2 and 3 where no

 covering theorems, integration or contingents of plane sets are used. Our

 proof of Theorem 2 is different from the proof in [5].

 Here is one principle we will use repeatedly explicitly and implicitly. If

 Si c S2 c S3 c ••• is an expanding sequence of sets, then lim me(Sn) =

 me(un Sn).

 We begin with a key lemma whose order of difficulty is roughly the same

 as the Vitali covering theorem.

 Lemma 1. Let F and f be nondecreasing functions on [a,b] and let

 E c [a,b). Suppose that for each x e E there exists a sequence of positive

 numbers (hn) converging to 0 such that F(x + hn) - F(x) ^

 f(x + hn) - f(x) for each n. Then meF(E) * mef(E).

 Proof. Let c and d be numbers with 0 < c < d < (b-a)/2. Let

 Ec = {x c E: there is an h € [c,d] such that
 F(x + h) - F(x) i f (x + h) - f(x)} ,

 X = {x « [a,b): mef((a,x) n Ec) * F(x+) - F(a+)}.

 Then a e X. Let v = sup X.
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 We claim that v * b - d. To prove it, assume that v < b - d. It

 follows routinely that v e X and that v is a right accumulation point of

 Ec. Let (wn) be a decreasing sequence of points in Ec converging to v.

 There are numbers hn « [c,d] such that F(wn + hn) - F(wn) * f(wn + hn) -
 f(wn) for each n. Without loss of generality, we may assume that the

 sequence (hn) converges; let H = lim hn. Then c * H * d so that

 v < v + H < b. There is a nonincreasing sequence (kn) and a
 nondecreasing sequence (kn') such that lim kn = lim kn' = v + H and that

 ^n' * wn + hn é kn for each n. Then for each sufficiently great n,

 F(kn+) - F(v+) » F(wn + hn) - F(wn) * f(wn + hn) - f(wn) *

 mef((v,v + H) n Ec). Hence F((v + H)+) - F(v+) * mef((v,v+H) n Ec). This,

 together with F(v+) - F(a+) * me((a,v) n Ec), implies that

 F((v + H)+) - F(a+) » mef((a,v+H) n Bc) .

 So v + H € X. This contradiction proves that v * b - d.

 Now we choose an x c X with x > b - 2d. Then F(b-) - F(a+) *

 F(x+) - F(a+) * mef((a,x) n Ec) * mef((a,b - 2d) n Ec). Letting first c and

 then d approach 0, we obtain F(b-) - F(a+) * mef(E).

 Let U be any open set containing F(E) and let Ii, I2, I3, ... be the

 components of U. Each F-1(In) is a subinterval of [a,b], and we obtain

 from the preceding paragraph mef(E n F~l(In)) * m(In) for each n.
 Therefore

 m f (E) < I m f(E n F_1(I )) < Ī m(I ) = m(U) .
 e ne n n n

 Finally, we approximate meF(E) with m(U) and obtain mef(E) < meF(E). □

 Lemma 1 is essentially all we need to prove Theorem 1.

 Proof of Theorem 1. Our strategy is to prove it first for right

 derivatives. The result for left derivatives is found by substituting

 -t(a + b - x) for t(x) and -f(a + b - x) for f(x). Finally, there are at

 most countably many points where a function has left and right derivatives

 but has no two-sided derivative [1, (17.9)]. We proceed in three steps.

 1. Let S be the set of all points x such that t has no right

 derivative, finite or infinite, at x. We claim that met(S) = 0. To prove this,
 choose rational numbers c and d with c > d and define
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 Sq = {x € S: D+t(x) > c, d > D+t(x)} .
 Applying Lemma 1 to F = t and f(x) = ex, we obtain met(S0) * cme(S0);

 with F(x) = dx and f = t we get similarly met(S0) ú dme(S0)> Hence

 me(So) = met(S0) - 0. It follows that m(S) = mt(S) = 0.

 2. We prove that met(E) = 0. Assume to the contrary that met(E) > 0.
 By part 1 we have also met(E'S) > 0. Each point x € E'S satisfies the

 strict inequalities t+(x) > D+f(x) and t+(x) > -D+f(x). It follows that there

 is a c e (0,1) such that met(E0) > 0 where

 Eq = {x c E: ct^(x) > D+f(x) and ct^(x) > -D+f(x)} .

 Let a = u0 < Ui < ••• < un = b be a partition of [a,b] such that

 (1) t(b) - t(a) - |f(Uj) - < (1 - c)met(E0) .

 Let otj = -1, if fiuj-j) < f(uj), and aj = 1 otherwise (j = l,...,n). Let g
 be a function on [a,b] such that

 g(x) = t (x) - |í(Uj) - I + <*j(f(x) - f (Uj_ļ) )

 for x € [uj_!,uj] (j = l,...,n). It is easy to see that g is a nondecreasing
 function on [a,b] and that g(b) - g(a) equals the left-hand side of (1).

 Hence g(b) - g(a) < (1 - c)met{E0).

 It follows from the definition of E0 that for each x € E0 there exist

 two sequences of positive numbers, (hn) and (kn)» each converging to 0,
 such that

 ct(x + hn) - ct(x) > f(x + hQ) - f(x)
 and

 ct(x + k ) - ct(x) > -f(x + k ) + f(x)
 n n

 and hence either

 g(x + hn) - g(x) > (1 - c) (t(x + hn) - t (x) )
 or

 g(x + kn) - g(x) > (1 - c)(t(x + kfl) - t (x) )
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 for all n for which x, x + hn and x + kn lie in the same subinterval

 [uj_i,uj]. By Lemma 1, meg(E0) * (1 - c)met(E0). But

 me«(E0) é < t1 ~ c)met(Eo) .

 This contradiction proves that met(E) = 0.

 3. We prove that me(E) = 0. Now E = Uc>o Ec where Ec =

 {x e E: D+t(x) > c}. It suffices to prove that met(Ec) = 0 for any c > 0.
 Applying Lemma 1 to F = t and f(x) = ex we obtain met(Ec) * cme(Ec).

 But met(Ec) = 0 by part 2, so me(Ec) = 0. This completes the proof. a

 In Theorem 1 we see that if f is a function of bounded variation on

 [a,b] then f exists almost everywhere on [a,b]. In fact t' is finite

 almost everywhere on [a,b] [1, (17.17)], and this can be deduced from Lemma

 1 as follows. Let c be a positive number and let S = {x: t+(x) = «}. Apply

 Lemma 1 to F = t and f(x) = ex to obtain rngtifS) * crne(S). But c is
 arbitrary, so me(S) = 0.

 We also have mf(E) = 0 in Theorem 1. To prove this, let v be an open

 set containing t(E) and let Ij, I2, ... be the components of v. Then

 t-1 (In) is a subinterval of [a,b] and

 sup f(t Ł dn) ) - inf *
 Hence nigf (t-1 (In) ) < m(In). Finally,

 ■ f(E) < I m JE n t"ł(I n )) < I m(In) = m (v) . e ne n n

 Since mt(E) = 0 we have also mf(E) = 0.

 It is worth noting that Lemma 1 is an easy consequence of the Vitali

 covering theorem. To see this, let U be an open set containing F(E).

 Without loss of generality, we delete from E any point where F or f is

 not continuous. Use the Vitali covering theorem to cover almost all of f(E)

 with mutually disjoint intervals of the form [f(x),f(x + h)] where

 [F(x),F(x + h)] c U and F(x + h) - F(x) * f(x + h) - f(x). Then

 mef(E) * I (f(x + h) - f (x) ) * I (F(x + h) - F(x) ) í m(U) ,

 so mef(E) * meF(E).
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 Thus a relatively short development of Theorem 1 from the Vitali covering

 theorem goes as follows. Prove Lemma 1 as in the preceding paragraph, then

 prove Theorem 1 as we did here.

 Proof of Theorem 2. We will prove it only for right density. The proof

 for left density, then, is obtained by considering the set {-x: x e E}.

 Define the function f(x) = me((a,x) n E) for a * x * b. It suffices to

 prove that f+ = 1 almost everywhere on E. But D+f(x) < 1 for any x,

 so it suffices to prove that me(Sc) = 0 where Sc = {x e E: D+f(x) < 1 - c},

 for any positive number c.

 Put g(x) = x - f(x) for a < x < b. Then g is nondecreasing on [a,b]

 and D+g(x) > c on Sc. By Lemma 1, meg(Sc) * cme(Sc). But
 g(b) - g(a) = b - a - me(E), so cme(Sc) < b - a - me(E).

 Now let U be any open set containing E and let It, Ia, ... be the

 components of U. By the preceding paragraph,

 cm (I n S ) * m(I ) - m (I n E)
 e n c n en

 for all n, and

 cm (s J = I cm (I n S) * I m(I ) - I in (I n E) = m(U) - m ÍE) . -
 ec nene nn nen e

 We approximate me(E) with m(U) and obtain me(Sc) =0. □

 We include a lemma that is so elementary that it requires neither the Vitali

 covering theorem nor our Lemma 1. We state it for the sake of completeness.

 Lema 2. Let E c [a,b], let c be a positive number, and let f be a

 function defined on E such that each x e E which is a right accumulation

 point of E satisfies lim sup |f(u) - f(x)|(u - x)-1 < c.

 Then mef(E) * cme(E). U€®

 Proof. Fix a number d > 0. Let

 E^ = {x e E: |f(u) - f(x) | < c(u - x) for any u € E n (x,x + d)} .
 Let U be any open set containing Ed and let It, I2, ... be the

 components of U. Partition [a,b] into finitely many disjoint intervals Jtf

 J2, ..., each of length < d. Now if u, v e Ed n Ij n jj, then |u - v| < d
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 and hence |f(u) - f(v)| < c|u - v|. Thus it follows that

 sup f(E, n I. n J.) - inf f(E, n I. n J.) « cm(I. n J.) , d i y d i y i y

 and hence mef(Ed n Ii n Ij) * cm(Ii n Jj).

 It follows that

 m f (E ,) < I. . m f (E , n I. n J.) A J. . cm(l. n J.) = cm(ü) . e d ij . e d , i y ij . i y

 We approximate me(E) with m(U) and obtain mef(Ec|) < cme(E). Letting d

 tend to 0 we obtain mef(E) * cme(E). □

 Thus if f is defined on [a,b] and f is differentiable at each point of

 E and |f+(x)| < c for x e E, then mef(E) * cme(E). See also [1, (17.27)].

 Lemma 2 is what we need to prove Theorem 3.

 Proof of Theoren 3. It suffices to let f be bounded on E because

 E = Un"ļ f~1(-n,n). For each integer N > 0, let

 Ejj = {x € E: |f(u) - f(x)| > u - x for all u e E n (x,x + N *")} .
 00

 It suffices to prove me(Efj) = 0, because E = En. We may suppose that

 b - a < N-1 because the interval [a,b] is the union of finitely many

 intervals of length < N-1 .

 So we may assume, without loss of generality, that |f(u) - f(v)| >

 I u - v I for u, ve En« Let g be the inverse function f~l of f from

 f(ĒN) to En« For positive numbers c and d, put

 Sc(j = {x e E^: |f(u) - f(x)| > c(u - x) for u e E^ n (x, x + d)} .
 If r, se f(Sc(ļ), then |g(r) - g(s)| < | r - s | ; if furthermore

 |g(r) - g(x)| < d, then c-1|r - s| > |g(r) - g(s)|. By Lemma 2,

 c_1mef(E) * c_1mef(Scd) * «^(f^)) =

 Letting d tend to 0 we obtain c-Imef(E) * me(E(>j)- But f(E) is

 bounded. So let c tend to ® and obtain me(EN) =0. □

 In particular, if f is defined on [a,b] and if f'(x) = *«• for each

 x e E, then m(E) = 0. See also [3, (4.4), p. 270].
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