Hidefumi Katsuura , Department of Mathematics, San Jose State University, San Jose, California, 95192-0103

k-to-1 Functions on (0,1)

1. Introduction

If k is a positive integer, and if $f: X \longrightarrow Y$ is a function, then f is said to be k -to-1 if, for every x in X, $f^{-1}f(x)$ contains exactly k elements. Jo Heath, [2], proved that a 2-to-l function from either [0,1] or (0,1) into a Hausdorff space must be discontinuous at infinitely many points. Inspired by her paper, Kenneth Kellum and the author, [3], proved that, for each integer $k \ge 2$, a k-to-1 function from [0,1] onto itself must have infinitely many discontinuities. However, Harrold (see [1]) gives an example, which he attributes to G. E. Schweigert, of a 3-to-l continuous function from [0,1] onto a circle (see Figure 1). Using this example, one can construct a k-to-1 continuous function from [0,1] onto a circle for any $k \geq 4$.

 This paper is an extension of [3] and we prove the following results:

(1) Let k be an integer \geq 3. Consider a k-to-1 function f on (0,1) onto itself. If k is odd, then there is a continuous k-to-1 function f from (0,1) onto itself. If k is even, then f must have a discontinuities, and the number of discontinuity could be one. (2) For every positive integer k, a k-to-1 function from (0,1) onto a simple closed curve S^1 must have infinitely many discontinuities .

(3) For every positive integer $k \geq 3$, the figure "8" is a k-to-1 continuous image of both [0,1] and (0,1).

 The techniques used in this paper are very similar to those in [3].

2. k-to-1 functions from (0,1) onto itself.

Theorem 1. Let k be an integer \geq 2. If f is a 2k-to-1 function from (0,1) onto itself, then f must have a discontinuity, and the least number of discontinuities of such a function f is one. There exists a (2k-l)-to-l continuous function from (0,1) onto itself.

Proof: Suppose $f: (0,1) \longrightarrow (0,1)$ is a 2k-to-1 continuous surjection. Without loss of generality, we assume that $\lim_{x \to 0^+} f(x) = 0$, and $\lim_{x \to 1^-} f(x) = 1$,
 $\lim_{x \to 0^+} f(x) = 1$, for otherwise f has maximum or minimum values (see Lemma 2 of [3]). Let us denote the set $f^{-1}(1/2)$ by

$$
\{x_1 \le x_2 \le \ldots \le x_{2k}\}\
$$

where $0 < x_1 < x_{2k} < 1$. For each $i = 1, 2, ..., 2k-1, i[x_i,x_{i+1}]$ is an interval contained in $(0,1/2]$ or $[1/2,1)$. Then out of 2k-1 intervals $f[x_i,x_{i+1}]$, i = 1, 2, ..., 2k-1, at most k of them are contained in [1/2,1), and at most k of them are contained in (0,1/2]. Hence, without loss of generality, k intervals of the form $f[x_i, x_{i+1}]$ are contained in (0, 1/2], and let A be the index set { i : $\overline{f}(x_i,x_{i+1}] \subset (0, 1/2]$ }. Then $1A1 = k$, and let b be a number between max_{i} min $f[x_i,x_{i+1}]$: $i \in A$ } and $1/2$. Then $f^{-1}(b)$ \bigcap $[x_1, x_{2k}]$ contains at least 2k elements. But since the limit of $f(x)$ as x approaches to 0 from the right is 0, and $f(x_1)$ = $1/2$, there also exists an element r in $(0,x_1)$ such that $f(r)$ = b. Therefore, the set $f^{-1}(b)$ contains at least 2k+1 elements, which is a contradiction.

 Now, the number of discontinuities- of a 2k-to-l function from (0,1) onto itself could be as small as one. Figures 2, 3, and 4 are graphs of 4-to-l, 6-to-l, and 8-to-l functions, respectively, form (0,1) onto itself with one discontinuity. The general construction of a 2k-to-l function from (0,1) onto itself is left to the reader.

 Figure 5 is the graph of 3-to-l continuous function from (0,1) onto itself. If one carefully replaces some line segments with "N's", the example can be made to be 5-to-l(see figure 6),

 $\mathcal{L}_{\mathcal{A}}$

 $\frac{1}{2}$

 and this can be repeated to construct a (2k-l)-to-l continuous function from (0,1) onto itself.

3. k-to-1 functions from (0,1) onto a circle.

We consider that a circle, s^1 , to be a quotient space of the closed interval [0,1] obtained by identifying the two points 0 and 1 to a point, and denote the quotient map by g:[0,1] \longrightarrow S¹.

 In order to prove the next theorem, we need one more lemma which is Theorem 2 in [3].

 Lemma 3. Suppose f is a k-to-1 continuous function from an open set U of real numbers onto (0,1). Then the number of components of U is no more than k.

 Indication of the proof: First, one must observe the following: If (a,b) is a component of U, then the both $\lim_{x\to a^-} f(x)$ and $\lim_{x\to b^+} f(x)$ are either 0 or 1.

Assume that U has more than k components, say C_1 , C_2 , ..., C_k , C_{k+1} are components of U. From the above observation, $f(C_i)$ is either $(0,1)$, $(0,y]$, or $[y,1)$ for some y in $(0,1)$. Let $P = \{i:$ $f(C_i) = (0, y]$ for some y in $(0,1)$ }, $Q = \{i: f(C_i) = [y,1) \text{ for }$ some y in $(0,1)$, and R = { i : $f(C^1) = (0,1)$ }. Without loss of generality, assume that $1PI \geq 1Q1$. Let a be a number between 0 and $min\{ max(f(C_i)) : i \in P \}$. Then

 $1f^{-1}(a)$ $1 \geq 21PI + 1RI \geq 1PI + 1Q1 + 1RI = k+1$. But this is impossible since f is k-to-1. **Theorem 4:** Let k be a positive integer. If $f:(0,1) \longrightarrow S^1$ is a k-to-1 surjection, then k has infinitely many discontinuities. **Proof:** Assume f is only discontinuous at $d_1 < d_2 < ... < d_n$. Let us denote the set $f({d_1, d_2, ..., d_n})$ by ${s_1, s_2, ..., s_m}$. Without loss of generality, assume that $0 = s_1 < s_2 < ... < s_m < 1$. Denote the set $f^{-1}(\{s_1, s_2, ..., s_m\})$ by $\{x_1, x_2, ..., x_{km}\},$ where $0 < x_1 < x_2 < ... < x_{km} < 1$. Let $s_{m+1} = 1$, $x_0 = 0$, $x_{km+1} = 1$. For each i = 1, 2,, m, write f $^{\star}((s_{i}, s_{i+1}))$ as U_{i} and let f_{i} = $f1_{U_i}: U_i \longrightarrow (s_i,s_{i+1})$. Then, for each $i = 1, 2, ..., m$, U_i is the finite union of open intervals of the form (x_j,x_{j+1}) , say t_j many. Hence,

(*) $t_1 + t_2 + \ldots + t_m = km + 1.$

On the other hand, by Lemma 3, we must have, for each $i = 1, 2,$..., m, t_i is less than or equal to k. Hence, we have $t_1 + t_2 + \ldots + t_m \leq km$. han or equal to k. H
1 ^{+ t}2 ⁺ + t_m ≤
diction to (*) But this is a contradiction to (*) .

4. A k-to-1 continuous image of both $[0,1]$ and $(0,1)$ for $k > 3$.

We will show that the figure "8" is a k-to-1 continuous image of both $[0,1]$ and $(0,1)$ for $k \geq 3$. More precisely, let X be the quotient space of [0,1] obtained by identifying three points 0, 1/2, and 1 to a point. Denote the quotient map by h: $[0,1] \longrightarrow X$. We will show a construction of k-to-1 continuous functions from both [0,1] and (0,1) onto X.

Let $f_3:[0,1] \longrightarrow [0,1]$ be the continuous function in Figure 7,
r:[0,1] \longrightarrow [0,1] the continuous function in Figure 8. $r : [0,1] \longrightarrow [0,1]$ the continuous function in Figure 8. Suppose $\mathbf{r}_{3\mathbf{n}}$ is defined for some $\mathbf{n}\geq 1$ such that $\mathbf{r}_{3\mathbf{n}}(1)$ is either 0 or 1. Then we define $r_{3(n+1)}: [0,1] \longrightarrow [0,1]$ as follow: $f_{3n}(2x)$ if $0 \le x \le 1/2$,

 $f_{3(n+1)}(x) = \begin{cases} r(2x-1) & \text{if } 1/2 < x \leq 1 \text{ and } f_{3n}(1) = 0, \end{cases}$ $1 - r(2x-1)$ if $1/2 < x \le 1$ and $f_{3n}(1) = 1$. Let $f_7 = f_3 \nvert 2+1$: $[0,1] \rightarrow [0,1]$ be a function defined by; $f_3(3x)$ if $0 \le x \le 1/3$,

 $f_7(x) = 1 - f_3(3x-1)$ if $1/3 < x \le 2/3$, $3x - 2$ if $2/3 < x \le 1$.

Suppose $\mathtt{r}_{3\mathtt{n}+1}$ is defined for some $\mathtt{n}\geq 2$ such that $\mathtt{r}_{3\mathtt{n}+1}(1)$ is either 0 or 1. Then we define $r_{3(n+1)+1}$: [0,1] \longrightarrow [0,1] as
follow:

 $f_{3n+1}(2x)$ if $0 \le x \le 1/2$,
 $f_{3n+1}(2x)$ if $1/2 \le x \le 1/2$, $f_{3(n+1)+1}(x) = \int r(2x-1)$ if $1/2 < x \le 1$ and $f_{3n+1}(1) = 0$, $1 - 1(2x-1)$ if $1/2 \leq x \leq 1$ and $1_{3n+1}(1) = 1$.
(0.11 be the continuous function in Figure9. Let $s:[0,1) \longrightarrow (0,1]$ be the continuous function in Figure9. Let $f_8 = f_{3.2+2}:[0,1] \longrightarrow [0,1]$ be a function defined by; $\int f_3(4x)$ if $0 \le x \le 1/4$, $s(4x-1)$ if $1/4 < x \leq 1/2$, $f_g(x) = \begin{cases} 2x - 1 & \text{if } 1/2 < x \leq 3/4, \\ 0 & \text{if } 1 \leq 1/2. \end{cases}$ $-2x + 2$ if $3/4 < x \le 1$. Suppose f_{3n+2} is defined for some $n \geq 2$. We define $f_{3(n+1)+2}:[0,1] \longrightarrow [0,1]$ as follow:

 $f_{3n+2}(2x)$ if $0 \le x \le 1/2$, $f_{3(n+1)+2}(x) = \int_{0}^{1} f(2x-1)$ if $1/2 < x \le 1$ and $f_{3n+2}(1) = 0$, $\begin{pmatrix} 1 & -1(2x-1) & 11 & 1/2 & 2 & 2 & 1 & \text{and} & 3n+2(1) & -1 & \text{.} \\ 1 & 1 & 1/2 & 2 & 2 & 1 & \text{and} & 3n+2(1) & -1 & \text{.} \end{pmatrix}$ Let $\frac{4}{4}$ and $\frac{1}{5}$ be the continuous function in Figure 10 $\frac{1}{3}$ 11, respectively. Then f_n is defined for all $n \geq 3$, and hf_n is a continuous n-to-1 function from [0,1] onto the figure "S". Let $g_3:(0,1) \longrightarrow [0,1]$ be the continuous function in Figure 12. Let $t:[0,1) \longrightarrow [0,1)$ be the continuous function defined by $t(x) = s(x)$ for all x in $[0,1)$. Suppose g_{3n} is defined for some n \geq 1. Then we define $g_{3(n+1)}:(0,1) \longrightarrow [0,1]$ as follow: $g_{3(n+1)}: (0,1) \longrightarrow [0,1]$ as follow:
 $f_{3n+1} = f_{3n+1} = f_{$ $\int g_{3n}(2x)$ if $0 < x < 1/2$, $g_{3(n+1)}(x) = \begin{cases} t(2x-1) & \text{if } 1/2 \le x < 1 \text{ and } \lim_{a \to 1^-} g_{3n}(a) = 0, \\ 1 - t(2x-1) & \text{if } 1/2 \le x < 1 \text{ and } \lim_{a \to 1^-} g_{3n}(a) = 1. \end{cases}$
Let $g_{7} = g_{2} g_{31}$; $(0,1) \longrightarrow [0,1]$ be a function defined by; Let $g_7 = g_{3,2+1}:(0,1) \longrightarrow [0,1]$ be a function defined by; $\int g_3(3x)$ if $0 < x < 1/3$, $g_7(x) = 1 - f_3(3x-1)$ if $1/3 \le x \le 2/3$, $3x - 2$ if $2/3 < x < 1$. Suppose g_{3n+1} is defined for some $n \geq 2$. Then we define $\mathfrak{g}_{3\,\mathrm{(n+1)+1}}\mathfrak{:}\,\mathrm{^{(0,1)}}\longrightarrow\mathrm{^{[0,1]}}$ as follow: $\int \frac{g_{3n+1}(2x)}{x}$ if $0 < x < 1/2$, $\begin{array}{c} \mathcal{G}_3(n+1)+1^{(x)} \\ \hline \end{array}$ $\begin{array}{c} \mathcal{G}_1(zx-1) \\ \hline \end{array}$ if $1/2 \leq x < 1$ and $\begin{array}{c} 1 \text{ and } 1 \text{ in } 93n+1(a) = 0, \\ \hline \end{array}$ 1 - t(2x-1) if $1/2 \le x < 1$ and $\lim_{a \to 1} g_{3n+1}(a) = 1$. Let $g_8 = g_{3,2+2}:(0,1) \longrightarrow [0,1]$ be a function defined by; $\int g_3(4x)$ if $0 < x < 1/4$, $g_8(x) = \{ s(4x-1) \text{ if } 1/4 \leq x < 1/2,$ 2x -1 if $1/2 \le x < 3/4$, $\begin{array}{l} -2x + 2 \text{ if } 3/4 \leq x < 1. \end{array}$ Suppose g_{3n+2} is defined for some $n \geq 2$. Then we define $g_{3(n+1)+2}:(0,1) \longrightarrow [0,1]$ as follow: $\int g_{3n+2}(2x)$ if $0 < x < 1/2$, $\begin{array}{l} \mathcal{G}_3(n+1)+2^{(x)} - \begin{array}{c} \bigcup (2x-1) & \text{if } 1/2 \leq x \leq 1 \text{ and } 1 \text{ if } 0 \leq x \leq 1 \end{array} \end{array}$ 1 - t(2x-1) if $1/2 \le x < 1$ and $\lim_{a \to 1^-} g_{3n+1}(a) = 1$. Let g_4 and g_5 be functions from (0,1) onto (0,1) in Figure 13 and
-Figure 14, respectively. Then $g_n:(0,1) \longrightarrow [0,1]$ is defined for

 $\ddot{}$

 ε_3

 $\mathbf{1}$

 $\frac{1}{2}$

 \overline{O}

every $n \geq 3$, and hq_n is a continuous n-to-1 function from (0,1) onto the figure "8".

REFERENCES

- 1. O. G. Harrold, The non-existence of a certain type of continuous transformation. Duke Math. J. 5 (1939), 789-793.
- 2. J. W. Heath, Every exactly 2-to-l functions on the reals has an infinite set of discontinuities, Proc. Am. Math. Soc. (to appear)
- 3. H. Katsuura and K. R. Kellum, k-to-1 functions on an arc, Proc. Am. Math. Soc. (to appear)

 Keyword: k-to-1 function. 1980 Mathematics subject classifications: Primary 26A15, 26A03, 54C30, 54C10.

Received February 4, 1987