
 Re.a¿ AnaJLyòiA Exchange. I io t. 72 Wo. 2 [1986-87)

 Hidefumi Katsuura , Department of Mathematics, San Jose State
 University, San Jose, California, 95192-0103

 k-to-1 Functions on (0,1)

 1 . Introduction

 If k is a positive integer, and if f:X - Y is a function,
 then f is said to be k-to-1 if, for every x in X, f_1f(x)
 contains exactly k elements. Jo Heath, [2], proved that a 2-to-l
 function from either [0,1] or (0,1) into a Hausdorff space must
 be discontinuous at infinitely many points. Inspired by her
 paper, Kenneth Kellum and the author, [3], proved that, for each
 integer k > 2, a k-to-1 function from [0,1] onto itself must have
 infinitely many discontinuities. However, Harrold (see [1]) gives
 an example, which he attributes to G. E. Schweigert, of a 3-to-l
 continuous function from [0,1] onto a circle (see Figure 1).
 Using this example, one can construct a k-to-1 continuous
 function from [0,1] onto a circle for any k > 4.

 Figure 1.

 This paper is an extension of [3] and we prove the following
 results:

 (1) Let k be an integer > 3. Consider a k-to-1 function f on
 (0,1) onto itself. If k is odd, then there is a continuous k-to-1
 function f from (0,1) onto itself. If k is even, then f must have
 a discontinuities, and the number of discontinuity could be one.
 (2) For every positive integer k, a k-to-1 function from (0,1)
 onto a simple closed curve S1 must have infinitely many
 discontinuities .

 (3) For every positive integer k > 3, the figure "8" is a k-to-1
 continuous image of both [0,1] and (0,1).
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 The techniques used in this paper are very similar to those
 in [ 3 ] .

 2. k-to-1 functions from (0,1) onto itself.
 Theorem 1. Let k be an integer >2. If f is a 2k-to-l function
 from (0,1) onto itself, then f must have a discontinuity, and the
 least number of discontinuities of such a function f is one.

 There exists a (2k-l)-to-l continuous function from (0,1) onto
 itself.

 Proof: Suppose f:(0,l) - > (0,1) is a 2k-to-l continuous
 surjection. Without loss of generality, we assume that

 lim f(x) = 0, and lim f(x) = 1,
 X- *0+ X- >1-

 for otherwise f has maximum or minimum values (see Lemma 2 of
 [3]). Let us denote the set f_1(l/2) by

 <X1 < x2 <

 where 0 < Xļ < x2k < 1. For each i = 1, 2, ...., 2k-l, f[xj_/xi+i3
 is an interval contained in (0,1/2] or [1/2,1). Then out of 2k-l

 intervals f[x^,x^+1], i = 1, 2, ..., 2k-l, at most k of them are
 contained in [1/2,1), and at most k of them are contained in
 (0,1/2]. Hence, without loss of generality, k intervals of the
 form are contained in (0, 1/2], and let A be the index

 set { i : fCxi>xi+i] C (0, 1/2] }. Then 1A1 = k, and let b be a
 number between max{ min f[xi'xļ+i] : i €A } and 1/2. Then
 f_1(b) A Cxi'x2k^ contains at least 2k elements. But since the
 limit of f(x) as x approaches to 0 from the right is 0, and f(x1)
 = 1/2, there also exists an element r in (0,x, ) such that f(r) =

 -l .
 b. Therefore, the set f (b) contains . at least 2k+l elements,
 which is a contradiction.

 Now, the number of discontinuities- of a 2k-to-l function from
 (0,1) onto itself could be as small as one. Figures 2, 3, and 4

 are graphs of 4-to-l, 6-to-l, and 8-to-l functions, respectively,
 form (0,1) onto itself with one discontinuity. The general
 construction of a 2k-to-l function from (0,1) onto itself is left
 to the reader.

 Figure 5 is the graph of 3-to-l continuous function from
 (0,1) onto itself. If one carefully replaces some line segments
 with "N's", the example can be made to be 5-to-l(see figure 6),
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 Figure 2  Figure 3

 Figure 4

 Figure 5  Figure 6
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 and this can be repeated to construct a (2k-l)-to-l continuous
 function from (0,1) onto itself.

 3. k-to-1 functions from (0,1) onto a circle.
 We consider that a circle, S1, to be a quotient space of the

 closed interval [0,1] obtained by identifying the two points 0
 and 1 to a point, and denote the quotient map by g:[0,l] - >• S1.

 In order to prove the next theorem, we need one more lemma

 which is Theorem 2 in [ 3 ] .
 Lemma 3. Suppose f is a k-to-1 continuous function from an open
 set U of real numbers onto (0,1). Then the number of components
 of U is no more than k.

 Indication of the proof: First, one must observe the following:
 If (a,b) is a component of U, then the both lim f(x) and lim f(x)

 X- ^a- x->b+
 are either 0 or 1.

 Assume that U has more than k components, say (^, C2,
 Ck, Cjc+1 are components of U. From the above observation, f(C^)
 is either (0,1), (0,y], or [y,l) for some y in (0,1). Let P = {i:

 fiCļ) = (0,y] for some y in (0,1)}/ Q = (i: f^) = [y,l) for
 some y in (0,1)}, and R = { i : f(C^) = (0,1) }. Without loss
 of generality, .assume that 1P1 > 1Q1. Let a be a number between 0

 and min{ max(f(C^)) : i CP }. Then
 If"1 (a) 1 > 21P1 + 1R1 > 1P1 + 1Q1 + 1R1 = k+l.

 But this is impossible since f is k-to-1.
 Theorem 4: Let k be a positive integer. If f:(0,l) - > S1 is a
 k-to-1 surjection, then k has infinitely many discontinuities.

 Proof: Assume f is only discontinuous at d^ < d2 < ... < dn. Let
 us denote the set f({d1, d2, ..., ^n}) by {s1, s2, •••, sm} •
 Without loss of generality, assume that 0 = s1 < s2 <.*..< sm < 1.
 Denote the set f"1({s1, s2, ..., sm)) by {xx, x2,

 where 0 < x± < x2 < . . . < x^ < 1. Let sm+1 = 1, xQ = 0, xkm+1 = 1.
 For each i = 1, 2, . . . . , m, write f~ ((si/si+i)) as uj_ and let
 = fly :U^ - » (si'si+i)* Then, for each i = 1, 2, . . . , m, is

 the finite union of open intervals of the form (xj/xj+i)/ saY
 many . Hence ,

 (*) x ' t, 12 + t0 + .... + t_ = km + 1. x ' 12 .... ni
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 On the other hand, by Lemma 3, we must have, for each i = 1, 2,

 . . . , m, t^ is less than or equal to k. Hence, we have
 t, + t~ + .... + t_ < km.
 12 Iti -

 But this is a contradiction to (*) .

 4. A k-to-1 continuous image of both [0,1] and (0,1) for k > 3.
 We will show that the figure "8" is a k-to-1 continuous image

 of both [0,1] and (0,1) for k > 3. More precisely, let X be the
 quotient space of [0,1] obtained by identifying three points 0,
 1/2, and 1 to a point. Denote the quotient map by h:[0,l] - > X.
 We will show a construction of k-to-1 continuous functions from

 both [0,1] and (0,1) onto X.

 Let f3:[0,l] - > [0,1] be the continuous function in Figure 7,
 r :[0,1] - [0,1] the continuous function in Figure 8.

 Suppose f3n is defined for some n > 1 such that f3n(l) is either
 0 or 1. Then we define f3 (n+i) : [0,1] - [0,1] as follow:

 f3n(2x) if 0 < X < 1/2,
 f3(n+l)(x) = 1 r(2x_1) if 1/2 < X < 1 and f3n(l) = 0,

 1 - r(2x-l) if 1/2 < X < 1 and f3n(l) = 1.
 Let fj = f3 2+1 : t0'1] - > C 0 / 1 ] be a function defined by;

 f 3 ( 3x) if 0 < X < 1/3,
 f7(x) =1 1 - f 3 ( 3x-l) if 1/3 < X < 2/3,

 k 3x - 2 if 2/3 < X < 1.
 Suppose f3n+1 is defined for some n > 2 such that ^n+ļi1) is
 either 0 or 1. Then we define f3(n+i)+i: [0/1] - * [0/1] as
 follow:

 ' f3n+i(2x) if 0 < X < 1/2,
 f3rn+1N+1(x) =• r (2x-l) if 1/2 < X < 1 and f3n+1(l) = 0,

 1 - r(2x-l) if 1/2 < X < 1 and f3ņ+2_(1) = !•
 Let s:[0,l) - ^ (0,1] be the continuous function in Figure9.

 Let fg = f3 2+2:[0,l] - > [0,1] be a function defined by;
 f f 3 ( 4x) if 0 < X < 1/4,
 s ( 4x-l) if 1/4 < X < 1/2,

 fg(x) =' 2x -1 if 1/2 < X < 3/4,
 ^ -2x +2 if 3/4 < X < 1.

 Suppose f3n+2 is defined for some n > 2. We define
 f3(n+l)+2: [0'1] 1:0,13 as follow:
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 f3n+2(2x) if O < X < 1/2,
 f 3 3 (n+l)+2 fn+lì +2 =' ri2*"1) if 1/2 < X < 1 and f3n+2(l) = 0,
 3 3 fn+lì (n+l)+2 +2 ļi _ r(2x_i} ±tl/3<xsl and f3n+2(l) f*™(1) . !.

 Let f4 and fg be the continuous function in Figure 10 and Figure
 11, respectively. Then fn is defined for all n > 3, and hfn is a
 continuous n-to-1 function from [0,1] onto the figure "S".

 Let g3:(0,l) - > [0,1] be the continuous function in
 Figure 12. Let t:[0,l) - [0,1) be the continuous function
 defined by t(x) = s(x) for all x in [0,1).

 Suppose g3n is defined for some n > 1. Then we define
 g3 (n+i) : Í0'1) - * C0'3-] as follow:

 f g3n(2x) if 0 < x < 1/2,
 g3(n+i)(x) = T t ( 2x-l) if 1/2 < x < 1 and lim^ g3n(a) = 0,

 I 1 - t ( 2x-l) if 1/2 < " x < 1 and lim g,_(a) = l.
 v " a->l- Jn

 Let g7 = g3 2+^:(0,l) - [0,1] be a function defined by;
 r g3 *(3x) if 0 < x < 1/3,

 g7(x) =- 1 - f 3 ( 3x-l) if 1/3 < x < 2/3,
 3x - 2 if 2/3 < X < 1.

 Suppose g3n+1 is defined for some n > 2. Then we define
 g3fn+:n+i: C0'1) - * t0'1] as follow:

 f*3n+l<2x> " 0 « * < ^2'
 g3(n+l)+l(x) =' tí2^1) if 1/2 < x < 1 and lim 1~ g3n+1(a) = 0, a-> 1~

 1 - t ( 2x- 1) if 1/2 < x < 1 and lim g3n+i(a) = !•
 a->l-

 Let gg = g3 2+2:(0,l) - * ke a function defined by;
 1 g3(4x) if 0 < x < 1/4,

 g8(x) = i s (4x-l) if 1/4 < x < 1/2,
 2X -1 if 1/2 < X < 3/4,

 ^ -2x + 2 if 3/4 < X < 1.
 Suppose g3n+2 is defined for some n > 2. Then we define
 g3 (n+l)+2: (0'1) - * [0'1] as follow:

 fg3n+2(2x) if 0 < x < 1/2,
 g3(n+l)+2(x) =' ^2*-1) if 1/2 < x < 1 and lim^g3n+1(a) = 0,

 1 - t(2x-l) if 1/2 < x < 1 and lim g3n+i(a) = 1'
 a ^ 1 ~~

 Let g4 and g5 be functions from (0,1) onto (0,1) in Figure 13 and
 Figure 14, respectively. Then gn:(0,l) - > [0,1] is defined for
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 Figure 7.  Figure 8.  Figure 9-

 Figure 10.  Figure 1 1 .  Figure 12.

 Figure 13-  Figure 14.
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 «very n > 3, and hgn is a continuous n-to-1 function from (0,1)
 onto the figure "8".
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