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MONOTONICITY THEOREMS

In [2] Bruckner proved the following theorem:

Let £ be a function satisfying the following conditions on an
interval [é,ﬁ] t (1) £ is a Darboux function in Baire's class one;
(ii) £ is VBG; (iii) £ is increasing on each closed subinterval of
[2,P] on which it is continuous and VB. Then f is continuous and
nondecreasing on [a,b].

Bruckner obtained this result while answering affirmatively a
problem presented by Zahorski in [24]. (This question was also
answered independently by Swiatkowski in [23].)

In Chapter III we ceneralize Bruckner's theorem, but the
preof of our theorem is shorter. We then give applications of this
theorem which zeneralize consequences of Bruckner's theorem.

The following theorem of Banach ([21],p.286) is well known:

any function which is continucus and satisfies Lusia's con=
dition (N) on an interval, is derivable at every point of a set of
positive measure.

Of course condition (N) implies ccndition T, and it is this
fact that leads to the prcof of Banach's theorem. In [9], Foran
ceneralizes this result, sbowing that Banach's theorem remains

‘true if condition (N) is replaced by Foran's condition (M).

An improvement of Foran's theorem is given in Chapter IV
(Theorem 9), which is then used to prove a wonctocnicity theorem
(Theorem 10) which generalizes the following result of Nina Bary

([1] cr [21],p.286). (Condition (XN) is replaced by condition (M).)
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Every continuous function F which satisfies condition (N) and
whose derivative is nonnegative at a.e. point x where P(x) is
derivable, is monotone nondecreasing.

Further we'give many applications of Theorem 10.

One of the most remarkable results of Chapter V is Ccrollary 7,
which is a partial answer to the Open problem of this chapter.

CHAPTER I - PRELIMINARIES

FPor convenience, if P is a property for functions defined cn
a certain domain, we will aleo use P to denote the class of all
functions having the property P. We denote by A the closure cf the
set A and by int(A) the intericr of the set A, By B(F;X) we denote
the graph of F on the set X, We denote by O(F;I) the oscillation
of the function F on the interval I and by 0(F;x) the oscillation
of the function F at the point x. The set XCR has a pair of
isolated neighbours if there exist X1»X,€ 2 such that Xy and %5
are isolated in X and (xl,xz)r\x = @. A property is said to hpld
n.e. (nearly everywhere) if it bolds zxcept on a countable set of
points, Let Ey ={x : £(x) = y}. It is called a level set of the
funetion £. Let ‘R'l@ ﬁ.2 (respectively ‘Al 'ﬁ2> denote the
linear space (resp. the semi=-linear space) generated by the classes
of functions ~A1 and \ﬂz. Let @ denote the class of all continuous
functions and let D be the class of all Darboux functions on [C,1].

Definition 1.[10]. Given a natural rumber N and a set E, a

function F is said to be B(N) on E if there is a number M < +o0 ,
such that for any sequence {Ik} of nonoverlapping intervals with

I.NE £ @, there exist intervals J,,, = 1,...,N, for which

N N
B(F;ENU I.)C U (I,XJ.) and 2 2 |J..|l< M.
kK 2 1tk Ykn k n=1| n
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Definition 2, [10]. Given a natural number N and a set E, a
function F will be said to be A(N) ca E if for every €& >0, there
is a §>0 such that if {Ik} are nonoverlapping intervals with
I,NE # @ and 3|I |< S then there exist intervals Jy,, n=l,...,Y

N N
such that B(FENU I NC (I, X3 ) and 2 > |T .|<E
e e C Y M e k n=1| inl

Definition 3.[8]. Given a natural number N and a set B, a

function F will be said to be E(N) on E if for every subset 3 of E,
|S| = 0, and for any €>0 there exist rectangles D, = I, XJ,,, o=
l,.06,N, with {Ik} a sequence of nonoverlapping intervals, IkﬂS #J
. N N

such that B(F;S)C v U D, = and -% n§l diam(D,_)<€ .

Let ¥ (resp.®,€) be the class of all functions F, defined on
a closed interval I, for which there exist a sequence of sets E  and
natural numbers N, such that I = Ul‘.‘]'_,1 and F is A(Nn) (respe. B(Nn),
E(N,)) on B,.

Let d be an additive class of functions derivable in a sense
which is compatible with the ordinary derivative F'(x), i,e., DF(x)
= F'(x) at almost every point x where F'(x) exists. Then FN I NG

can be taken as a class of primitives and the ¥ -« integral (the
!

Foran integral) can be defined by Fd- ff(x)dx = F(b) - F(a),
a

where DF(x) = f(x) a.e. on [a,b].
Definition 4. A functicn F fulfils Iusin's conditicn (M) on a
set E if |F(S)| = 0 for avery subset S of T for which |S| = O.

Definition 5, 4 function F:[C,1]—>R is said to be B' on EC

[0,1] if there is 2 number U < +o0 such that fcr any seguence {In} of
nonoverlapping intervals with INE £ #, there exists a sequence of

closed sets K, for which 3(F;IN %{ I.)C g (I,x K,) and %}IKn|< M.
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Definition 6,[15]. A function F:[0,1]—>R is said to be iC
on a set E if for every &§>0, there exists a &>0 such that
ZCF(b.)-F(ai))<8 for each sequence of nonoverlapping intervals
[a;905], with endpoints in E and 3(b;-3;)<& . Let 4C = {F: -F
€AiC}. Then AC = ACNAC.

Definition 7, A function F belongs to the class ACG (resp.VEG,
f') onaset B if E = YE, and F is AC (resp. VB, B') on each E.
If condition AC is replaced by AC (resp. AC) we obtain the class
ACG (resp. ACC). If the sets E, are supposed to be closed we obtain
the classes [aCG], [acc], [iCG] amd [vBG]. Clearly if F|g s B(N)
then F|g€3B', hence § C &',

Definition 8. A funetion F:[0,l]—>R satisfies condition [U]
(resp. [¥X ]) on B = BEC[0,1] if F is AC on each closed subset of B
on which F is VBNE (resp. VB,NE ). Let [M] = {F : -Fe[H]};

[u,] = {F : -F e[4,1}s ] =[EN[uls [u,] = [W]IN[KH,]. Tote that
F is [M](resp. [M‘]) on B if F is iC (resp. 4C,) on each closed
subset of E on which F is VBNE (resp. VB*ﬂ‘e ). (For the second
part see Theorem 8.8,p.233 of [21].) Clearly [M]JN¥ is identical
with Foran's conditicn (K) (see [9]).

Definition 9. 4 function F:[0,1]—R satisfies conditicn [E']

if F is il cn each clssed subinterval of [0,1] on which it is
73N6 . Let [N'] = {F: -Fe[T1} ;5 MMi=[EIN[n7].

Definition 10. s functicn F:[O,l]—.—’R satisfies 3rucxner's

condition Bi on [O,l] if F is increasing on each clcsed subinterval
of [0,1] on waich it is VBNG . Let By = {F : -FE€B;}.
Definition ll.[4]. The function F has the oroperty Dd on

[0,1] if r([a,b]) is everywhere dense on the closed interval with
endpoints F(a) and F(b), for every subinterval [a,b] of [C,1].

Definition 12,[4#]. The functicn FE D has the property D' on

[O,l] if the values ye F( [O,l]) for which E'y is countably infinite
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and dense in the sense of order, form a8 null set. A function F has
the property D" on [O,l] if it bas property D' on every interval
[2,8]C [0,1]. (& set is dsase in the sense of order if between
every two points of E there is a point of Z.)

Definition 13%. The function FeD satisfies condition (D:':) on
[O,l] if the values ye F( [_O,l]) for which E_ is countably infinite

J
and for whiech Ey dces nct contain a pair of isolated neizhbours
form a null set. A function FED has the property (D) on [0,1] if
it is (D}) on every subinterval of 0,1 .

Definition 14.[4]. The function F is [cG] (or B}) on a set T

if E can be expressed as the sum of a denumerable sequence of
closed sets E over each of which F is continuocus.
| Definition 15.[16]. A function F:[0,1]—>R is uCM if F is
increasing on the closed subinterval [¢,d]C [0,1] whenever it is
So on the open interval (c,d). Let 1CM = {F: -F€uCM} and let
CM = 1CMNuCM. | '

Definition 16, For a function F:[0,1]—R we denote by (+)
and (=) the following properties:
(+) for 0ga<b<l, if F(a)<F(b) then |F(PN[a,b])| > F(b)-F(a);

(=) for 0<a<bs<l, if F(a)>F(b) then |F(WN[a,t])| = F(a)-F(b);

where P = {x : O<STF'(x)<+02} and N ={x : O2F'(X)> -}.
Definition 17.[22]. Let F:[0,I]—R; ' ={x : F'(x) = +00};
W ={F : |F(E*®)| =0}; ¥ ={F : FET™=}; 1™ = 770N K"

Remark 1, a) Ccnditions 4(1l) and AC are eguivalent. iAlso

conditions B(1l) and VB are ecuivalent. (See [10].)

b) ACG is strictly contained in F and 73G is strictly contained in
D (see [8]); ?’{']B']’_ is strictly contained in BN B] (see [10]) ;

® is strictly contaired in ®' (gee the function F constructed in

the procf of Theorem 1,c) of [€]).
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¢) FC€ C(N)C [M] and all the inclusions are strict (see [6]).

d) @ F =7 . (See the proof of Theorem 5,¢) of [8].)

e) [E]C [W,] amd (MCTF%. (See [22],p.128.)

£) ICCVBCT, for continuous functions on [0,1].

g) AcGNB C [AcG] C aca.

h) BIN[vBE]N[¥] = [iC&] amd BN [acG] = [acG].

1) DB,® ¥ = DBy on [0,1]. (See [3], Theorem 3.2,p.1%.)

3) (M) @ ACG = (M) for contimumous functioms on [0,1]. (See [6].)
In fact [M][F] (accNB) = [M].

k) (M)CT, for measurable functions. (See [#], Theorem IV,p.473,)

1) DCuCM on [0,I] . The converse is not true.

w) D@6 CDy on [0,1. (See [#], Theorem V,0.473.)
n) Dg @6 =Dy on [0,1]. (See [5].)

o) (DL)CD' and (D)CD" on [0,1].

p) V.6,NE€ CT,C T,. (3ee [21], Theorem 6.3,p.279.)

Leuma 4, [6] . A Darboux function F:[0,1]—»R which is VB, on

'-—

a closed subset Q of [0,1], is contimious om Q.
Theorem 4.[9]. A ccntinuous funetion F:[0,1]—»R satisfies (M)
on QC[0,1] iff F is AC on any set EC R on which F is monctone.

Lemma B.[15] . Let F:[0,1]—>R, FE AC on [0,1] and F'(x) =0

a.e. where F'(x) exists. Then F is increasing on [0,1].

CHAPTER II = RELATIONS BETWEEN SOME CLASSES OF FUNCTIONS

Theorem 1. a) There exists a function F:[0,1]—[0,1], Fe
(Dg=D)NACG sach that F = G+H, where HE ACGN((DY)-DBy) and GE
ACGNG .

b) D is strictly contained in Dy on [0,1].
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¢) DBy is strictly contained in (D#) om [0,1].
d) There is a function £€ DB,N VBG such that fé(DJ':); There is a
function £, € DB,NVBGN (D;) such that flé (Dg) .

e) I fe'(D}:,)n T, on [0,1] , then £ has properties (+) and (=-).
£) I1£ £€ 8 on [0,1] then £ satisfies T, on [U,1].

g) The class [M] is strictly contained in [M ] on [0,1].

h) The class [M,] is strictly conmtained in[M'] on [0,1].

Corollary 1., ¥ CDBC (D3) C(D;)CDCDy and sll the inclusions

are strict.

. ‘ .

Proof of Theorem 1, &) Let I, \ = [ap’k,bp,k], K= 1,000, ,
be the closures of the intervals contiguous to C, from the p=th
step in the Cantor ternary process. (C = the Cantor termary set.)
Let B = [0,1] - pokIP’k and d; o= (ay #bo ()/2, Tet Sp= 1+ 24
+ eeo 4+ 1, So = O, Zach point x€C is uniquely represented hy

Zci(x)/51. et F(x) = 0, x€ER and F(x) = i/(n+l), erSn+i,k .

i= 1,2,000’n+10 Let G(X) = O, xeC and let G(X) = 1/(1'14'1), X =
dSn+i,k’ Bxtending G linearly on each of the intervals [asn-;-i,k’

dSn-n-i,k] and [dsn+i,k’bsn+i,k]’ i =1,2,..0,0+¢1, we have G defined

and contimuous on [0,1]. Let H(x) = F(x)=C(x). Then H:[0,1]— [0, 1]

and H(x) = 0, x€H H(x) = 1/(m1) if x€feg 3 1405 1k}

HAg .4 ) = (i=1)/(n+l); H(x) is linear on each of the intervals
o+

[”sn+i,k’dsn+i,k] and [dsn+i,k’bsn+i,k3’ i = 1,2,...,n+1, Clearly

F,G,HE ACG and FED., Let I = [a,b]C [0,1], (a,b)NC # #. Then
s

n .
there exists an interval I; = [e,d], ¢,d€C, ¢ = ‘Zl -°i<°)/31 and
1=

0o .
d=c+ 2 273, for scme natural number n. I, contains 23-1
i:Sn+l

426



intervals contiguous to C from the step S j=1,2,00., of the

n+Jj?
Cantor ternary process. We show that FeDd.JCIearly [0,1] contains
the inmterval with endpoints F(a) and F(b), and F(I)D Uii/(n+i},
1= 1,2,000y0¢3, 3 = 1,2,e0. + Hence F(T) = [0,1] and FED,. We
show that HE(D",) on [0, « For each i = 1,2,...,0+1, let K(i) be

a natural number such that Isn+i,K(i)CII° Then H(Isn+i,K(i))C

[i-1)/(n+1), 1/(n+l)]. Hence H(I;) = [0,1] and HED. Let ye [0,1]

be an irrational number. Then Isn+i’K(i)n Ey ccntains a pair cof

isolated neighbours, for some i = 1,2,...,0+1, and HE(DY). We
show that H¢DB1. Suppose on the contrary that HE DBl. Then by
Remark 1,i), it follows that H+GE€ DB;. Contradiction.

b) The function F constructed in the proof of a) has the following
properties: F¢D and FEDy.

¢) The function H constructed in the procf of a) has the following
properties: H€(D}) and H'¢DB]_. It remains to show that the class
DB) is comtained in (D). Let £:[0,1]—R be a DB, function. Let
Y, be the set defined in [2](p.17), namely 7, ={ye £([0,1]) :
there is an x¢€ Ey such that £ attains a strict relative wmaximum cr
winimum a8t x}. The set Y, is at most demumarable ([21],p.261). By
the prcof of Thecrem 1 of [2](p.17) it follows that for every
yef([o,1]) = I,, if B is denumerable then E, contains a pair of

v y
isclated neighbours. Since |Y,| = 0, £€(DL). Hence DBy C (D).

d) Let (aﬁ,bn) be the intervals conticuous to C and let £ be a
function defined as follows: f(an) =1, n=1,2,...; £(x) = 0, xX€
C, x#a,, n=1,2,...; £ is linear and continucus on each [an,bn].
By [2](pp.16=17), it follows that £¢ (D.) and £EDB,NVEG. Let
£,(x) = £(x), x€[0,a)U[by,1]s £1(a7) = 05 £(x) = 1, x =
(a;+b)/2 = dy; £(x) is linear and continucus on [al,dl] and
[d,,b7]. Clearly £, ¢(D}) on [0,a;] and [bl,l]. Hence £, ¢ (D}).
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For £ the set Ey is countably infinite for each y €(0,1) and Eyﬁ
(al,bl) has a pair of isclated neighbcours. Hence £;6 (DJ':).

e) In fact we prove mcre, nameiy: Suppose that fe(Dé)('\"’I.‘2 on [O,l]
and let I, = [a,0]C [0,1]. Then PUN is nondenumerable, where P =
{x H f'(x))O}, N = {x : f'(x)so}. If f(a)<f(b) then £(@) is
measurable and |f(P)| | £¢ [a,b])l. If £(a)>f(b) then £(N) is
measurable and |£(N)| | £¢ [2,0])| . The proof is analogous to that
of Bruckner's Theorem 2 of [2](p.18). Let Y, = {y : B_ is non=-

y
denumerable}. Let Y, be the set defined in the precf of ¢), and

let I3 = {y 3 Ey is countably infinite and Ey does not contain a
pair of isolated nei:hbours}. Since ferT,, |Y1| = 0. ¥, is at wmost
denumerable (see [21],p.261) and |Y3| = 0 (since £€(D})). Since
f€D, £f(Iy) is an interval. Hence |£(Iy)| = |£(Ig) - (Y;UY,UT3)].
Suppose that f(a)>f(b). For each yef(IO) - (YIUYZU IB) there is
an isolated pcint xy of & y such that the upper bilateral derivative
?'(xy)so. (I£ X, is the znly pasint of Ey than —f"(xy)so since
f(a)>f(b), If E

is finite and ccntains more than osne point then

J
clearly li:y nas a pair of isclated neichbours. If Ey is denumeravple
then Ey has a pair of isclated neighbours, since fe(D]':). Hence at

one of these two pcints f' is nonpositive.) For =ach ye€ f(IO) -
(I]UT,UY;) selact a polnt x, suct thav ?'(}%,)QO and x, is

isclated in 3_. Let X be the set cof points szelected, Then X = NUB,

where 3 ={xf —c0 <T'(x)<0 and T'(x) £ f'(x)}, and ¥NB = ¢g. By
[21] (p.270), [£(B) = 0. Now £(X) = £(MUL(3) azd £(X) = £(Iy) -
(¥{U Y2U2'3). Tence £(X) is umeasurable and [£(X)| = If(I O. It
follcws that £(XN) is measursvle »nd |£(N)| = f(l’o)l ‘

f) This follows by [10] (p.260) and [11] (v.35).

g) Let (aln, ), 1= 1,2,...,20 l, ve the intervals ccntizucus to

C from the step n in the Cantcor ternary process. (C = the Cantor
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ternary set .) Let £ be a continuous function on [0,1] defined as
follows: £(x) = 0, x€C; £(x) = 1/n, x = (ai bin)/a = 44,5 £(x)
is linear on [8;,,d,;] and [d4,,b;,], 1 = 1,2,...,2%7L, Clearly fe
ACG on [0,1]. Let g = £+, (P = the Cantor ternary function.)
Clearly g€ VBG on [0,1]. Since E|g is VB and g,céAC (PEC) =
[0,1]), it follows that g (k). Ye show that ge [M,] on [0,1].
Clearly e'(x) dces nct exist (finite or infinite) for any point
which is a right endvpoint of some interval contizucus to C. Let
I, = (an,bn) be the intervals ecntizucus to C. Let x€C, x ¥ O,

X # by, 0 =1,2,..., and let A(x) = {0 : ¢y (x) = 2}. (Fach x€0C
is uniquely represented by Zci(x)/Bi ) Clearly a(x) is a countable

infinite set. For nea(x) let x} 2 ci(x)/B + E 2/3 y X =
=n

n-1 3 n-1
2 Cs (x)/3 + 2 2/3% and xﬁ' 2 P (x)/B + 2/5 . Clearly

i=n+l

xn< xsxl'l. Let In(x) = (xv, x'r'l' )e Clearly In(x) is an interval con-

n
tiguous to C from the step n in the Cantor ternary prccess. Let

dn(x) = (xg-o-x'r'l‘ Y/2. Then 0< x=d, (x)< X -Xp = 2/3% and g(x)-g(dn(x))

= P(x) - (‘P(x'r'l‘ )+ 1/n) < \P(xr'l) - \P(x;‘) -1l/n=1/2%-1/a<0C.

Hence |g(x)=g(d (x))/(x=4,(zx))| = (1/n - 1/2%/(2/3™) —s+00 , n—s
+o0 , Therefcre £_(x) = =00, But lin(g(y)=2(x))/(y=x) = lim( P(y)
-P(x))/(y=x)=>0, y—>x, 7€C. It f£ollcws that for each xe€0, '(x)
dces not exist (finite sr infinite)., Let T be 2 clssed subset cf
[O,l] such that gIEe:VB*. Then gy is 73, and g'(x) dces not
exist for any point x€ INC, x # C. It folizws by [2I] (Thesrem 7.2,
p.230) that |g(ENC)| = A(B(5;3NC)) = ¢ (A(X) is tae Hausdcrff
length of the set X.) Hence o*lﬂ s satisfies Iusin's conditicn (W),
By [21] (Thecrem 6.7,p.227), g|g is 4C. By [21] (Theorem 8.8,p.233),
glEe AG*.
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h) That [M'] is contained in [N' follows easily by definiticns.
et I, = (an,b ) be the intervals contiguous to C. Let F be a con=-
timuous function on [0,1] defined as follows: F(x) = O, x€ C; F(x)
= bn(x), x€I,, b€ ACG,-AC, |bn(x)| < 1/2B, Let a(x) = P)+F(x).
Clearly GEVEG, on [0,1] and G4 = P|c€ VB,. Since G(C) = 0,7,
@¢ 40, on C. Hence GE[i,]. Let I be a subinterval of [0,1], int(I)
NC # @. Then for some n, IDI, . Suppose cn the contrary that G,Ie
VB,. Then GlfneVBf Since GIIneACG»’ vy [21] (Theorem 6.7,p.227

and Thecrem 8.8,p.233) 1t follows that G[I € iC, Contradiction.
Hence if GII VB then I is ccuntained in some interval contiguous to

C. Since GEACG, on each I, it follows that GEAC, on I and GE€[MT].

Remark 2. a) (ac6,N€)@[,] = [1,] on [0,1], but (4ccNE)@
[_'M'] £ [M']_o_r.l [0,1] . (For the first part see Thecrem 6.7,p.227 of
[21]; The second part follows by ths procf of Theorem 1,g).)
b) a0@® M) =[] 20 [0,1] but (ace,NB )@ [T # [M'] en [0,1].
(See Thecrem 6.7,p.227 of [21] and the prcecf of Theorem 1,h).)

Remark 3, The functicns F and 2 cinstructed in the preof of
Theoreu 1l,a) are identical to thcse of Example 1 3nd Txample 4 of

[#](op.484=485),

Thecrem 2, 4 functicn F:[0,1]—> 2 balincs tg DN(+ N T
and F' is summsble s P ={x : F'(x)20} if 2nd znly if 7E N8
en [0,1].

Proof. Suppose that € CNE . By Theorem l,e) and Remark 1,f)

it follows that FE(+). By [22](pp.136=137) it follows that FE X"

The summapility fcllows because FEVIE. Supgpcse that FEDN(+)N e
'(x)
O<F'(x)<+o0}. Clearly 2 = 87y B,. Let g(x)

and 7' is summable on P. Let 8% =[x : +0} and B ={x:

LS

F'{x), xeBy; e(x)
p's
= 0, x¢B, 20d let G(x) = fg(t)dt. Since F' is summable on P it
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follows that GE 4G on [0,1]. siace FE ¥ N (+) it follows that
F(Q)-F()<|F([e,d]NP)| = [F([c,dNE,)| < 6(a)=G(e) for Ogc<d
<1. (See [21], Theorem 6.5,p.227.) Let &>0 and let § be the
nusber given by the fact that GE AC on [0,1]. Let I, = (ay,0,) bs a
sequence of ncnoverlapping intervals such that 3j|I, |<& . Then
S(F(o)=F(a)) < 3(G(b)=G(a))<E . Hence FEAC on [0,1] . Since
ACCYVB and FED, it follows that F is continuous.

 Corollary 2. a) AC = VBNN*® for continuous functions on an
interval., Hence AC = VBNN™ for these functions.
b) Let F:[0,1]—R be DB;N N . Then F& NG if and only if F'

is summable over P.

Theorem 3. A function £:[0,I]—R satisfies condition [, ]
(zesp. [M]) on a closed subset B of [0,1] if and only if f€ AC on
any closed subset of E on which it is increasing and VB,N8€ (zesp.

increasing and € ).
Proof. We prove cnly the part with [ﬁ;]. Suppose that £

satisfies the second property and let P = PCE be such that f,PG
VB*ﬂ“g. Let a = inf(P), b = sup(®P) and F(x) = £(x), x€P. Extending
F linearly on each interval contiguous to P we have F defined, ccn-
tinuous and VB on [a,b]. Let E, ={ x€ [a,5] : (F(x+h)-F(x))/h> 1,
0<|b| < 1/n} and let By, = [i/n, (i+1)/n]NE_ . By [2I] (the proof
of Theorem 1l0.l,pp.234=235), FIEin is increasing and VB*. Clearly

B .C (iUnBin)nP, where B, ={x : F'(x) = +w0}. The sets E;,
?

may be supzised to be closed without loss of generality (see [21],
Theorem 7.1,p.229). By hypothesis, f,EinnP is AC. 3ince lEm| = 0,
. - 0o _ 5
it follows that |F(E, )| = O. Hence 7| [2,5] € VBNN'” = iC (see
Corollary 2), Hence f€[M, ] on E. Conversely, let P be a clcsed
subset of E such that f|p is increasing and VB,NE . Then by the
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definition of [E, ], £|p€ iC. Hence f|5€ iC.

'gaeorem 4, Let f:[o,l]—>R-gg [Ié?}]. Then f€ [ﬁ].
Proof. Let P be a closed subset of [0,1] such that f|; is con=-

tinuous and increésing. By hypcthesis, there exists a sequence of

clcsed sets P, such that f,P 1s increasing and AC. Hence fIP is
n n

AC. It follows that f,P is VBNACG = AC, By Theorem 3 it follows
that £€[E].

Lemma 1. Let £:[0,1]]—R and let P be a closed subset of [0,1].
If £|p€ VBNACGNE then f| € KT,

Proof., Iet F(x) = f(x), x€PU{C,l}. Extending F linearly cn
each interval contigucus ts PU{0,1} we have F defined and VBNACG
Mg on [0,1]. By Theorew 4, FEVEBN 6 N[X] on [0,1] . Hence FEAC on
[0,1] and £ € IC.

Theorem 5. [E][F ([aTGINB]) = [¥] on [0,1].

Proof. Let £€[XW], g€ [Z0G]NB] and b = f+g. Let P be a closed
subset of [0,1] such that bh|p€ VBﬂ~€ . Then £|€ [vsc] N B{, hence
f’P € [EG—G](\BI. By Letma 1, hIPG ac.

Lemma 2. Lot £:[0,I]—sR and let P be 2 closed subset of [C,1]
such that £/, €7VB,, a = inf(P), b = sup(P). Let F:[a,b]—R, F(x) =

f(x), x€P. On _each interval (¢,d)C Ea,b] conticucus to P, we

define F such that its craph is the linear se-ment jocining the

points (c,f(c)) and (34,£(d)). Then there exists a set NJCP such
that |£()| = || =0 and £'(x) = F'(x) gn P-N,.
Proof. Let B = {x€P : £'(x) dces not exist fimite cor infinitel;
By ={ X€P : F'(x) does not exist finite or infinite}; Z, ={ x€P :
f'(x) and F'(x) exist, F'(x) # f'(x)}. Since B(x) = f{x) on?Z? ,
F'(x) = £'(x) except perhaps at endpoints of intervals coatizuous

to P. Hence B, is a denuuerable set. By [22] (Thecrem 2,0.132) we
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bave |£()| = |E] = 0. Since FEVB on [a,b], |F(E])| = |£(By)] =

[E{| = 0. Clearly [£(E,)| = 0. Let Ny = EUE;UE,. Then [£(N,)| =
|| = 0 and £1(x) = F'(x), x€P-N,.

Theorem 6, Let £:[0,1]—R, £€D. Then £€ N*® if and only if
fe[H,] oz [0,1].

Proof. Suppose that TE X' N D and let P be a closed subset of
[0,1] such that £|p€VB,NE . Let a = inf(P), b = sup(P), F(x) =

£(x), x€P. Bxtending F linearly on each interval comtiguous to P

we have F defined and VBN on [a,b]. Let B** ={xe€P 1 £'(x) =
+00} and E']':"' ={x€P : F'(x) = +0}. By Leuma 2, E‘{“.: (EI"ONO)
UE®N (B-Ny)) C NUE*™, nence |F(E1®)| = |2(B]™)|<|£(Ny)| +
|£(B*® )| = 0. Therefore FEVENN'® = I on [a,b](see Corollary 2).
Hence f|p€ AC. Conversely , suppose that £€ [M,]JND, Let B, _ =1 x:
£'(x) = +00} and B ={ xe [0,1]: (£(x+h)=£(x))/b> 1, 0 <|b|<1/n].
Let By, = [i/n, (i+1)/n]('\En. By [21] (the proof of Theorem 10.1,

DPP.234=235), T is increasing and VB, and B = ‘E; .. The
' lEin ng * +00 ].Hn in »

sets Ei may be supposed to be closed without loss of generality

n
(see [21] , Thecrem 7.1,p+229). Since f€D, fr41 e (sce Lemma A4).
“in
Since fe[ﬁ ], by Thecrenm 3, fh. € aC. Hence If(E )| = 0 (since
* S5n + 00

‘Eml = O)o

Theorem 7, For functions defined on [0,1] e have:

— — * ——
()@ (rss IN[E,]1NnE) =[X,].

Prgof. Let £€[i,], ee[vee,]N[EINE] = [ves,]N &C N3]
and let h = f+g. Let P b9 a closed subset of [0,1] such that h| €
vB,N€ . Clearly f|, € [V3¢,]NB]. 3y the definition of [H,], £|€
[32G). Eence b p€ [33G]. By Lemma 1 € iC.

-
Remavk 4, Thecrem 7 generalizes a result of [22] (Theorsm 10,

p.lq‘?) L]
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CHAPTER III - AN BEXTENSION OF BRUCKNER'S MONOTONICITY THEQREM,

APPLICATIOIS,

Theorem 8, Let £:[0,1]—>R be a function satisfying the
following conditions on [0,1]: (i) fEDN(-); (ii) f€ ' on H =
{xe [0,1] t £ is continuous g’g-x}; (iii) fe By on U(£) = int(H).

Then f is continuous and increasing on [0,1].

Remark 5. Note that Bruckner's theorem follows from Theorem 8:
VBGCT2 (see [21],0.279); DB]_C (D;_,’) and (D'r')ﬂ T,C (=) (see Theorem
1,c),e)); VBGC B' (see Remark 1,b)); it follows that £ satisfies
the conditions of Theorem 8.

Let (i') £€(DYNT,; (i") £EDBNT, 5 (iii') fE[i'] on
U(f) and £'(x)=0 a,e. whera £'(x) exists on U(f). If in Theorem 8:
a) .condition (i) is revlaced by (i') or (i"); b) condition (iii) 1is
replaced by (iii'); ¢) condition (i) is replaced by (i') or (i")
and condition (iii) is replaced by (iii'); then we obtain scume
additional monotonicity thecrems. (Condition (i') implies (i) (s=2e
Theorem 1,e)). Condition (i") implies (i) (see Theorem 1l,c),e)).
Condition (iii') implies (iii): let ICU(f) be a closed interval
such that TEVENB on I. 3ince f€ [_nl'] on U(f), f€ AC on I. 3y

Lemna B, f is increasing on I. Hence £€3; on U(f).)

Lemma 3. Let F:[0,1]—R be a V3G, function on a nondenumer=

able set QC [0,1] . Then F is continuous n.e. on Q.

Procf. (The proof is similar to that of [3],pp.196=197).3ince
FGVBG_' on Q, it follows that there exists a sequence of sets Q4
such that § = (JQ; and F,Qi is v3,. By [21] (Theorem 7.1,p.229),

F,:-le VB,. Let ¥ = {x: O(F;x)?l/n}."rhen 2, is closed for each n.

£ 2 N (U Qi) is nondenumerable then there exists a natural number
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1, such that. Enn'q_,'i is nondenumerable. Let P be a nonempty perfect
. o |
subset of En_”b—io? Clearly P|pE€VB,. Since PCE,, 0(F;x)=1/n for

all x€P. Thus the oscillation of F on any interval determined by
two bilatéral limit points of P is at least 1/n. Since P is perfect
we can choose ‘as many such intervals as we like, and we can make
them pairwise disjoint. It follows that F¢ VB’, a contradiction.
Thus the set of polnts of discontinuity of F is at most denumerable.

Lemma 4. Let £€DN(=) on [0,1] and let B = {x€,1] : £ is
continuous at x}. Then H is a Gg =set, everywhere dense in [0,1].

Proof. Let JC R_),l] be an interval, If f,J is monotone then
by the Darboux property, £€6 ., Hence JNEH # P, If £ is not mono-
tone then there exist x;,x,€&J, X1 <X, such that f(x1)> f(xz). Then
by (=), |2(8NN[xy,%5])| > £(x;)=£(x,). Hence NN[x;,X,] is nonde-
numerable and len[xl,x2] is VBG, (see [21] ,P.zsu). By Lemma 3,

[x1:%5] contains uncountably many points of continuity. Hence E is

a Gg -set, everywhere dense in [0,I].

Lemma 5. Let £E€DN (=) on [0,0]. If f€ @' on B ={x€ [0,1] :

f is continuous at x} fhen there exists a seguence {In} of inter=-

vals whose unicn is dense in [0,1] 2nd cn eacg'gg which £€VBNE .

Eroof, Since £€ R' there oxists a finite or denumerable
sequence of set_s H, such that # =UH, and £63' on Hy. 3y Leuma 4,
H is a Gg =-set, everywbere dense in [0,1] . By Baire's Category
theorem there exist a positive integer p and an interval J such
that HNint(J) # @ and JnHC%. We show that f’Jﬁﬁe B'. Let ICJ
be an interval and let £(INH,)CK, = ‘Ep Then £(INH)CK,. 3y
definition it follows now that £ 1s B' on JNH. We show that f€V3
on J = [a,b]. Suppsse on the contrary that £§ VB cn J. Then there

exists a division of J, namely a = 39<81< ese<B,.q = b, such that
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n
(1) Eolf<ai+1>'f<ai>|> bM o+ [£(0) = 2(a)],

where M i1s the positive real mumber given by the fact that f €B'
on JNH. Let A ={1 : f(ai+l)<f(ai)}. Since (£(ay . )-£(ay)) =
f(bv) - £(a), by (1) it follows that

@ 1ez.n (£(a;)-£(a;,1))> 2-M.

Since f €(=), f(a;)=-f(a;, 1)< |£(WN[a;,a; ;]| for each ief. 1t

is well known that the set {x : £'(x) = O} maps onto a set of wea=-
sure O ([21],Thecrem 4.5,p.271). It follows that N; ={x€ Bir24,1]
P =00 < f'(x)<0} is nondenumerable for each i€A . Furthermore R
fE€VEG, on Ny ([21] ,p.234). Let N} ={x€N, 1 £ is continuous at xJ.
Clearly NjCH. By Lemma 3, we have

(3) f(ai)'ﬁ(ai+l)< |f(N,'_ﬂ [31’314.1] )l< If(Hn [ai’ai+lJ )| .

For each i€AR let K; be closed sets such that f(ENBy,a3;,1])CEy

By (2) and (3), .g& |&; | > 2-M. Contradiction., Hence £& VB on J.
i

Since £€ D it follows that £ is continuous on J. The arzument we
have Jjust given applies equally well to any subinterval of [O,l] .
The conclusion of our lemma follows by repeated application cf this

pProcess.

Procf of Theorem 8. 3y (i), (iil) and Lemma 5, it follows that

there exists a sequence of intervals {I ]| wbose union is dense in
[O,l] and on each of which £€ VBNE . Let [cn’dn]CIn‘ By (iii), £
is nondecreasing on [cn’dn]‘ Since [c,d,] was an arbitrary subin-
terval of In, it follows that £ is increasing on each In‘ The in=
tervals I, can be chosen to be maximal cpen intervals cf monotoni-
city of £f. We wish to show that in fact there exists only one such

maximal interval, namely the interior of [0,1]. Suppose that there
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is more than one such maximal interval and let ¢ = [0,1] - (UI,).
The set Q is a nonempty perfect subset of [0,1] ([2],pp.20=-21). Let
Hy = ENQ. Then H) 1s a Gg -set. We show that H; is everywhere
dense in Q. Let J be an cpen subinterval of [0,1] containing points
of Q. Let x € QNJ. Since x,€Q, £ cannot be nondecreasing on all
of J. 'I'hus J contains points z; and Zyy 21<2Zp such that f(z1)>
£(z5). Lot N = {x 1+ =o' (x)<0} N [27,25] . The set {z : £'(x) = O
maps cnto a set of wmeasure zero, from which it follows (since f€
(=)) that N' ={x€ [z1,22] : =0LF'(x)< 0} is nondenumerable. By
[21] (p.234), £ is VEG, on N', Let N" = {x€N' : £ is continuous at
xJ. Clearly N'C Hy. By Lemma 3 and (-) we have f(zl)-f(z2)<\f(N")\
s]f(Hlﬂ [z1,22])| . Hence [z9,25]C J cont'ains an uncountable set
of points of continuity. Hence H, 1s everywhere dense in Q and a
Gg —=set. Now the prcof contimues analogcusly to that of Lemma 5, if
the set H (in the procf of Lemma 5) is replaced by Hy. Therefore
we obtain that £f€ VB on J., Since f€ D, £ is continuocus on J. Hence
JC U(f). Let (c,d)CJ, ¢,d€Q. By (iii), f is increasing on [¢,d],
a contradiction, since [¢,d] contains infinitely many points of Q.
Remark 6. If £€ (D}) and DF exists n.e. and DF>>0 a.e. then
f is continuous and increasing on [0,1]. If DF is the gqualitative
derivative of Marcus [18] , the right derivative, the preponderant
derivative, or the selective derivatives of 0'Malley [20], the
above statement about f is true. The proofs are as those in [1'7],

[3] and [20] .

See [7] for an additional monctonicity thecram.
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CEAPTER IV - MONOTONICITY AND FORAN'S CONDITION (M),
APPLICATIONS.,

Iemma 6. Let £:[0,1]—R be a continuous function. Let P =
fx ¢ £'(x)»0}. For any a,b€ [0,1], if a<b, £(a)<f(b) amd
|£®N[a,b])| = O then for each c€ [0,1) there exist perfect non=-
dense sets P, and Q, such that: a) P, C[a,b] and Q,C [£(a),£(b) ;b)
Pclﬂ Pc2 =¢@; ¢) f’Pc is increasing; 4d) f(Pc) = Ql e) [ch =
(£(v)=£(a))/2.

Broof, Let K; = [ay,b;] and K, = [a,,b,] be two intervals. If
aj<b,<a,<b, then we denote this by K; <K,. Let (ei).°° e;€

i=1?
(0,1) be a sequence of real numbers such that (l-e;)-(l-65)'«.. =

'1/2. We shall ccnstruct the sets P, and Q by 3 transfinite process,
Suppose that a<b, [a,b]C [0,1], £(a)<f(b) and |£(PN [a,b])] = O.
Step 1. We show that there exists a positiv: integ.;er w; such that
if A= {l,2,...,ml} then the rectangles Di:.. = KiiXJil ’ ile'ﬂ ’

¢ € 0,1}, bave the following properties:

c
(1) Kii is a closed subinterval of [a,Bl; K%(K% , Tor i,jefA ,

i<j, and EK9<K', for iedl .

(ii) Jil is a closed subinterval of [f(a),f(b)]; Ji‘<Jj’ for
i,5€8, i<y

c c
(111) B(f;Kii') C Dii' ; The left side lower corner and the right

c c
side upper corner of Dil belong to B(f;KiI); > IJi |>
1 1 i, 1
(£(b)=£(a))* (1-eq).
Step 2. For ileﬂ. » C1€ {0,1} there exists a positive integer
mZ(ilcl) such that, if ‘R'(ilcl) = {1,2,...,m2(ilcl)} then the
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cqC cqC c
172 1-2 1 . . .
rectangles Diliz = ziliZXJili2 y 1,€ ﬂ(llcl), cy € {O,l}, have

the following properties:

. c1Cs | ) _ cy ¢yl c1,0
(1) Kiliz is a closed subinterval of Kil 3 Kil,i /\Kil’j’ for
c4,0 cq,1
. < .~ 1? 1 .
i,j€ Adiyey), 1<y, and Ry 1 <K g for i€ Aep)s
; °1 . c1 1
(i) Jiliz is a closed subinterval of Jil 3 Jil,i<Jil,j’ for
1,5€ figep), 1<i 3
°1%2 1%
(iii) B(f;Kilia)C Diliz ;s The left side lower corner and the
. clca 0102
right side upper corner of Dili2 belong to B(f;Kilia) 5

> |5t | = 13, |- (1-e,). B S S |Jcl (1-e.)
° . -e ° en.ce s . -e ®
i 11,0 2 ill 2 i; 1, i1, 2470

> lJi, |> (l-el)'cl-ea)'(f(b)'f(a)> ;
il 1 .

Step (nel). (n22). Lot 1,€ A ..., i€ R eqenaip 1o 1), 48

f0,1} for each i. We show that there exists a pcsitive integer
mn+l(ilcl. .oincn) such that if ﬂ(ilcloooincn> = {1,2, esey
mml(ilcl,..{incn)} then the rectangles

c oo;c CqeeoC CqeveC

1 n+l 1 n+1l 1 n .
D = K XJ . i ﬁ.(i Creeei_c )
il...in-'-l ilo ‘.inﬂl‘l iloo.lnin+l ’ n+le 1 1 n"n’?

bave the following properties:

CqessC CreeeC
1) Kii'”.iz:i 1s a closed subinterval of Kii-“‘iz ; For i< j,

CqeeeC 1 Creeel_,0
. 1 ’ 1 ’
i, Jd e ﬁ.(ilcl. . oincn) we have Ki]_' . ‘iz’i < Kil‘ . 'iztj ] For

n’l
il‘..in’i ’

CieeeC 0 Cqeeel
. , 1 n’ 1
16 f(iqcqeeipcy) we bave K aing <K
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clooocn
(11) 94 i1 is a closed subinterval of J
1°**“n*n+l \

Cqeeel Cq ee ol
s s . . 1 n 1 n
1<y, 1,5€ dlaeqeeipgey), Tijeeaa 1 <95 .01 ,59

clooocnpl

; For
il. ..in_lin '

cloooc

cl...c
(111) B(£;K

n+l n+1
: YCD s The left side lower corner
1loooin+l il...inﬁl 4

C1e°*Che1
and the right side upper corner of Dil“‘i

belong to
n+l

Clo.oc

B<f5Kil...in+l>‘ 2

n+l in+1

|‘cl...cn

CqeeeC
J I;’IJ 1 n=-1

. . : . o(l-e )
ll"°lnln+1 iloooln_liJ n+l”/?

Clo.ocn

110001nl

hence 2 2 ...Z IJ
il 12 ln*l
(£(0)=£(a)).
Now we can define the sets P, and 3,. Let ce€ [0,1), then there

n+1| = (l-eq) - (1-e5)*..2(1-e 1)

” -
exist c;€ {O,l} such that ¢ is uniquely represented by 2. ci/Zl.
i=1

(Ne choosa the infinite representation wnen two different

representations exist.) Then

. cl 0102 Clcoocﬁ
Po= UEDNU UE 5N eea DU e oUE;T 5N wes and
111 1112 172 '11 lnl n
€1 Cn-1

I eas o

i

Cc
= WIIN WY Yo N e N3

i, 1 i, i, i i, lyeeelp1tn

It follows that Pc and 2 have the desired properties, It remains
to show that the facts stated in step 1, step 2,..., are true. It
suffices to show step l. It is kncwn that £(P) is a measurable set.
Let Ey = {x : £(x) =y, Xy = i.nf(EyﬂE.\,bJ) and 4 = {}S’ ty €
[£(2),£(0)]} . Lot o = inf(T) and p = sup(5). Let 4, =§x €4 :
£1(x) = =}, Then we have: 1) f| g is increasing; 2) 4 is nowhere

dense in (e,B); 3) X = AU{v,}, where I_ = (a,,b,) are the
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intervals ccntiguous to 4 with respect to (<,B); &) a € 4;

5) If x€ [an,bn_] then f(x)sf(an) 3 6) £(ay) = £(by) 5 7) T is a
perfect set; 8) If x€4 then £1(x)=0 ; 9) |£(A})] = £(b)=£(a).
The justifications of 1) through 9) are brief:

1) By the definition of A and the continuity of £ it follows that
fl* is increasing. Applying again the continuity of £ it follocws
that f,-A— is increasing.

2) Suppose on the contrary that TD[P(]_,ﬁi], X, # 51. Then by 1),
f,["‘l’&l] is inecreasing. Hence f“:dl’pl] is VB*. Suppose that £(e¢

<£(B;) then by [21] (Theorem 7.2,p.220), |£@N [a,9])| > £(B))-£(%;
>C. This contradicts the fact that |£(PN [a,b])| = O. Therefore
£(4) = £(B) =¥ . 3ince xp<< X 1t follows that (BN 4 = &.
Hence (°~’1, ﬁl)ﬂf= @, which contradicts our suprosition. Therefor:
A is nowhere dense in (o<, B).

3) Clearly 2DaU {bn}. Conversely, let x€4=A and let y = £(x).
Then x,€ 4 and :%< X. Suppose on the contrary that (xy,x)ﬂf;é g,
then there exists z,€ »(xy,x)n 4. By L, flfﬂ[xy.x] is constant,

hence f(;gJ) = £(x1) = £(x). Since xlefthere is an x,€ (%,x)
such that x,€4 and f(xa) = f(:gj), hence x, = X, a contradiction.
Thus (%,x)ﬂf = ¢ and (xy,x) is an interval econtisuous to A with
respect to (%,B), namely I, = (a,,b,), for some n. Hence x = b

and 4 = AU fo .

n

4) Suppose on the contrary that a,¢ 4. Then by 3), a, = by, for
scme k€ N, Then (ak,bk)ﬂK = {an}. It fcllows that a, is an iso=-
lated point of A. Hence a €4, a contradiction. Thus a,EA4.

5) Suppose on the contrary that there exists x,€ (ap,b,] such that
f(xn)> f(an). et ¥, = (f(xn)+f(an))/2. By 1) and 4), since XYnEA

it follows that an<x¥]-1<bn. Indeed, a €4 (by 4)), Xy.neA, Xf(xn)

441



€4. By 1), since f(an)<f(x¥n) <f(xn), it follows that an<xxl-1<
xf(zn)<xn$bn‘ Hence Xy e(an,bn)ﬂ A. Contradiction.

n ,
6) By 5), £(by)<<f(a,) and by 1), £(a)<f(b,). Thus £(ay) = £(b,).

7) Suppose on the contrary that there exists x € («,B)N A, isolated
in A. Then there exist two intervals contiguous to 4, I;and I,
such that x, = b:j = a, . By 6), f(aj) = £(a,) and by 4), aj,akeA,
a contradiction.

8) Let x€A. Then £'(x) = lim inf(£(x')=f(x))/(x'=x), x'—x, X'<
X. Suppose on the contrary that £(x')>f(x), for x'=x<0. Then x'>
xf<x.)>x (by 1)) gnd x'>x, a contradiction, Hence f(x')=-f(x)<0.

9) For each xgA=Ay, £(x)>=co (this follows by 8)). By [2I]
(Theorem 10.1,p.2%4), f is VBG* on A=A;, Let B = {xeA-Al : £'(x)
exists finite or infinite at xj. By 8), BCPN [a,b] . Hence |£(B)|=
£ N[,8] )| = 0. Let By = (4=A1)=B. Then by [21] (Theorem 7.2,
p.230), |£(B;)| = O, hence |£(4=41)| = 0. Since £(a) = [£(a),£(b]]
it follows that |£(4y)| = £(b)-£(a).

Now we cover the set f(Al) with a collection of closed inter=-
vals in the Vitali sense: Let x€4;, £>0 and §(x,E)>0 be such
that £([x,x+ & (x,&)) )CE&®)=- &/2, £(x)+ &/2]. By 1), £ is in=-
creasing on 4 N [x,x+ &(x,E)] . Since £,(x) = =00, it follows that
there exists ye€ [x,x+ S(x,&)] -4 such that £(x)>f£(y). Let n(x,y,&)

be a positive intecer such that yeI . Let m

n(x,y,&) n(x,y,&) ~
inf{f(t) : teIn(x,y,s)j‘ Let cl(x,y,é) = inflt €l (x,y,8) ° £(t)

=m 1 and dl(x,y,é) = bn(x,y,e); co(x,y,e) = ANTE

n(x,7,&) Bh(x,7,8)

a%(x,5,8) = a y 3(x,7,8) = [£°(=,5,8)),2%x,7,8)] =

n(x,y,&)

Celix,y,e)),00d (x,y,8))]. Then £(x)€ JI(x,7,E) and |I(x,7,&)|<E.
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Let Ko(x,y,s) = [co<x9y9&> sdq<xay9&)]3 Kl(X,y,E) = [cl(x,y’E)o

al(x,5,6)]« Then £(a;)C Y, 3(x,7,8). By [21](Vitali's theorem,
' 1

P.109), there exist a natural number m; and intervals J;< ... (Jml

such that Jl,...,Jmle U J(x,y,&) (therefore we bhave (ii)) and
X

o

1 .
.le Jil|> (£(b)=f(a))-(l-ey) (we have (iii)). Now we have the
lqa=

1
corresponding intervals {Kgl’x, i, = l,.?.,...,ml, and {K.}_'llx, i, =
1,2,e00,mq0 By 1), we have (i).

Theorem 9. Supvose that £:[0,I]—>R is a2 continuous function

which satisfies [¥] on [0,I] . Then f is derivable on a set of

positive measure. Mcrasvar, if there exist 0<a<b<1l such that

£(a)< £(b) then |£(®)|>0, shere P = {x : £'(x)=0].

Procfs If £ is decreasing the pracf is ocbvious. Suppose that
f is not decreasing on [0,I] . Then there exist a,b€ [0,1], a<b
such that f(a)<f(b). 3uppcse on the contrary that |£(®@N [a,b] )| =0
Then by Lemma 6, there exist infinitely many sets Pt and Qt such
that |P,| = O, f,Pt is increasing, £(Py) = & and | [>(£(b)=f(a)),

2. By Theorem 3, flPt is 4C. Hemce | Q.| = 0, a contradiction. Ther:

fore, if £(a)<f(b) then |£(P)|>0. 3y Remark l,e) and Theorem & ii
follows that |£(B*® )| = 0, whera E*® ={x : £'(x) = +00}. By [21]
(p.236), \E"'°°| = 0, bhence |P-E+°°| =lP\>O (since fIP_Ewé(N)),
([21, Theorem 4.6,0.271).

Theorem 10. If a continuous function £:[0,l—sR satisfies [I

on [0,1] and if £'(x)<0 a2t aluost every point x where £'(x) exist:

and is finite then f is decreasine on [0,1].
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Proof. Suppose that £f€ [W] and there exist a,b€I, a<b such
that £(a)<f(b). Let P ={x 1t +0 > 2£'(®)30}; Py = {x : £'(x) = 0O};
B, ={x 2 0<f'(x)<+e0}; B, ={x:£'(x) = +0}. Then P = PLUE,
UE, , |£®y)| = 0 (see [21], Theorem 4.5,0.271), |8, | = | B, | =0
(by bypothesis). By [21] (Thearem 4.6,p.271), £€ (N) on E_, bence
|f(E+)| = O. By Remark l,e) and Tkhecrem 6 it follows that \f(E+°°)\
= 0. Thus |f(P)| = 0 which contradiets Theoram S.

Corollary 3. (An extension of a theorem of Nina Bary =- [l],p.

199 or [21],p.286). If a2 continuous function f satisfies Foran's

condition () on [0,1] and if £'(x)=0 at almcst every point x

where f£'(x) sxists and is finite, then f is AC and incressing cn
[0,1].

Theorem 11, Let £:[0,1]—>R be a function belorsing to

uCN B N[E]. If £'(x)=0 a.e. mbere £'(x) exists and is finite

then £ is increasing on [0,1].
To prove this theorem we need the following leuma.

Lemma 7. Let § be a3 nonempty perfect set. lLet a = inf(Q), b =

sup(Q). Let I, = (a,,b,) be the intervals contiguous to Q with
tespect to [a,b]. Let £ be 2 function defined cn [2,v], nith the
following properties: (i) €6 on § (i) £(a)<f(vy); (1i1)

£(1,)C [£(a,),f (b )] . Let £ be a continucus funetion cn [3,0],
defined as fellows: £1(x) = £(x), x€% f1(x) = (x=ay)-(£(by) =
f(ay))/(by=a,) + £(a,), x€(apy,b ). Let B ={ x€q ¢ £'(x) 2xists
finite or infinite}; B; ={x€Q : £{(x) exists finite or infinitel;
T = (8-8))U (8~ E). Ihen se have: a) I ACQ then £|, € VEG, if and
only if f1’A€VBGf 3 D) |£(@] = |2 = 0 and £'(x)=£{(x) a.e. on Z.

Proof. Let ¢,d€ g 3y (ii) and (1ii) we have:

() 0(fs [c,d]) = o(£y; [c,d])e
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Let ACQ. Then f|,€ VB, if and only if £, ,EVB, (by (4) amd by
the definition of VB}). Hence f,Ae VBG,F if and only if fllAe VBG,,
and we have a). Let T; = Ey=8, T, = E-E;. 7e show that If(Tl)l =
|T,| = 0. We have fllTle VBG, (see [21], Thearem 10.1,p.234). By

a), flTle VBG*. Since £'(x) does not exist (finite or infinite) on

1,, by [21] (p.230, Theorem 7.2), |£(2;)| = A(B(£;Ty)) = o.
Similarly, |£(T5)| = A(B(£5T,)). (A(X) is the Hausdorff length
of X.) Clearly IEI |El| = lEﬂEll e Since £ = £, on Q and Q is
perfect, it follews that £'(x) = £{(x) on EﬂEl.

Proof of Theorem 11, Suppose that £€ uCHNBIN[K]. Since f€

B] on [0,1], there exists a sequence of intervals I, whose union
is dense in [0,1] and cn each of which £ is continuous. By Theorem

10, f is increasing on I, Hence f'-I- is increasing. The intervals
n

In can be chosen to be maximal cpen intervals of mongtonicity of £,
We wish to show that in fact there exists only one such maximal
open interval, namely the interior of [O,l]. Suppose that there is
more than one such maximal interval ard lat 2= [0,1]-(UI,). The

set Q is a perfect subset cf [O,l] y fcr @ is cbviously closed and

if x, is 1solated in ¢ then f would be increasing cn scm2 Ij

feuCki), having ¥, as a right-band endpoint, snd scme interval I,

(3ince
(since feulll), having X, @3 a left-hand erdpoint. Then f is in-
creasing on IjUIKU {XD}, that weuld contradict the msxicality of
the intervals Ij and Ik' By Baire's Category theorem, there exist
a,pe[0,1], a<b, such that gN(a,d) £ ¢ and £l an [a,b] 1S o
tinuous. Let £,(x) = £(x), x€ ¢N[a,t]. Extending £; lirearly on
the closure of each interval contiguous to Q we have f; defined
acd contingous on [3,b]. alss £,€[M] on [s,b]. Indeed, let 4 =T
C[3,b] be such that f1|4€VB- Then flAnQean‘G . Since f€ [i]
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it follows that £€4¢ on aNQ. Hencs £16€ [«CG] on 4. By iemaa 1,
flegg'on A. Hence fle[M]. By Leuma 7, 'l(x) = £'(x) a.e. on B,
Since £'(x)20 a.,e. on B, it follows that fi(x)}O a.9. where
fi(x) exists on Q. On each interval contiguous to Q, £y is in-
creasing., Hence £{(x)>>0 a.e. where £{(x) exists on [a,b] . By
Theorem 10, £; is increasing onf[a,b]. Hence len[a,b] is in-
ecreasing. But flfn is also inecreasing (since f€ uCM). Thus f is

increasing on [2,b], a ccntradiction.

Theoremw 12. let f:[0,1]—R ba a DB] function. Let U(f) =

—

int{x : £ is continuous at xY. Suppose that f€ [M] gn U(E). If
£'(x)>=0 a.e. on U(f) where f is desrivable, then f _i_s_'ccntinuous
and increasing on [0,1].

Procf. Suppose that fE€[L]. It should be ncted that U(f) is a

dense cpen subset of [0,1], since £€B]. First we show tbat f is
increasing on svery component of U(f). Let J be a coumponent c¢f U(L)
and [c,d]CJ. By Thecrem 10, f is ccntinucus and increasing on the
interval |'_c,d] . Since [c,d] was an arbitrary subinterval of J, f is
increasing on J. Since f€ D, flJ is continuous and increaana.
Suppose that U(E) # (0,1). Then ¢ = [0,1] - U{f) is a perfect set
(if necessary without 0 and 1). 3ince feBl, there exist 3,v€ 4,

a<b, such that (a,0)NQ £ @ and fl’\n[a 5] is continucus. It
f-1lows that f|[,11 b]eﬁ , hence (3,b) C U(f), a ccntradiecticn,

e |
Therefore U(f) = (0,1) and £ is continuous and inecreasing on [0,1] .

Remark 7, If £'(x) is replaced by fap(w{}, Thecrem 12 remains

true, and this is in fact an extension of Thecresm 2 of [6].

Theorem 13, Let F:[0,1]—2 pe= 2 DB} furctiosn apd U(L) =

ke
——

int{x + F is continugus at X}. Supozse that FE[E](zesn.[x]) gn

U(F). Let P ={x : F is derivable at x and F'(x)>C}NUE@). Taen
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F ig IcNE€ (resp. AC) on [0,1] iff F' is summable on P.
Proof., The necessity is obvious. We prcve the sufficiency. Let

g(x) = F'(x), x€P and g(x) =AO, X€E [0,1] - P, Let G(x) -_-fg(t)dt.
0

Then G(x) is AC and nondecreasing on [0,1]. Let H(x) = G(x)=F(x).
Then HEDE] on [0,1] « Let U(H) = int{x : H is continuous at x}.
Then U(H) = U(F). 7e show that H is increasing and continuous sn
[O,l] . Cléarly HG[M] on U(F). Let x€ U(F) be any point at which
both F and G are derivable, then H is derivable at x and H'(x) =
G'(x) = F'(x). If XEP then H'(x) = 0 and if xgP then F'(x) O
and G'(x)>C. Hence H'(x)>0. Consequently, H'(x) is nonnezative
at almost all pointé x where H'(x) exists cn U(F). By Theorem 12,
H is increasing and contimuous on [C,1]. It f£cllows that FEVBNE
on [0,1] . By the definition of [L] (resp.[i]) it follocws that Fe
aC (resp. sC) on [0,1]. ‘

Remark 8. Theorem 13 generalizes Thecrem 7.7 of [21] (p.285)
and Theorem 1 of [15](p.261).

Theorem 14, Let F:[0,1]—R bs a T3F function and let U(F) =
) —_— - Y] SRl s =

int{x : F is continucus at x}. Suppose that FE€[Fl(resp.[1]) on

U(F). Let FF(x) = P'(x) if it exists and is finite; ctherwise, lst

F*(x) = 0. Let F;p(x) = Fép(x) if it exists and i1s finite; cther=-

wise let F;p(x) = O, If there exists 2 continuous function

G:[0,1] — R such that: :

a) GE€VBG,MACG, G'(x)ZF"(x) a.e. on [C,1], then FE VBG, N iCGNE
(zesp, 4CG,N6) on [0,1];

0) G€ A, o.NACG, ' (DZF'(x) awe. 2n [C,1], then FEA, , NT
NE (zesp. A,...N-"2N8) zn 0,15

c) GE€ iCG, Gép(x)zF" (x) a.2. 2n [0,1], then 7e 3TGN-E (zesp.

ap
4cGNE€) on [0,0. (A, .. =1{F:[0,1]—R, F is derivable A.8..

[
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Proof. Let H(x) = G(x)=F(x). Then HE[K] on U(F) = U(H) =

int{x : H is continucus at x}. Fer a),b), H'(x)>»0 a.e. on U(H)
where H'(x) exists and is finite, and for ¢), Hép(x)>0 2,8, on
U(H) where Hép (x) exists and is finite. By Theorem 12 and Remark 7,
H is increasing and continuous on [0,1] . Now F = G-HE VBEG and by
the definition of [WM](resp.[t]) it follows that FE iCT (resp.i0G).
Clearly for a) and Db), FGVBG,’ and FGAa.e. respectively. 3ince
VBG*ﬂ ACGNEG = ACG, on [0,1] (see Thecrem 8.8,p.233 of [21] ) the
proof is ccmplete.

Remark 9, i) Thecrem 14 remains true if: 1) "G'(x)=F*(x) a.a.
on [0,1]" is replaced ny "G'(x)=F'(x) a.e. gn U(F) mbers 7' (x)

exists and is finite" cases 3) and b)s 2)"Gép(x)>}3‘gp(x) a.e.

I}J.

”)

on [0,1]" is replaced by "Gy, (X) =P, (x) a.e. on U(F) zhere Fép(x)
exists and is finite" in case c¢).
ii) The second part of Thecrem 14 is an zxtension of a theorem cf

Saks (see [21],v0.286).

iii) The second part of Theorem l4,c) is an extension of Theorem 2
of [12] (p.sus).

iv) Since an apprceximately differentiable function F is DB'{(‘\(H)C

nart of Theorem 1l4,a), ue

[oN
(o]

DB} N[l ](see [15],p.251), by the secon:

)

have the following thacrem of [14](p.2S5):

¢

oF

Let F:[0,1]—>R be approximately differentiable. If 77 is

Poerron integrable on [C,1] then F is 403, cn [0,1].
v) In Theorem 14,b) w2 cannot give up the ccndition Aa.e cn
[ )

[0,1] (see Zxsmple 2 2f [13],5.305).
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CHAPTER - MONOTONICITY AND PROPERTIES [u,], [¥,], [¥,].
APPIICATIONS.,

Recall that by Theorem 6 it follows that for Darboux functions
On[O,]J, [MJ =Nw’[m*] = N~ and [EJ = ¥,

Theorem 15. If F:[0,1]—R belecngs to DN (+)N K" and F'(x)<

0 a.e. on [0,1] where F'(x) exists and is finite thenF is con=

tinuous and decreasing on [o,1].
Proof, By Theorem 2 and by Lewma B, F is decreasing on [0,1] .
Since FE D it follows that F is contimucus on [0,1] .

Corollary 4. Let F:[0,1]—R be a function with the following

properties on [0,1] s+ (1) F is measurable and (DM) (particularly Fe€
DB,)s (ii) FE€ (N); F'(x)=0 a.e. where F is derivable. Then F is
increasing and AC on [0,1].

Proof. It follows by Remark l,c¢),e),k) and Theorem 1l,c¢),e),
and by Theorem 15.

Open problem. Note that the second part of Corollary 4 is in
fact C.M. Lee's Theorem 1 of [15]. Does C.i., Lee's theorem remain
true if ccndition (N) is replaced by condition [U] ?

Corollary 5. Let F:[0,1]—>R be 2 DByNE NP function. Let

;( ) = DF(x) if it exists and is finite; otherwise, let F& (x)=0.
If F§ is TP-intesrable on [0,1] then FEFNEND on [0,1].

Proof. Let G(x) = ﬁf *(£)dt. Then DG(x) = Dnb(x) a.e. on

0,1 and GEFNEND . Let H(x) = G(x)=F(x). Then HE DB;NE NI
and H'(x) = O a.e. where H is derivable on [0,1] . By Corollary &
(the second part), H is coastant on [0,1]. Therefore FE FNEND

on [0,1].

449



Example. There exists a continuous function g:[0,1]— [0,2]
with the following properties: (1) g'(x) exists on [0,1]=C (C =
the Cantor ternary set); g'(x)<<O on [O,lJ -C; if x€C then g'(x)
M_n_oﬁiw (finite or infinite); (ii) ge¥*® =N N 17 ;
(1i1) g ¢ (+) N@D).

Proof. For each 'xec, let g(x) = g(Zci(x)/Ei) = ani(x)/zi.
Then g is continuous on C. Bxtending g linearly on each interval
contiguous to C we have g defined and contimuous on [0,I] . (1) We
observe that if I is an interval contiguous to C from the step 2k
in the Cantor ternary prcocess theag is constant on I and if I is
an interval contiguous to C from the step 2K+l in the Cantor ter-
nary process then g is stwrictly decreasing on I. It follows that

=

g is derivable on [0,1]-0 and g'(x)<0 on [0,]:] ~C. Let x,€C and

let cy€ {0,2}, such that X, =% ci/3i. Let {xn} and {yn} y Xpo¥p

= c/}i +

€C, be two seguences which converge to x_.: x i
iZ2n+1

o n

(2_02n*1)/52n+1’ Jp = K c:-'_/3:L + (2-c2n)/52n. Clearly lxn-xol =

i#2n

2/3°%+ L |y x| = 2/9" , e(xy) = e(x,) and |gyp)=e(xy)| = 2/2°
Hence |(g(xp)=e(x,))/(xp=% )| = 0 and 1lim [(g(y)=2(x))/ (¥p=%,)| =
+00 , n—s+00 o Therefore g'(xo) does not exist.

(ii) by (i), 3° - @. dence ge N™ .

(i1i) Let Q be a perfect subset of G, Q = {X€C 1 ¢y, 1(X) = 0, b=
1,2,4. 0} Clearly g(q) = [0,2] . We show that g is increasing on Q.
Let x,y€Q, X<y and let m be the first natural number such that
c2m(x)<c:2n'l(y). Then ci(x) = ci(y), i=1,2,e00,2m=1and g(y)=g(x)

[~ -4 .
=2/ = X 2/2™*71 - 0. Fence z(y)>e(x). By Theorem A, g¢ (M).
i=1

450



Since [g(0),z(1/3)] = [0,2] amd |g®N [0, 1/3])| = 0, 1t follows
that ge (+). (P = {x 1 g'(x)=0}.)

Remark 10. The Example shows that we cannot cive up the con-

dition (+) in Thecrem 15.

Theorem 16. Let h:[0,1]—R be a function beloneing to
(DBINT,NE®)E (ENVEE, NN ), If b' (x)<0 a.e. where b is
derivable, then h is continucus and decreasing on [0,1].

Eroof. Let f,g:[0,]—R, £€ OBNT,NT") and g (€NVEG,
NX*) = (BNVBG,NACG), such that h = f+g on [0,1] + By Remark 1,
i), h€DB; on [0,1]. For g there exists a sequence of intervals I
whose union is dense in [0,I] and on each of which g €ACNE . Let
en1d,]CI, . Since h€ (DB;NT,N N )[F] (A&NE ) on I, by
Corcllary 2,b), £€ AC on [,»d,], bence he'Eﬁ on [¢,,d,]. By Lemma
B, h is decreasing on [c,,d,]. Since h€D, b is continucus and
decreasing on I . The intervals I, can be chosen to be maximal
open intervals of monotonicity of h. Suppose that Q = [O,];] -(UIy)
# #. Then Q is a perfect nonempty subset of [0,1] (if necessary
without O and 1). Let 0<a<b<l such that (a,b)N Q= ¢ and
2| [a, 5] nQeﬁﬂVB’. Let g1(x) = g(x), x €[a,b]N Q and let g, be
linear on the closure of each interval contiguous to Q with
respect to [a,b]. Then g, VB ,NYE on [a,b. Let £,(x) = h(x) =
g1(x). By Remark 1,i), £,E€DB; on [a,b] . Since £E€T, and £,EAC
on each I, it follows that £;E€T, on [a,b] and £;€ N'™ on each
I, Let Q = §1C [2,9NQ such that fll QleVB"' Since g;€ VB, on
[a,b] it follows that h = f1+g,€V3, on Q;. Hence f = h-geVB, on

~e o0 . Ival
Q. Since fE€N**° | by Lemma 4, f,Ql is AC. Hence fllQle AC. It

follows that £,€[¥,] on QN[a,b] . Hence b = £y+g; € (DB NT,NN'™)
(N6) on [a,b] . ¥ow b is decreasing on [a,b], a contradiction.
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Corollary 6. Let F,G:[0,1]—R be two functions such that
F€DB,NT,NN" (zésp. DB;NT,NN®), GE LGN G NVEG, and G' (x)>
F'(x) a.e. where F is derivable. Then F€ ACGNVBG NE (zesp. 4CG,

N4 ) on [0,1] and H = F=G is continuous and decreasing on [0,1].

Procf. Clearly H'(x)<O a.e. on [0,I] where H is derivable.
By Theorem 16, H is decreasing and continuous on [0,1] . Hence FE
VBG‘('\’G . Now FEACG (resp. 4CG,) on o,d.

Remark 1l. By Corollary 6 we bave the following theorem:
Let F:[0,1]—R, FEDBNT,NN* . If F* (gee Theorem 14) has

2 pajor function in the Perron sense then FE ACG,ﬂ‘g en [0,1].

This theorem is an extension of a theorem of Saks (see [21],

P+286). (See also Remark 9,ii).)

Corollary 7. Let b:[0,1]—»R be a function belonging to
(DB;N() [F (466, NE) on [0, . If b'(x)>0 a.e. mhere b is

derivable then h€AC and is increasing on_[c,1] .

Remark 12, In [_20], Mazurkiewicz has censtructed a continuous
function f(x) on [0,1] such that for b#0 the function f£(x)+bx dcss
not satisfy Lusin's condition (i), Therefore DB1N nC (DBlr'\ (1))
® (4cG,N¢€ ) CDBN (] on [0,1]. Thus Corcllaryfis a partial

answer for the Open problem.

We are indebted to Professor Solomon kiarcus for his help in
preparing this article and tc the ancnymous reviewers for their

valuable suggestions and careful reading.
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