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 NONSTANDARD TECHNIQUES IN REAL ANALYSIS

 1. Introduction.

 The purpose of this paper is to display the techniques of non-standard

 analysis in simplicity sufficient to make them readily available to those

 working on problems in differentiation and related topics. While the

 foundations of non-standard analysis lie within the field of mathematical logic,

 several relatively recent books and papers ([1], [3], [4]) reduce the complexity

 of the logic considerably removing the mystery from the analytic content.

 The first seven sections concern only analysis in R, the set of real

 numbers. Sections 3, 4 and 7 introduce, each, one of the three major

 elementary operating tools: the transfer principle, internality. and

 concurrence. Section 9 introduces a fourth tool - saturation. Most of the

 examples in Sections 1 through 5 are well-known non-standard examples to

 illustrate the technique being studied.

 The applications in Sections 6 through 9 are original. In Sections 6 and

 8, a non-standard and more broadly applicable version of Leinfelder's "locally

 valid suborderings" is given (cf. [2]). In Section 9, Wattenberg's non-

 standard characterization of approximately continuous functions (cf. [6]) is

 extended to other types of continuity using the concept of "system of paths"

 introduced by O'Malley, Thomson and Bruckner (cf. [5]).

 2. Hyperreal Numbers.

 Initially, the set R of real numbers is enlarged to a set *R called the

 hyperreal numbers. Intuitively, a new set of objects called infinitesimals is

 attached to the real number zero forming an "infinitesimal neighborhood"

 called a monad (or halo). This is translated by addition to create a monad for

 each x e R. In addition, infinitely large "numbers" are added. To define

 such a set *R is no great difficulty. To do it in such a way as to preserve
 the operational calculus of R in a "meaningful" way is the difficult part. We

 begin the development.

 Since we want to develop the nonstandard ideas in sufficient generality to
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 include not only R, but topological spaces and other structure, we replace R

 by some unspecified infinite set S.

 Let r be an infinite index set and 7 an ultrafilter on r. (Their

 specification produces various properties which we discuss later.) Let m be

 the measure on r induced by the ultrafilter, i.e., A) = 1 if A e 7, m(A)

 = 0 if A i ?.

 Let Z0 be the set of functions mapping r into S and denote, for

 6 € r, t(6) by í¿. Write f ~ g in case fg = gg M - a.e. Since ī is an

 ultrafilter, " ~ " is an equivalence relation on Z0. Denote the equivalence

 class to which f belongs by f. Define *S = {f : f € Z0}.
 With S = R, and r and ? properly specified (details of no value to

 us here), *R is called the hyperreal numbers. The constant map gives a

 natural embedding of R in *R.

 Proof of the following can be found in [3] or [1]. We use it to develop

 some of the elementary properties of *R.

 Theorem 2.1. *R is a commutative, non-Archimedean ordered field

 containing R as an ordered subfield.

 Let F = {x e *R : |x| * y for some y £ R}. F is called the finite
 elements of *R. It is easily shown that R c F c *R, each being a subring of
 the larger. Since *R is non-Archimedean, *R - F is non-empty. Its
 members are the infinite elements of *R.

 Let I = (x e *R : 1/x is infinite}. I is a non-empty ideal in *R.
 Moreover

 Theorem 2.2. F = R ® I.

 Proof: R n I = ♦ is clear. Given a e F, let A = {r e R : r * a}. It is

 easily shown that b = lub A satisfies a-b e I.

 While the above is a very elementary result about *R it has simple
 consequences useful in describing the monads of real numbers. Proofs are

 easy and left to the reader.

 Theorem 2.3. Let x ~ y denote "x-y € I". Then
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 (1) For each x e F, there is y e F such that x ~ y

 (y is called the standard part of x. We write y = st(x)).

 (2) " ~ " is transitive: x ~ y, y ~ z => x ~ z.

 (3) If x.y are in *R and |x-y| < t for e > 0, e in *R,
 then x ~ y.

 3. Operating in *R : The Transfer Principle.

 What has been done so far defines the set in which analysis with

 infinitesimals is carried out but gives us no set of rules for determining the

 legitimacy of operations. The value of Robinson's theory of "enlargements" is

 that a universe is attached to R in stages and, along with it, a language.

 The universe includes the sets, functions, relations and operations through

 which ordinary analysis is carried out: the subject matter, so to speak. The

 language is a carefully organized semantic structure which tells precisely what

 can be said that is true.

 The key to operating in the »-space develops at this point. A parallel

 universe and language are created for *R, isomorphic at each stage to those
 developed for R. In this way, the analysis for R is "transferred" to *R
 with a well-defined test for determining the truth of statements about *R.

 Details of this development are given in Section 4. What we do here is

 list some operating rules which display the manner in which the transfer of

 "truth" occurs, and then illustrate this in the style of [3].

 Rules (1). Every subset A c R has a natural extension *A c *R such
 that A c *A.

 (2) Every function f : A •* R has a natural extension *f :
 *A -» *R. (More generally, every n-ary relation on R has such an extension).

 (3) All standard algebraic operations in R transfer to *R. (No
 new notation is adopted.)

 To understand the transfer principle, it is useful to distinguish between

 the constant terms, variable terms and logical connectors in mathematical

 statements.

 Consider for example, the statement "Every non-empty subset of N has a

 smallest element". It is more formally written

 K (v A € P(N))(A * #)(3 n0 € N)(v n € A)(n0 * n)
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 where " " indicates it is a valid statement in the language of R.

 P(N), N and ♦ are constants; n0,n and A are variables; the rest of

 the symbols are logical expressions.

 For any statement a in the language of R, *« is the statement in the
 language of *F obtained by replacing all constants with their natural
 extensions (i.e., by "starring" them). The "transferred" statement becomes

 *► (v A e *P(N))(A * *4)(3 n0 € *N)(v n € A)(n0 * n).

 Note that this does not say "every non-empty subset of *N has a smallest
 element" (in fact, a false statement). But, if you replace the word "subset" in

 this statement by "subset of the form *B for some B c N", a valid
 statement in *R is created.

 With this understanding of the symbol *a we are able to state the

 Transfer Principle. Let » be a sentence in the language £ of R.

 Then

 *► *« if and only if h «.

 For a structure S more generally it would read

 *« in *S if and only if h « in S.

 Even after giving details in Section 4, we omit the proof of this relatively

 deep theorem. See [1] for its details.

 In the remainder of this section, we display the power of the transfer

 principle, applying it to produce a simple proof of a standard advanced

 calculus result which normally takes considerable development. While this can

 be found in any elementary treatise on non-standard analysis, it well

 illustrates " transfer " .

 Let f : D •» R where D c R.

 Theorem 3.1. f is continuous at x0 € D if and only if for every

 X € *D for which x ~ x0, *f(x) ~ *f(x0).
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 Proof. Suppose f is continuous at x0 € D. Let e be an element of

 R+. There is, then, ¿ in R+ so that ► (v x € D)(|x-x0| < 6 => |f(x) -
 f(x0)| < c). Transfer gives *h (v x e *D)(|x-x0| < 6 => |*f(x) - *f(x0)| < «).
 If now x € *D and x ~ x0 then |x-x0| < 6 for any 6 in F*, hence
 |*f(x) - *f(x0)| < « for any e in R*. But then *f(x) ~*f(x0) using
 Theorem 2.3 (3).

 Suppose now that x ~ x0 => *f(x) ~ *f(x0). Let e > 0. For any
 infinitesimal 6 in R+, if |x-x0| < 6 then x ~ x0, so *f(x) * *f(x0) and
 it follows that |*f(x) - *f(x0)| < e for any e in F+. Fixing t in R*,
 then

 (3 6 in *irf)(x € *D), (|x-x0| < 6 => |*f(x0 - *f(x)| < «).

 Transferring this statement back to R gives the standard definition for "f

 is continuous at x0".

 While the above is sufficient to see how transfer operates, much more can

 be done from this point with very little effort. The proof of the next theorem

 is similar to the above so we omit it.

 Theorem 3.2. f is uniformly continuous on D c R if and only if v x,y

 in *D for which x * y, *f(x) ~ *f(y).

 The equivalence of continuity and uniform continuity on compact sets can

 now be shown without need of developing Bolzano-Weierstrass or Heine-Borei

 ideas.

 Theorem 3.3. Let f : [a,b] ■* R. If f is continuous on [a,b] then f

 is uniformly continuous on [a,b].

 Proof. Let x and y be elements of *[a,b] such that x ~ y. We

 need only show: *f(x) ~ *f(y) by Theorem 3.2. Since x and y are in F,
 there is t € R so t ~ x; but since x ~ y we have t ~ y also by

 Theorem 2.3. Theorem 3.1 then gives us *f(t) ~ *f(x) and *f(t) ~ *f(y).
 The transitivity of " ~ " (Theorem 2.3) again gives us that *f(x) ~ * f(y)

 and the proof is complete.
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 We complete these theorems with ā non-standard verification that f(x) =

 sin 1/x is not uniformly continuous on (0,1].

 Example. It suffices to find positive infinitesimals x and y so

 *sin 1/x / *sin 1/y, or equivalently, infinitely large positive numbers a
 and b so *sin a f *sin b. Letting « be any positive infinite integer, a =
 (w + 1/2 )n, b = ww we have *sin a = 1, *sin b = 0 which does it. (That
 *sin inherits its elementary evaluations from the sine function is a simple

 application of the transfer principle.)

 While the above examples are well-known, we have produced a non-

 standard version of the most elemental monotonicity theorem to conclude this

 section. It avoids the traditional mean value theorem development. Note that

 the non-standard derivative is well-defined and behaves like a derivative

 merely from the transfer of the definition.

 Lemma: Let f : R •* R. f is increasing on R if and only if for all

 a € R and s,t in /¿(a) such that s < a < t, *f(x) < *f(t).

 Proof. If f is increasing on R, a straightforward transfer produces

 the conclusion.

 Suppose f is not increasing on R. A simple compactness argument

 produces a € R so that

 ► (v t > 0)(e in R)(3 s,t in (a-e,a+e), s < a < t but f(s) * f(t)).

 Transfer of this statement produces a contradiction in the conclusion.

 Theorem 3.4: Let f : R -» R so that t' exists on R and f'(a) > 0

 for all a e R. Then f is increasing on R.

 Proof. For any pair s,t in p(a), ~ *f'(a) and

 ~ *f'(a). But then for s < a < t, both in m( a)
 t 81

 *f(t)-*f(s) = *f(t)-*f(a) ļ£s] + *f(s)-*f(a) „ #f,(a) +
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 *f'(a) [|r|] = *f ' (a) > 0, hence *f(s) < *f(t).

 Note: s < a < t implies 73- and tz~ ®re finite elements of *H, "C S L S

 without which fact we do not have the infinitesimal approximation in the above

 line.

 4. Superstructures and Universes : The Internal Set Distinction.

 We begin by giving the details of the universal structures which we

 assumed existed in Section 3. Properties of these structures are stated

 without proofs since the proofs take considerable development and do not have

 much motivating power as far as analysis is concerned. Moreover, proofs can

 be found in standard references ([1], for example).

 Let X be a non-empty set. The two cases of interest to us at this

 point are R and *R. In later sections, X will represent a topological
 space or a measure space. The objects of interest in analysis - subsets,

 functions, relations, etc. - can all be described within a framework of

 levels of sets as is well-known. A function on X, for example, is a set of

 subsets of subsets of X.

 So, we create a superstructure for X to contain all these objects. ?(X)

 will denote the power set of X. Let X! = X u P(X), Xa = Xt u P(Xi) and so
 00

 on. Inductively we define Xn for each n. X = U Xn is called a
 n-1

 superstructure of X; X is called the set of individuals of X.

 For any given non-empty set X, we can define a superstructure for S

 and for the set *S defined in Section 2. S and *S, however, bear no

 significant relation to each other: *S is too large. We rectify this in
 such a way as to maintain a close parallel between the superstructure through

 the ultrafilter ?.

 Recall from Section 2 that Z0 is the set of functions from r to S,

 such that for f,g in Z0, f ~ g in case fg = g¿ ? - a. e. where ī is

 the suitably chosen ultrafilter on r, and *S = {f : f c Z0} where f

 represents an " ~ " equivalence class.

 For any positive integer n, the set Sn is defined by Sn = ?(Sn-! ) u

 Sn~! as above. Let Zn = {f : r -» Ś : f¿ € Sn, ? - a.e.}. Suppose that
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 for given n, f has been defined for each f e Zn and in such a way that

 fn e (*S)n. Then, for f € Zn+ļ ' Zn define

 f = (5 : Ä e Zn and g¿ e fg a. e.}.
 fi»

 By induction, then, f has been defined for all f e Z = U Zn and in such
 n=l

 a way that f e *Š. Finally *Š = {f : f € Z} is called the non-standard
 universe corresponding to S. S and *S are, respectively, the sets of
 individuals in the standard and non-standard universes.

 Note what has occurred. The ultrafilter J has been used to select out

 of *S certain elements and throw away the rest. This subset is *S. It is
 this distinction which gives rise to the second key operating concept.

 Definition 4.1. An element of *S is called an internal set. An element of

 *S ' *S is called an external set.

 Speaking informally, internal sets are the objects we can make specific

 statements about by proper transferrai from the standard universe. In the

 introduction of his book, [1], Martin Davis points out the contradiction in

 Leibniz's hope to create a set containing infinitesimals and having the same

 properties as R.

 Namely, such a set cannot have the same properties as R since, for

 example, it does not share with R the property of having infinitesimals. It

 is precisely this problem that the internal set distinction speaks to. It allows

 a calculus of infinitesimals but selects carefully those objects in the extension

 which "behave like" objects in the original space. Relative to the example

 given above, the set I of infinitesimals is not an internal set. Ways of

 determining which sets are internal await the careful distinction of language

 which we make in the next section.

 5. Languages and the Star Operation.

 The fundamental question concerning *S for our non-empty set S is to
 determine what can be said that is true. The language of mathematics, then,

 plays a major role.
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 Without going into tedious formalism, languages for each universe are

 constructed consisting initially of three types of objects:

 (1) fundamental logical symbols: "element of", "negation", quantifiers, etc.

 (2) variables to use in the formation of sentences

 (3) A copy of the universe to serve as the substantive or constant

 elements of sentences.

 The languages are then constructed inductively on the number of terms

 in a sentence. The two languages are developed in close parallel so as to

 have "isomorphic" semantics.

 Let £ denote the language of Ś and *£ the language of *S. At this
 point we must begin to be more careful about the use of the star symbol

 " * As used in the previous sentence, it is merely part of a symbol
 denoting a set, so there is no problem. As used in the Rules and examples of

 Section 3, however, it names a specific mapping from Š to *S. We now
 clarify what this mapping is.

 The first specification of "star" is with respect to languages. The second

 is with respect to sets of S.

 Let a be a mathematical statement. We use the symbol " ► a " to mean

 « € £, or more simply, a is a true statement. Also, "*►/?" denotes:
 ß € «*.

 Definition 5.1. If « € £, then *a e *£ is the statement obtained by

 replacing each constant b in a by its map b in *S (under the natural
 embedding of Ś in *S, i.e., as the equivalence class of a constant
 function.)

 Certain statements in a language are called formulas. The definition is

 complicated and corresponds with our intuitive idea of a formula so we spare

 the details.

 For any universe U (the two of interest here being Ś and *S), we
 denote £ļj its language. "Uh" signifies that a statement is true in U.
 We then have

 Definition 5.2. Let A c U. A is said to be a definable set if there is a

 formula « = «(x) in £'j so that
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 A = {b e U : U ► A(b)}. « is the definition of A.

 For example, all sets A in the standard universe S are definable by A

 = {b € Ś : b e A} ("b e A" being a simple formula). This allows the
 definition of " * " as a map between the standard sind nonstandard
 universe.

 A major theorem in nonstandard analysis guarantees that the definition of

 the set is independent of the specific formula which defines it. The proof can

 be found in [1] (page 28). With this in mind we make the following definition.

 Definition 5.3. Let A be a set in Ś defined by the formula a € Ł.
 So, *A = {b € Ś : ► *« (b)}.

 " * " then defines a map from Ś to *S. It is quite easy to show that
 for X € S, *x = X (cf. Section 4) and both are identified with x. What this
 mapping does is relate a set A in Ś to *A in *S through the language
 so that *A inherits many of the properties of A. The set *N, for example,
 behaves like the natural numbers in so far as its properties can be expressed

 through formulas.

 Sets of the form *A for A € S are called standard elements of *S.

 So, the standard elements give us a large collection of internal sets in the

 nonstandard universe.

 Moreover, " * " is an isomorphism with respect to basic set

 operations (union, intersection, negation, containment, etc.); if f is a

 function from A to B, then *f is a function from *A to *B. A very

 important property of internal sets is the following theorem. Its proof can be

 found in [1].

 Theorem 5.1. If A is internal and A c *B for some B e Ś, then
 A e *?(B).

 Applications can now be given which illuminate the role that internality

 plays. Recall that in Section 3, we proved that every nonempty standard (in

 present terminology) subset of *N has a smallest element by simple appeal to
 the transfer principle. The above theorem allows an easy extension from

 which we draw useful consequences.
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 Theorem 5.2. Every nonempty internal subset of *N has a smallest
 element.

 Proof. Transfer the statement

 t (v X e ?(N))(X * ♦Xj m € X)(v X e X)(m < x) and

 then apply Theorem 5.1.

 Theorem 5.3. If w c *N ' N and n € N, then n < w.

 Proof. Suppose w < n for some n and assume this n is the smallest

 such. Then n-1 < w < n. But since no standard integer lies between two

 consecutive integers» neither can a nonstandard integer (a simple transfer

 argument), and so, a contradiction.

 Theorem 5.4. *N 'N is an external set.

 Proof. If *N ' N is internal, it has a smallest element w0 by 5.2. For
 any n € N, w0 > n+1, hence w0-l > n for each n e N, i.e., w0-l €

 *N ' N, a clear contradiction.

 As a corollary of the above, we obtain a simple proof of the intermediate

 value theorem which avoids the Bolzano-Weierstrass development but captures

 the spirit of Bolzano's original proof.

 Theorem 5.5. Suppose f : [0,1] -» R is continuous and f(0) < 0 and

 f(l) > 0. Then there is c e [0,1] so that f(c) = 0.

 Proof. Let w € *N ' N. Let A = {n € *N : *f(- ) * 0 and 0 < - < 1}.
 W w

 A is a non-empty internal subset (reader may supply argument), hence has a

 smallest element n0. So, there is n0 € *N such that *f(~) * 0, but
 n0 Do

 *f( v v w ' w ' w
 Dq n0-i * a Hq

 www w
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 f(c) ~ *f(^) < o => f(c) = 0.
 We conclude by noting that internal sets need not be standard. This

 example also provides the pattern for showing the internality of A in the

 above proof.

 Let w e *N ' N and let B = {n e *N : n * w} . Transferring the
 statement

 ► (v m e N)({n e N : n * m} e ?(N)), gives B € *?(N),

 hence B is internal by 5.1. Clearly, B * *C for any C c N so B is
 not standard.

 6. New Applications: Loratllv Valid Suborderings.

 Theorems and examples in previous sections are variations of relatively

 standard aspects (pun intended) of the elementary treatment of nonstandard

 analysis. We now apply these ideas to more recent research in real analysis

 and generate results not previously published.

 In [2], Leinfelder introduces the concept of "locally valid subordering" as

 a unifying principle to recast several fundamental theorems in real analysis.

 Simple proofs of these theorems are then given which avoid direct Bolzano-

 Weierstrass and Heine-Borei constructions.

 A nonstandard approach leads to a unifying principle which underplays

 the order relation and emphasizes the "localization" of properties which occurs

 when dealing with compact sets. More usefully, the nonstandard approach

 generalizes easily to arbitrary metric spaces as we shall see in a later section

 and places several of Leinfeldens examples in more general context. Since the

 generalization uses the third main tool of nonstandard analysis, the

 concurrence principle, our attention is restricted to R in this section.

 Let I0 = [a,b] c R be a compact interval and 4 some class of compact

 subintervals of I0. Let P : A •* £ denote some property of compact

 subinterval8 of I0. P(J) is said to be valid if the property holds on J.

 Also P is an additive property if whenever J = u j2, with J, Jl and

 J 2 in 4, then P(Jt) and P(J2) valid implies P(J) is valid. A subset

 K c *R is infinitesimal in case klt k2 in K implies kt ~ ka. This sets up
 the principle condition needed.
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 Definition 6.1. The property P is infinitesimally valid on 4 in case P

 is additive and *P(K) holds for all K e for which K is infinitesimal.

 Note that simple uses of transfer give us the facts that if P is additive

 on 4, then *P is additive on *4 and that *i is a collection of
 subinterval8 [z,w] of *I0.

 Example 6.1. Let f : I0 •* R be differentiable and such that f'(x) > 0

 for X € I0. Fix y e I0, y * a. Let 4 = {J = [x,y], x e I0, x < y}. Let

 P(J) be the statement:

 ► (J = [x,y]) (ÎIïL-£Î2£l > g), for each J € 4, P is easily shown to be
 y~x

 additive.

 *P(K) is: * »■ (K = [z,y])( > 0), for each K € *4. If K is
 y 2

 infinitesimal, ~ *f'(y) > 0, hence P is an infinitesimally

 valid property on A.

 Example 6.2. Let {&a : a e a} be an open cover of I0> 4 the class of

 closed subintervals of I0 and P(J) the property: some finite subset of

 {e><* : a e Q} covers J. P is clearly additive. *P(K) states that every
 K € ** has a »-finite subcover from *[&« : « e a}. If K is infinitesimal,
 then K is a subset of some monad M(a), a e I0. But since a e &a for some

 « € a, A»(a) c *&at hence K is covered by the »-finite subset of one element
 of *{€»« : « € a). So, P is an infinitesimally valid property on A.

 i

 Example 6.3. Let f be a regulated function on I0, i.e., one having

 finite left and right limits f(c-) and f(c+) for each c c (a,b) with

 f (a+), f(b-) existing also. Let A be the class of all closed subintervals of

 I0 and, for fixed n « N, let P(J) for J e 4 denote the property: "there

 is a step function ?(x) defined on J such that V(x) * f(x) and

 9(x) - f(x) < 1/n for all x « J". P is clearly additive. If K e *4 is
 infinitesimal, let c e I0 be such that K c m(c). Define i>(x) as follows:
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 f(c-) + ^ for X « K, X * c
 *<x) = 2"

 . f(c+) + 2^ for X € K, X > c

 i> is easily shown to be an element of the transferred set of step functions

 on closed subintervals of I0. In short, P is an infinitesimally valid

 property on 4.

 In like fashion, Leinfeldens other examples can be rewritten as

 infinitesimally valid properties; we will not give the details here. Rather, in

 the spirit of [2], we prove a general theorem which we use to extract well-

 known results from the above examples.

 Theorem 6.1. If P is an infinitesimally valid property on A, then P(J)

 is valid for all J e 4.

 Proof. Assume the conclusion is false; so there is J = [x,y] e 4 such

 that P(J) is not valid. Let w c *N ' N and zn = (1 - |j)x + jj y, for any
 n * w, ne «N. Note: zn € *J. Let A = {n « *N : n < w, *P([x,zn]) is
 not valid}. A is a nonempty internal subset of *N, hence by Theorem 5.2, A

 has a smallest element n0. So, *P( [x,znļ)] ) is not valid but *P( [x,zno-! ] )
 is valid. By the additivity of *P, *P( [zn0-i » znQ] ) is not valid. But
 [zn0-i»zn03 is infinitesimal, contradicting the hypothesis, thus completing
 the proof.

 We note now, in light of this theorem, that Example 6.1 implies the

 fundamental monotonicity theorem, Example 6.2 the Heine-Borei theorem and

 Examples 6.3 the uniform approximation of regulated functions by step

 functions.

 7. Concurrent Relations«

 The concurrence principle is the third fundamental tool needed to do non-

 standard analysis and gives the subject much of its power.

 Let r be a relation in S, (a,b) denote an ordered pair and dom(r)

 the domain of r.
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 Definition 7.1. r is said to be concurrent in Ś in case whenever for

 some n e N, {a1M..,an} c dom(r), there is an element a € Ś such that
 (aķ,a) er, k = l,...,n.

 The principal result can now be stated. Its proof is also a major piece of

 work in nonstandard analysis and so will only be referenced. ([1], page 34.)

 A careful choice of the index set r and the ultrafilter need be made and

 such choices can be made for all traditionell analytic settings. One of the main

 reasons for the careful selection of the nonstandard universe *S from *S

 is that in the former, the result below is valid. In Abraham Robinson's

 terminology, *S is then called an enlargement of S.

 Theorem 7.1. (The Concurrence Principle) Let r be a concurrent

 relation in Ś. Then, there is an element b € *S such that (*a,b) e *r for
 all a « dom(r). (We will abbreviate this theorem as CT.)

 What is added to the theory at this point is the existence of universal

 elements under fairly general hypotheses. An elementary application of CT,

 for example, provides a cleaner proof of the existence of elements of *N ' N,
 Le., infinite integers.

 Let r = {(x,y), x c N, y e N, x < y}, r is clearly a concurrent relation.

 By CT, then, there is an element z € *N so that x < z for all x € N. z
 is necessarily in *N ' N.

 The next section will provide more substantial applications.

 8. Metric and Topological Spaces: Extensions of Infinitesimally Valid

 Properties.

 We now assume (X^T) is a topological space where X is an infinite set

 and 3" a topology on X. Let *X denote a suitably chosen enlargement of
 X. By this we ensure that *X is defined as in the previous sections (where
 it had the general name *S) so that transfer, concurrence and internality

 behave as described in general. We recall also the natural embedding of X

 in *X so we regard it as a subset. Let 7p denote the set of open
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 neighborhoods of the point p e X. Then

 Definition 8.1. m(p) = fl {*G : G € ÍTp} is called the monad of p and we
 write q ~ p to denote q € m(p)>

 This gives a type of "canonical infinitesimal neighborhood" of p. For

 example, the set I of infinitesimals in *R is the monad of zero; monads are
 then not generally internal sets. (Note: q ~ p is not, as defined, a

 symmetric relation.) m( p) does, however, contain an internal "open

 neighborhood" of p.

 Theorem 8.1. v p c X, there is an internal set D e *7p so that D c
 m(P).

 To prove this, let r = {(A,B) : A and B are in 3p, A 3 B} and
 apply the Concurrence principle to the relation r.

 The following theorems are fundamental to the study of nonstandard

 topological spaces. Their proofs are elementary enough to be supplied by the

 reader (liberally applying Theorem 8.1) or they can be found in [1].

 Theorem 8.2. X is Hausdorff if and only if for each pair p,q in X,

 P * q» Mv) n M(q) =

 Theorem 8.3. G is open in X if and only if for each p e G, m( p) c *G.

 Theorem 8.4. F is closed in X if and only if for all p c X, m(p) n

 *F * ♦ => p € F.

 Definition 8.1. q € *X is near-standard if there is p € X so q ~ p.
 (p is called the standard part of q and we write p = st(q)).

 Theorem 8.5. K c X is compact if and only if for each q € *K, there is
 p e K so q » p.

 If X is a metric space, several advantages accrue. For p e X it is

 easily shown that a»(p) = {q € *X : *d(p,q) < t, v c in R*} where d is
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 the metric on X. Define p ~ q in *X to mean *d(p,q) < e for all real e
 > 0, we extend the defnition and make it symmetric.

 For the remainder of this section, X denotes a metric space. In this

 setting, we generalize the "infinitesimally valid" ideas of Section 6 and give

 some examples.

 Let K0 c X denote a compact set and X some subclass of the compact

 subsets of K0. Using our canonical symbols for languages, universes, etc.,

 we let P : X •* £ be some property of sets in X. P(K) is valid if it is true.

 P is additive on X if whenever K, Kj, Ka are in X, K = Kx u K2 and

 P(Ki) and P(Ka) are both valid, then P(K) is valid. A subset L of *K0
 is infinitesimal in case x ~ y for all x,y in L.

 Definition 8.2. P is said to be infinitesimally valid in case P is additive

 and *P(L) is valid for all L e *X for which L is infinitesimal.

 We note for use in the examples that the nonstandard definition of

 continuity given previously generalizes. Namely f is continuous at p in

 case for q in *X, q ~ p we have *f(q) ~ *f(p).

 Example 7.1. Let f : K0 ■* F be continuous on the compact subset K«

 of the metric space X. Suppose f does not attain a maximum on K0. Let

 X be the compact subsets of K0 and P(K) defined by: there is m e K0

 so f(k) < f(m) for all k e K. P is obviously additive. Let L be an

 infinitesimal subset of *X. By Theorem 8.5, there is c e K0 so that y ~ c
 for all y € L, hence *f(y) < *f(m) for all y € L, i.e., *P(L) is valid,
 hence P is infinitesimally valid.

 Example 7.2. With f, K0 and X as in Example 7.1, let e > 0 and P(K)

 be the statement: there is ó > 0 so that if diam(K) < â then |f(x)-f(y)| <

 e for all x,y in K. If L is an infinitesimal subset of *K then any <5

 suffices since z,w in *L => 3 c € K0 so z ~ c ~ w, hence *f(z) ~ *f(c)
 and *f(w) ~ *f(c), implying *f(z) ~ *f(w). So *P(L) is infinitesimally
 valid.

 While other examples could be given, the above two give the spirit of the

 generalization. So, we state and prove the unifying principle. The central

 tool in the proof is the Concurrence Principle.
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 Theorem 8.6. Let K0 be a compact subset of the metric space X, and

 X the class of compact subsets of K0* If P is infinitesimally valid, then P

 is valid on X.

 Proof. Suppose there exists a K € X so P(K) is not valid. Covering

 K with the interiors of a finite set of closed spheres of radius 1, one finds a

 compact subset Kt c K so diam(Kt) < diam(K) and P(Kt) is not valid using

 the ad diti vit y of P. In like manner we choose a nested sequence of Kn c K

 so P(Kn) is not valid and diam(Kn) < l/2n diam(K). Define the relation r

 with domain the sequence {Kn : n e N) by (K,J) € r in case K = Kn for

 some n c N, J c X, J c K and P(J) is not valid. r is concurrent since

 if Knlf...,Knm m chosen from dom(r), J = Kp, p = max{nl(...,nm}
 satisfies (Kn^J) er, i = l,...,m. By CT, there is L € *X so *P{L) is
 not valid and L c *Kn for all n c N. But then L is infinitesimal,
 contradicting the hypothesis.

 The contradiction inherent in P(K0) being valid in Exercise 7.1 gives the

 maximum theorem for compact sets in metric spaces. The validity of P in

 Exercise 7.2 is the uniform continuity theorem.

 9. Saturation: Application to Nonstandard Path Continuity.

 The universal maximizing (or minimizing) elements supplied by the

 Concurrence Theorem are not sufficient for certain applications in analysis,
 due principally to the domain restrictions of concurrence.

 Letting S be an infinite set, Ś and *S the structure defined
 previously, we make the following definition.

 Let X be an infinite cardinal.

 Definition 9.1. *S is said to be a X- saturated in case for any internal
 relation p in *S that is concurrent on a subset A of its domain (i.e.,

 v n € N, if {xt,...,xn} c A, 3 y e ran(p) so that {(xi,y),...,(xn,y)} c A),

 and card(A) < X, then there exists y* e *Š n ran(p) so that (x,y*) € p
 for all X € A.
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 By careful choice of the ultrafilter, K-saturated models can be constructed.

 By choosing K so card(S) < K, the Concurrence Principle is guaranteed.

 We assume that X is always large enough.

 Saturation is more powerful than concurrence in two regards. First, the

 binary relation need only be internal in *S rather than standard in Ś.
 Second, the set A can be arbitrary (within cardinality restriction) whereas it

 must be standard in the Concurrence Principle. For greater elucidation of the

 foundations of saturation, we refer the reader to [4], (page 27 ff.).

 Wattenberg used saturation to give a nonstandard characterization of

 approximate continuity [6]. Letting IH denote a higher order structure

 including R and its Lebesgue measure space, and *01 a X-saturated
 nonstandard extension of Hi with X sufficiently large he made the following

 definition on [0,1].

 Definition 9.2. x e *[0,1] is negligible in case there is a standard set

 A c [0,1] so that

 (i) st(x) is a point of dispersion for A

 (ii) x € *A.

 Let n denote the set of negligible points of *[0,1]. Then,

 Theorem 9.1. Suppose f : [0,1] -* R and x € [0,1]. Then f is

 approximately continuous at x if and only if for each t c m(x) ' Tt,

 *f(t) - *f(x).

 In some sense, then, the set Tl universally selects from each monad the

 points eliminated from consideration by the local selection of a set of density

 1 at each of the points of [0,1].

 Proofs are not supplied since an examination of the result in [6] indicates

 that it holds more generally in the setting of continuity paths described by

 Bruckner, O'Malley and Thomson in [5].

 Definition 9.3. Let x € R

 (1) A path leading to x is a set Ex c R such that x c Ex and x

 is an accumulation point of Ex.
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 (2) A system of paths at x, £x, is a collection of paths leading to x.
 (3) A system of paths is a collection £ = U {£x : x € F}.

 The properties listed below are easily shown to hold for several of the

 well-known systems of paths studied in [5], including the ordinary type, the

 (1,1) -density type and the qualitative type. They are sufficient to give us

 the generalization referred to above. The (1,1) -density type is the result in

 [6].

 Definition 9.4. A system of paths will be called locally thick in case the

 following conditions are satisfied.

 (i) If Ex(') and Ex(a) are in £x, there is Ex(3) in £x so that
 Ex(3) e Ex(0 n Ex<2).

 (ii) If Ex € £x, then for v > 0, Ex « (x-ij,x+i?) € £x.
 (iii) If Exn € £x for n e N, there is decreasing sequence <cn> -» 0

 <D

 so that U (Jn n Exn) u {x} € £x where Jn = (x-cn,x-cn+t ] u [x+cn+! ,x+cn) .
 n=l

 Definition 9.5. A function f : F •* F is said to be £-continuous at x

 in case 3 Ex e £x so that lim f(y) = f(x).
 y^x
 y«Ex

 For the remainder of this section, the family £ will be assumed to be

 locally thick. Also, Dc denotes the complement of D in F.

 Theorem 9.2. f : F -» F is £-continuous if and only if for each e > 0

 (y • |f (y) - f(x)| * c} c Exc for some Ex e Ex.

 Proof. Suppose f is £-continuous at x. Then, there is Ex e £x so

 that: for each e > 0 there is 6 > 0 so that (y : |f(y) - f(x)| * e) c

 [Ex u (x-<5,x+<5)]c. Property (ii) of 9.4 produces Fx e £x so {y : |f(y) -

 f(x)| ^ e) c Fxc.

 Suppose for e > 0, (y : |f(y) - f(x)| ^ e) c exc. Given n c N, there

 is Exn e £x so Exn c {y : |f(y) - f(x)| < 1/n). By Property (iii) of 9.4,
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 there is <cn> -»0 so Fx = (Exn n jn) u {x} e £x. It is easily computed that

 li® f(y) = f(x).
 y+x
 y«fx

 For the system of paths £ we define the nonstandard set 7l(£) in *F.

 Definition 9.6. 7l(£) = {z e *R : 3 x € F and Ex c £x so that x = st(z)
 and z e *EX°}. 71(C) is called the £-negligible elements of *F.

 Theorem 9.3. f : R -> F is £-continuous at x if and only if for every

 y € m(x) ' Tl(£), *f(y) ~ *f(x).

 The proof is by way of the following lemma.

 Lemma. Suppose A c F and x e F. Then A c Exc for some Ex € £x

 <=> M(X) n *A c 7l(£).

 Proof. Suppose first that A is not a subset of Exc for any Ex € £x.

 By Property (ii), for v > 0 and any Ex « ex» a n Ex n (x-v,x+y) * ♦. The

 transfer principle gives us *A n *EX n *(x-p,x+p) * ♦ for p infinitesimal,
 and hence *A n *EX n p(x) * 4. Let r be the relation defined on £x x n(x)
 by (Ex,y) e r in case Ex € £x and y € *EX n *A n p(x). We show that r
 is a concurrent, nonstandard relation. If {Ex1,...,Exn} is a finite subset of

 n

 £x, there is by Property (i) an Ex c fl E^. Pick y € *EX n *a n m(x) .
 k=l

 Then (Ex^,y) e r for k = and the concurrence of r is
 established. The saturation of our model now gives a z € m(x) so that

 (Ex,z) € r for all Ex e £x. But then z e m(x) r» *A but z i Exc for any
 Ex € £x» So, z i Tl(£) and the conclusion is negated.

 Assume now A c Exc for some Ex e £x. Let z € /i(x) n*A. Then x =
 st(z) and z € *EXC, hence z c 71(C). So /x(x) n *A c 7l(£) and the proof of
 the lemma is complete.

 Proof of Theorem.

 By Theorem 9.2, f is £-continuous at x <=> v « > 0, {y : |f(y) - f(x)|
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 i e} c Ex° for some Ex e £x <=> V t > 0, m(x) n {y : |*f(y) - *f(x)| * e} c
 7l(£) (by above lemma). We need only show this latter statement is equivalent

 to the conclusion of the theorem.

 Assume first the latter statement and let y € /¿(x) ~ Tl(£). Then for each

 real e > 0, |*f(y) - *f(x)| < e, hence *f(y) ~ *f(x).
 On the other hand, assume the conclusion of the theorem. For any e > 0,

 let z c m(x) n {y : |*f(y) - *f (x) I * e}. If z i 7l(£) then *f(z) " *f(x),
 contradicting the choice of z. So z € n(£), verifying the latter statement.
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