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Convergence in Length and Area of the Bernstein

and Kantorovitch Polynomials

This is a survey of the Ph.D. thesis of John Joseph Loughlin

done under my guidance at Purdue University in 1971.

Let Bi(x) be the k-th Bernstein polynomial on the n-cube
n

I, defined to be
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pvk(X) = (v X (l-x) for x € [0,1].
The k-th Kantorovitch polynomial is defined to be
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For any n, for continuous f¢£, Bi converges uniformly on
n f

I to f. For n =1, the variations and lengths of the Bk

converge, respectively, to the variation and length of ¢£.
For n > 1, the Tonelli variations and areas are considered.

The definition of BVT, bounded variation in the sense of Tonelli,
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and ACT, absolute continuity‘'in the sense of Tonelli, as well as
that of the surface area A(f) of the surface given by the
continuous function f are found in Saks for n = 2. The
extensions to n > 2 are the natural ones.

A continuous f:I7 + Rl is in ACT if it is absolutely

continuous in each variable for almost all values of the other

n - 1 variables and if all the first partial derivatives are

in Ll' Thus f € ACT if and only if f 1is continuous and
belongs to the Sobolev space wi. If %5— € Lp, p > 1, then
l l
b w_.
€ P
Suppose f € ACT. The variations
of . s
. (f) = — dx, i =1,2,...,n are finite.
i n Bxi

I

Suppose {fk} converges to f in L,. We say that {fk}

converges to f in variation if lim Qi(fk) = ¢i(f), i=1,...,n.
k » o
If lim ¢, (f - £,) =0,1i=1,...,n, we say that {fk} converges
k > o .
to f in strong variation. If lim A(fk) = A(f), we say that
k - o

{fk} converges to f in area.

In one dimension it is classical that if f is continuous
on [0,1])] then ¢(B£) < o(f), k=1,2,.... Using this fact,
it readily follows that {Bi} converges to f strongly in
variation, and from this that it converges both in variation and

in length.

The above inequality does not hold for n > 1. Indeed, the

result just stated for n = 1 now holds for £ € Wé, p > n, but
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fails to hold for some f£f € Wi. The basic reason for this is
that functions in W;, p > n, satisfy a H6lder condition whereas
functions in Wi can behave badly.

If £ 1is continuous on In, f ¢ W;(In), p > n, and |f|

is the W; norm of f then f satisfies a HOlder condition.
Specifically, for every x, y € In, x #y, we have

1-2
P

|[f(x) - £(y)] < C(p,n)- x - y| .

-
From this inequality, it is not very difficult to see that
¢, (£) = C(p,m)|ff, i=1,...,n.

A computation, which is also not too difficult, yields the convergence

£
k

Consequently, Bi converges to f both in variation and in area.

in strong variation of the Bernstein polynomials B to f£.

The construction of a counter-example for £ € Wi is much
more subtle and interesting. Basic to the construction is the
fact that, for n > 1, for every € > 0 there is a non-negative
u € wi whose support is in the unit n ball, such that u(0) =1
and |luff < €. This does not hold for n = 1. This implies that

for every a, § > 0, m > 0, M > 0 there is a u € Wi whose support

is in the ball of center a and radius & such that u(a) = M
and |ju|l = m.
Now
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By putting these facts together in a judicious and delicate
way, it is possible to obtain u € Wi(In) for which ¢l(B§) is
an unbounded sequence. Accordingly u is not the limit of BE

in variation.

The Kantorovitch polynomials behave much better. Since these
polynomials apply to functions in Ll(In) we deal with functions
in g ACT rather than in ACT. Indeed g ACT is simply wi
without the continuity restriction. In other words, f € g ACT
if there is an equivalent g which is absolutely continuous in
each variable for almost all values of the other variables and if
the partial derivatives of g are all summable. In contrast
with Bernstein polynomials, for every n, f € Ll(In) implies
¢i(P£) < @i(f), i=1,...,n. It is also not hard to show that if

n

f € g ACT on I then Pi

and hence converges in variation and in area. A related fact is

converges strongly in variation to f,

that Pf

x converges to f in the Wi(In) metric for f € g ACT = Wi.

Recelved Decembern 13, 1984
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