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SOME PROBLEMS IN DIPFERENTIATION THEORY

Let (X,px) and (Y,py) be complete metric space and let u be a
measure defined on a o-algebra M which contains all Borel sets in X. We
assume that there exists a differentiation base (F,=>) 1in X, where F is
a family of open sets of finite, positive u measure and a contraction =>
of sequences of sets in F to points x € X 1is such that

(1) Ip=>x iff x e I for n=1,2,... and limyq d(In) = O, where
d(Ip) denotes the diameter of the set I, ; and

(2) if x € X, then there exists at least one sequence of sets of F
which tends to x.

For a fixed set E € M and a point x5 € X the upper (resp. lower)
density of E at xg is

d7(E,Xo) = lim sup WE n I) / uw(I)
I = %
( d-(E,X5) = 1lim inf WE N I)/ u(I) ).

I => %o

Here the notation I => x, 1is used to signify that we consider all possible

sequences of open sets of F tending to x.

Definition 1. Let f:X - Y be a p-measurable function. Then 4
satisfies the 1locally preponderantly Lipschitz condition at a point x5 € X,
iff there exist a set E e M, a number & = 8§(Xy5) > O and a constant L =

L(xg) > 0 such that
UENTI)/ u(Il) > 1/2 for all sets I € F containing xg
with d(I) < 8§ and

py( f(x),f(%x5)) < L px(x,%X5) for every X € E .

Definition 2. ([1] and [2]). A function f:X - Y 1is [CG] 1if and only
if for every closed set C C X (C # ¢) there is an open set U < X with

CNnU#¢ such that f|c 1s continuous on C n U.
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Leema 1. Let A CX be a set and f:C2 A - Y be a function (A # ¢ and
Cf A denotes the closure of the set A). If the function f is not
continous at a point x € C2 A, then there exist a number ¢ > 0, a point vy
e C2 A and a sequence of points xyp € A (m = 1,2,...) which tends to y and
such that py(f(y),f(xn)) > ¢ for every m.

Proof. Since f 1is not continuous at a point x, there exist a number

c > 0 and a sequence of points ujp € C2 A (m = 1,2,...) which tends to x
and such that py(£(x),f(uy)) > 2 c for every m. If limt-um,teA
f(t) = f(uyn) for every m, then there exists a sequence of points xyn € A
such that py(xp,un) < 1/m and py(f(up),f(xn)) < ¢ for m=1,2,... . Thus
py( £(xp),£(x)) 2 py(£f(up),f(x)) - py(f(up),f(xm)) > 2¢ - ¢ = ¢ for m =
1,2,... . If there exists an m such that either the limit limg_,  reaf(t)

does not exist or differs from f(up), then Lemma 1 is fullfilled.

Theorem 1. If f:X - Y satisfies the locally preponderantly Lipschitz
condition at every point x € X, then f 1is [CG].

Proof. Let C C X be a nonempty perfect set. For every natural number
n let A, be the set of all points x € C so that there is a set E(x) € M
such that u(E(x) n I)/u(I) > 1/2 for every set I € F with d(I) < 1/n and

py(F(u),f(x)) <€ npx(x,u) for u € E(x). Since C = up Cf AL, by the Baire
Category Theorem it suffices to show that the function flgj An is continuous

for each n. Suppose that for some n the function flcg 4, 1is not continuous

at a point x € C2 Ap. Then by Lemma 1 there exist a number ¢ > 0, a point
Yy € C2 A, and a sequence of points xyp € Ap which tends to y and such that
pY(£(y),f(xy)) > ¢ for every m. Let & = min(l/4n,c/4n,c/4L(y)) and I € F

be an open set such that d(I) < § and x € I and u(E(x) n I)/u(I) > 1/2.
There exists an mg such that Xm, € I. Since u(E(xmo) N I)/u(I) > 1/2,

there exists a point u e E(xmo) N E(y) n I. Then
Pv(f(Y).f(xmo)) < py(£f(y),£f(u)) + PY(f(xmo),f(U)) <
L(y)ox(x,u) + L(xm )ex(Xm_,u) S L(y)p + np <
L(y)c/4L(y) + nc/4n = c/2 < C .
This contradicts the fact that pY(f(y),f(xmo)) > C.
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II. Let X be an open, nonempty subset of k-dimensional Euclidean space
RK, let pu be Lebesgue measure in RK, 1let (F,=>) be the- ordinary

differentiation basis ([3]) and 1let Y be a separable, Banach space.

Definition 3. A function f:X - Y is approximately differentiable at a
point x5 if there exist a set E € M containing xo with d_(E,xpo) =1
and a continuous linear.operator A:RK - v (A € L(Rk,Y)) such that

lim (£(xo + h) - £(x5) - Ah)/Ih| = 0
h-0,xo+heE

We shall write

£(Xo + h) = £(x5) + Ah + ex (h)|h| for every h e RK

such that x5 + h € E where lim eXb(h) = eXb(O) = 0. Then the
h-0

operator A 1is called the approximate derivative fép(xo) of the function

f at the point xg.

Theorem 2. If a function f£f:X - Y 1is approximately differentiable at
every point x € X, then the approximate derivative x - fép(x) is of Baire

class 1.
Let us begin the proof with lemmas:

Lemma 2. If a function f:X - Y 1is approximately differentiable at every
point x € X and fép is not Baire class 1, then there there exist a perfect
set P C X (P # ¢), an operator A € L(Rk,Y) and two numbers s > r > O
such that flp is continuous, the set Q = {x € P:|fip(x) - Al < r} is of
category 2 on every set U n P, where U 1is an open set and U NP # ¢ and
the set S = (x e P:|fap(x) - Al > s} is dense in P.

Proof. If f3p:X - L(Rk,Y) is not Baire class 1, then there exist a
perfect set P, € X (P, # ¢) such that f|p, 1is discontinuous at every point
X € P,. Since the space L(Rk,Y) is separable, there exists a set A =
(A ,A;,...]} of operator Aj € L(RR,Y) dense in L(Rk,Y). For each point

X € P, there exist an operator A(x) € A and two rational numbers s(x) >
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r(x) > 0 such that [fap(x) - A(x)|L < r(x) and x e C2 (t e P, :|fap(t) -
A(x)ﬂL 2 s(x)}). Let s and t be positive, rational numbers and n be a
positive integer such that the set P, = {x € P,:A(X) = Ap = A, (X)) =1,
s(x) = s} 1is of category 2 in P,. The set P, = (x € C¢ P,:P, 1is of
category 2 (relative to Py) at point x} is perfect. Since f is
approximately differentiable, by Theorem 1 f 1is [CG] and there exists an
open set U ¢ X with P n U # 0 such that f|p; 1s continuous on P, n U.
Let V be an open set such that C¢ VvCc U and Vn P, # ¢. The set P =C!
V n P, is perfect, flp is continuous, the set Q = (x e P:|f3p(x) - AlL < r}
is of category 2 on every set WnNn P where W is an open set and WnNn P # ¢
and the set S = (x € P:|f3p(x) - Ay > s} is dense in P. This completes

the proof.
Lemma 3. If [fip(x)|p > s for every x e S # ¢ and if s, is a number
such that 0 < s, < s, then there exists a positive number gq such that

d_ ((h € R%:h # 0,[f3p(x)h/Ihi| > s,},0) 2 q for all x e S.

Proof. Let x be a point of S and let s, be such that s, < s, < s.

Since [fap(x)|r > s, there exists hg € R* such that |ho] = 1 and
I£ap(xnoll > l€ap(x)lz - (s, - s,)72. 1f heRK, |n| =1 and |h - nof <
1 - sp/s, then [fip(x)h| > [£3p(:0)ho] - [£3p(x)h - £3p(x)o] > [£ap(x)ho] -
Ifap(x)L 1h - hol > f€4p(x)r (1 - Ih - hgl) + - (s, - s,)/2 > S Sp/s -

(sz = Sl)/z > SLO

Let q=d_ ({(h e R®:h # 0 and |h/|h] - hgl < 1 - s,/s},0). Then q > O
and  d_ ((h € RX:h # 0, |fap(x)h/Ihl]] > s},0) > & ((h € R&:h # 0  and
Ih/Ih| - hgl < 1 - s,/s},0) 2 q. This completes the proof.

Lemma 4. Let f:X - Y be a function and A € X be a set such that flp

is continuous at a point s € A. If
(1x) B({u e I: [(£(u) - £(x))/lu-xI - aff < e}/n(I) > &

where a €Y, I € F, x eI and 6&,e are some positive constants, then there
exists a nonempty open set U C X such that x € U and the condition (1z) is

satisfied for each z € U n A.
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Proof. For every point t € E = (u e I:|(f(u) - £f(x))/lu-x| - a > €}
there exists a rational number r(t) >0 such that

flcEct) - £(z))/1t-2z1 - a] > € for all z € A n I with |z-x| < r(t).
Since pu(E) > su(I), we obtain pu((t € E:x(t) =2 r}) > 8u(I) for any r > O.

Then condition (1z) is satisfied for each z € I n A such that 6x(z,x) < r.

Proof of Theorem 2. If fép is not Baire class 1, then by Lemma 2 there
exist a perfect set P € X (P # ¢) and an operator .A € L(Rk,Y) and numbers
s >r >0 such that f|p is continuous, the set Q = (x e P:|f3p(x) - Al <
r} 1is of category 2 on every open set U N F with U NP # ¢ and the set
S = {x e P:||f3p(x) - AL > s } 1is dense in P. We can assume that A = O,
since in other case we consider the function f - A. By Lemma 3 there exists
a positive number q such that d_ ((h € RK:h # 0, [ £ap(x)h/Inl] > (s+r)/2},0)
2 q for every x € S. Now for each x € Q there is a positive rational
number &(x) such that pu((t e I:|f(t) - £(x)|/1t-xI < r})/w(I) > 1 - q/2
for every I e F with x e I and d(I) < &§(x). Since the set Q 1is of
category 2 in P, there exists a number & > O such that the set T =
{x € Q:86(x) = 8} 1is of category 2 in P. Consequently there exists an open
set V such that vVnP #2¢ and T nNnV is dense in VN P. Let xe€ SNV
be a point and I € F be a set such that x € I, d(I) < & and
p({t e I:f(£(t) - £(x))/1t-xI| < ¥})/u(I) > @/2. By Lemma 4 there exists an
open set W C V such that x € W and the condition (1z) (or a =0, € =
(s+r)/2 and & = q/2) 1is satisfied for each z e WnNn P. But T is dense in
V n P, sSo there exists a point y e T n I n W and pu((t e I:|[f(t) -
£(y)|l/1t-yl < r})/m(I) > 1 - q@/2, in contradiction with (1ly). This completes
the proof.

Remark. If X =Y = R, then Theorem 2 is proved in (4] by Tolstoff.

Definition 4. A function f:X - Y 1is preponderantly differentiable at a
point x € X if there exist: a set E(x) € M, a number & = §(x) > 0 and a
linear operator A:RK - Y such that u(E(x) n I) > u(I)/2 for all sets

I ¢ F containing x with d(I) < 8§ and

lim (f(x+h) - f(x) - Ah)/lh| = 0.
h-0,x+heE(x)

338



Then the operator A 1is called the preponderant derivative fbr(x) of the
function £ at the point x.

Theorem 3. If k =1 and if the function £:X - Y 1is preponderantly
differentiable at every point x € X, the preponderant derivative fp, is of

the first class of Baire.

The proof of this theorem is similar to the proof of the Tolstoff Theorem

1 in [4].

Problem 1. Let X c RK (k > 1) be an open nonempty set and f:X - Y be
preponderantly differentiable at every point x € X. Must fp5y be Baire 12

Problem 2. If X c RK (k 2 1) 1is an open nonempty set and if u is a
measure for which all bounded open nonempty sets have positive finite measure
and if f:X - R 1is ordinarily approximately differentiable at every point

X € X, must the ordinary approximate derivative fép be of Baire 1 class?

III. Let f:(0,1] x [0,1] - R Dbe a function such that all sections

fY(t) = f(t,y) are increasing.

Theorem 4. ([S5]) If all sections fy(t) = f(x,t) are almost everywhere
continuous (a.e. differentiable) [pointwise discontinuous], then the function
f is a.e. continuous (a.e. differentiable in Frechet sense) [pointwise

discontinuous].

Theorem 5. ([5]) If all sections £y, and £f¥ are increasing, then the
set D(f) of all discontinuity points of £ 1is such that the sets D,(f) =

{x:(D(f))x 1is not enumerable} and D,(f)

]

{y: (D(£)) is not enumerable)

are at most enumerable.

Some characterizations of the sets D(f) are known if all fx and (34

are increasing ([6]).
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Problem 3. If all sections fy are a.e. continuous (a.e. differentiable)
[pointwise discontinuous] and if all sections f£Y are monotone (increasing or
decreasing), must the function f be a.e. continuous (a.e. differentiable in

Frechet sense) [pointwise discontinuous]?

Problem 4. Moreover, if all sections fyx and £fY are monotone, must the

sets D,;(f) and D,(f) be at most enumerable?

Problem S. What is a necessary and sufficient condition for an Fg and
first category set to be the set D(f) of all discontinuity points of a

function f such that all sections fyx and f£Y are monotone?

Problem 6. What is a necessary and sufficient condition for a set
E C [0,1]2 to be the set of all differentiability points of a function

f: [(0,1]%2 - R such that all sections fyx and fY are increasing (monotone)?

IV. The functions f(x) = x and g(x) = -x are differentiable, but the
function h = max(f,g) 1is not differentiable at 0. Thus the family of all

differentiable functions is not a lattice of functions.

Theorem 6. If functions f,g:tR - R are differentiable on an open
interval and if h = max(f,g)(min(f,g)) 1is not differentiable at a point
X € U, then there exists a number r > 0 such that (x-r,x+r) € U and the

function h is differentiable at every point u € (x-r,x) U (x,x+r).

Proof. Obviously if the function h 1is not differentiable at a point
ue U, then f£f(u) = g(u) = h(u). If for every r > O there exists a point
Xy € (X-r,x) U (X,x+r) where h is not differentiable, then
limy—g (h(xy) - h(x))/(xy - X) = limpg f(%xy) - £(Xx))/(xy - x) = £'(X) = g'(X)
= limp_g (8(Xy) - 8(X))/(Xy - X ). This gives that limy-x (h(u) - h(x))/(u -
x) = £'(x) = g'(x) = h'(x), contrary to the choice of X The contradiction
completes the proof.
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Corollary. If h = max(f,g) (h = (min(f,g)) where the functions f and
g are differentiable, then the set of all points where h is not

differentiable is discrete.

Theorem 7. lLet E C R be a discrete set. Then there are differentiable
functions f,g:R - R such that function h = max(f,g) is differentiable at

every point x ¢ E and is not differentiable at every point x € E.

Proof. Let E = (a,,a,,...}, where aj # a; if i # j. For every n =
1,2,..., there is an interval (apn - TR, an + 1rn) such that
[an - Tpny @n + rpl N [3y - Ty, 3n + Iyl = ¢ if n # m. For any n let

hyp:R - [0,277] be a function such that

1) hp(x) =0 for x € (-, ap - Tl V [an + T, ®);

2) hp is differentiable at every point x # a, and |hyl <270

3) hp 1is not differentiable at ap ;

4) hp = max(fn,8n), where the functions £, and g are differentible
and such that fp(x) = gn(x) =0 for x ¢ [ap - rp, an + rp] and |[fh] < 2°h
and Ignl € 2°" and max( Ifpl,lgal) € 2", Then the functions f = [ fq,

g =Lhgn and h =max(f,g) satisfy the desired properties.

Problem 7. What is the smallest lattice of functions containing all
differentiable functions? Is it the family of all continuous functions
differentiable at every point except perhaps at the points of a set which is a

finite union of discrete sets?

Problem 8. What is the smallest lattice of functions containing all
derivatives (approximately derivatives) [preponderant derivatives] (Baire 1,

Darboux functions} {monotone functions)} {Riemann integrable derivatives}?

Problem 9. What is the smallest algebra of functions containing all
almost everywhere continuous derivatives? Is it the family of all a.e.

continuous Baire 1 functions?

341



(1]

(2]

(3]

(4]

(5]

(6]

References

H.W. Ellis; Darboux properties and applications to non-absolutely
convergent integrals, Canad. Math. J. 3 (1951), 471-484.

R.J. O'Malley; Approximately differentiables functions: The r
topology, Pacific J. Math. 72 (1977), 207-222.

S. Saks; Theory of the integral, Warszawa 1937

G. Tolstoff; Sur la dériveée approximative exacte, Mat. Sb.
4 (1938), 499-504.

Z. Grande; Sur les fonctions croissantes par rapport a chacune

de deux variables, (en preparation).

W. Lindner; A characterization of the set of discontinuity points
of a two variables monotone function, Thése de doctorat,

Technical University, Lodz 1980.

Recedlved September 4, 1984

342



	Contents
	p. 334
	p. 335
	p. 336
	p. 337
	p. 338
	p. 339
	p. 340
	p. 341
	p. 342

	Issue Table of Contents
	Real Analysis Exchange, Vol. 10, No. 2 (1984-85) pp. 238-355
	Front Matter
	TOPICAL SURVEY
	A category analogue of the density topology, approximate continuity and the approximate derivative [pp. 241-265]

	RESEARCH ARTICLES
	UNIQUENESS OF DERIVATIVES OF FUNCTIONS DEFINED ON CLOSED SETS [pp. 266-278]
	PERRON-STIELTJES INTEGRABILITY WITH RESPECT TO GAP FUNCTIONS [pp. 279-293]
	INTEGRABILITY CONDITIONS FOR APPROXIMATE DERIVATIVES [pp. 294-306]
	Two examples concerning derivatives and M₃-sets [pp. 307-312]
	WHITNEY SETS AND SETS OF CONSTANCY ON A PROBLEM OF WHITNEY [pp. 313-323]

	INROADS
	SHARPNESS OF SOME GRAPH CONDITIONED THEOREMS ON BOREL 1 SELECTORS [pp. 324-331]
	A PROOF OF ABEL'S CONTINUITY THEOREM [pp. 332-333]
	SOME PROBLEMS IN DIFFERENTIATION THEORY [pp. 334-342]
	REMARKS ON UNIFYING PRINCIPLES IN REAL ANALYSIS [pp. 343-348]
	Convergence in Length and Area of the Bernstein and Kantorovitch Polynomials [pp. 349-352]
	ON SOME RINGS OF SWIATKOWSKI FUNCTIONS [pp. 353-355]




