Real Analsis Exchange Vol. 10 (1984-85)

Vladimír Šverák, MFF UK, Sokolovská 83, 186 00 Prague 8, Czechoslovakia.

Two examples concerning derivatives and M3-sets.

In his paper [4] Zahorski defined a hierarchy of classes of sets \mathbb{M}_i , i=0,...,5 and a hierarchy of classes of functions \mathcal{M}_i , i=0,...,5. We then demonstrated that the \mathcal{M}_i are closely related to the class of derivatives Δ . In this note we give the following examples concerning the classes \mathbb{M}_3 and \mathcal{M}_3 :

Example 1: There are sets $\emptyset \neq C_1$, $C_2 \in [0,1]$ which can be separated by a derivative, but cannot be separated by any function of the form F(x,f(x)), where f is a bounded derivative and $F:\mathbb{R}^2 \rightarrow \mathbb{R}$ is a continuos function.

Example 2: There is an M_3 -set which cannot be written as $f^{-1}(G)$, where f is a derivative and G is an open set.

The first example is connected with the problem of characterizing the smallest "topologically characterizable" system of functions containing bounded derivatives. To be more precise, let us define \mathcal{F} as the smallest system of functions defined on [0,1] possesing the following properties:

- (i) \mathcal{F} contains bounded derivatives
- (ii) If $f \in \mathcal{F}$ and $\varphi : \mathbb{R} \to \mathbb{R}$ is a continuos function, then $\varphi \circ f \in \mathcal{F}$

(iii) If $f_n \in \mathcal{F}$ and $f_n \rightarrow f$ uniformly on [0,1], then $f \in \mathcal{F}$

It is not difficult to show that \mathcal{F} admits a characterization in terms of pseudouniformities. (Use, for example, Theorem 3.1. from [3] and the Darboux property of derivatives.) Clearly $\mathcal{F} \subset b\mathcal{M}_3$, where $b\mathcal{M}_3$ denotes the system of bounded \mathcal{M}_3 -functions defined on [0,1]. The example 1 shows that $\mathcal{F} \neq b\mathcal{M}_3$, because the sets C_1 , C_2 can be separated by a function from $b\mathcal{M}_3$ and cannot be separated by any function from \mathcal{F} . This follows from the fact that the closure of the set $Q = \{g: [0,1] \rightarrow \mathbb{R}, g(x) = \mathbb{F}(x,f(x)), \mathbb{F}:\mathbb{R}^2 \rightarrow \mathbb{R} \text{ continuos, } f \text{ is a bounded derivative} \}$ in the topology of uniform convergence on [0,1] contains \mathcal{F} . We remark that we are able to prove $\mathcal{F} - Q \neq \mathcal{S}$.

The second example shows that not every M_3 -set can be written as $\{x, \varphi(f(x)) > 0\}$, where f is a derivative and φ is a continuos function. It is not known whether every M_3 -subset of [0,1] can be written as $\{x, g(x) > 0\}$ with $g \in F$.

We will use the following notation. If $x \in \mathbb{R}$ and $A \subset \mathbb{R}$ is a measurable set, we denote by $\underline{d}(x,A)$ the lower density of the set A at x. If $f:[0,1] \rightarrow \mathbb{R}$ is a function and $a \in \mathbb{R}$, we denote by $\{f > a\}$ the set $\{x \in [0,1] ; f(x) > a\}$. The distance between two sets A and BCR is denoted by dist(A,B).

To begin with our examples, let us prove the following Lemma 1: Let $\emptyset = F_{-1} \neq F_0 c \cdot F_1 c \cdot F_2 \cdots c \cdot F_{2n+1}$ be closed, nowhere dense sets. (Here AC·B means, as usual, that ACB and every point of A is a point of density of the set B.)

Put $H_1 = \bigcup_{k=0}^{n} (F_{2k} - F_{2k-1})$, $H_2 = \bigcup_{k=0}^{n} (F_{2k+1} - F_{2k})$ If f is a bounded derivative such that $dist(f(H_1), f(H_2))$, $\delta > 0$, then there are points $a_k \in F_k - F_{k-1}$ such that, for any k=0,..., 2n+1, a_k is an isolated point of the set $\{f > f(a_k) - \delta\} \cap F_k$ from the right and $f(a_k) \ge f(a_n) + k\delta$. <u>Proof</u>: We shall define the sequence a_0, \ldots, a_{2n+1} by induction. For a take an arbitrary point of F isolated from the right. Suppose the points $a_i \in \mathbb{F}_i - \mathbb{F}_{i-1}$, $0 \le i \le k \le 2n$ have already been defined. Find 7 > 0 such that $(a_k, a_k+\gamma) \cap \{f > f(a_k) - \delta\} \cap F_k = \emptyset$ (1)and put $M = (a_k, a_k + \gamma) \cap \{f > f(a_k) - \delta\} \cap F_{k+1}$. As f is a bounded derivative and $\underline{d}(a_k, F_{k+1}) = 1$, the set M is nonempty. As (1) holds, we have $\mathbb{M} \subset \mathbb{F}_{k+1}$ - \mathbb{F}_k which implies $|f(x) - f(a_k)| \ge \delta$ for any $x \in M$. Hence that $M = (a_k, a_k + \gamma) \cap \{f \ge f(a_k) + \delta\} \cap F_{k+1}.$ We conclude that M is a nonempty F, and G, subset of $F_{k+1}-F_k$. Thus there is a point y of M isolated from the right. Put $a_{k+1} = y$. Clearly $\{f > f(a_{k+1}) - \delta\} \cap F_{k+1} \cap (a_k, a_k+\gamma) \subset M$, from which it follows that a k+1 is an isolated point of the set $\{ f > f(a_{k+1}) - \delta \} \cap F_{k+1}$ from the right. From the definition of a_{k+1} we see that $f(a_{k+1}) \ge f(a_k) + \delta \ge f(a_0) + (k+1)\delta$, which shows that a k+1 satisfies our conditions.

The construction of the sets C_1 , C_2 . For n = 1,2, ... let I_n denote the interval (1/2+1/(n+2), 1/2+1/(n+1)). Find nowhere dense closed sets
$$\begin{split} \not P &= \mathbb{F}_{-1}^n \neq \mathbb{F}_0^n \, \mathcal{C} \cdot \mathbb{F}_1^n \, \mathcal{C} \, \ldots \, \mathcal{C} \cdot \mathbb{F}_{2n+1}^n \, \mathcal{C} \, \mathbb{I}_n \quad . \\ \text{Let } \mathbb{H}_1^n &= \bigcup_{k=0}^n \, (\mathbb{F}_{2k}^n - \mathbb{F}_{2k-1}^n) \, , \, \mathbb{H}_2^n &= \bigcup_{k=0}^n \, (\mathbb{F}_{2k+1} - \mathbb{F}_{2k}) \\ \text{and put } \mathbb{C}_1 &= \bigcup_{n=1}^\infty \, \mathbb{H}_1^n \, , \, \mathbb{C}_2 = \bigcup_{n=1}^\infty \, \mathbb{H}_2^n \, . \\ \text{If f is a bounded derivative, it follows from Lemma 1 that,} \\ \text{for any } \gamma > 0 \, , \, \text{we have} \\ \text{dist}(\mathbb{f}(\mathbb{C}_1 \cap (1/2, 1/2 + \gamma)) \, , \, \mathbb{f}(\mathbb{C}_2 \cap (1/2, 1/2 + \gamma)) \,) \, = 0 \, . \\ \text{Hence the sets } \mathbb{C}_1, \, \mathbb{C}_2 \text{ cannot be separated by any function} \end{split}$$

of the form F(x, f(x)) with $F:\mathbb{R}^2 \rightarrow \mathbb{R}$ continuos.

On the other hand, from [1] (Theorem 4.5.) it follows that C_1 , C_2 can be separated by a derivative, hence also by a bounded \mathcal{M}_3 -function.

To begin example 2, we prove the following Lemma 2: Let $f:[0,1] \rightarrow \mathbb{R}$ be a derivative and $J = (a,b) \subset \mathbb{R}$ an open interval such that $\Xi = f^{-1}(J) \neq \emptyset$. Then there is a portion of Ξ which belongs to the class \mathbb{M}_4 . <u>Proof</u>: Let $\mathbf{x}_0 \in \overline{\Xi} \cap (0,1)$ be a point of continuity of the function $f/\overline{\Xi}$. Suppose, for example, $f(\mathbf{x}_0) < b' < b$. There is an open interval $I \subset (0,1)$ such that $\mathbf{x}_0 \in I$ and $f(\mathbf{x}) < b'$ for any $\mathbf{x} \in \overline{\Xi} \cap I$. As f is a Darboux function, we have $f(\mathbf{x}) < b'$ for any $\mathbf{x} \in I$. We conclude also that $I \cap \Xi = \{f > a\} \cap I$ so that $I \cap \Xi$ is a nonempty \mathbb{M}_4 -set. If $f(\mathbf{x}_0) = b$, consider the function $g(\mathbf{x}) = a+b-f(\mathbf{x})$. (Remark: We are able to show that in fact $\Xi \in \mathbb{M}_3^*$. (For the definition of M_3^* see [2] .) But here we shall not need this fact.) <u>Corollary</u>: Let $G = \bigcup (a_n, b_n) \subset \mathbb{R}$ be an open set and $f: [0, 1] \rightarrow \mathbb{R}$ a derivative. If $\stackrel{\text{H}}{=} f^{-1}(G) \neq \emptyset$, then E contains a nonempty M_4 -set E_1 such that $E-E_1$ is an F_2 -set. <u>Proof</u>: Choose k such that $E_0 = f^{-1}(a_k, b_k) \neq \emptyset$. Let $E_1 = E_0 \Pi \neq \emptyset$. be a portion of E_0 belonging to the class M_4 . We can write $E-E_1 = \bigcup_{n \neq k} f^{-1}(a_n, b_n) \cup (f^{-1}(a_k, b_k) - I) \text{ and we see that}$ $E-E_1$ is an F_2 -set. Example 2: Let E be an M_3 -set such that $\emptyset \neq E = \bigcup_n F_n$, with $\mathbb{F}_n \subset \mathbb{F}_{n+1}$ closed nowhere dense sets , and $\overline{d}(x,(R-F_n) \cap E) = 0$ for any $x \in F_n$, n=1,2, It is easy to see that the set E possesses the following property: If ACE is an M_4 -set, then, for each n, A \cap F_n is also an M_4 -set (which can, of course, be empty) . Now let us suppose that $E=f^{-1}(G)$ for some derivative f and open set G. Find the set E_1 from the corollary of Lemma 2. As $\emptyset \neq E_1 \subset E_1$, $E_1 \cap F_n \neq \emptyset$ for some n. But the set $E_1 \cap F_n$ cannot belong to the class ${\tt M}_4$. Indeed, it is clearly ${\tt F}_{\! {\tt d}}$ and, because we can write $E_1 \cap F_n = F_n \cap (R - (E - E_1))$, we see that it is also G_{ξ} . Furthemore, $E_1 \cap F_n \subset F_n$ and F_n is nowhere dense. We conclude that $\mathbb{E}_1 \cap \mathbb{F}_n$ contains a point isolated from the right and this is the required contradiction.

<u>References</u>:

(1]: G.Petruska, M.Laczkovich: Baire 1 functions, approxi-

mately continuos functions and derivatives, Acta Math. Sci. Hung. 30(1973).

[2] : D.Preiss: Level sets of derivatives, Trans. Amer. Math. Soc. 272 (1982)

[3] : D.Preiss, J.Vilímovský: In-between theorems in uniform spaces, Trans. Amer. Nath. Soc. 261 (1980)

[4] : Z.Zahorski: Sur la première dérivée, Trans. Amer. Lath. Soc. 69(1950) .

Received December 26, 1984