Real Analsis Exchange Vol. 10 (1984-85)

Vladimír Šverák, MFF UK, Sokolovská 83, 186 00 Prague 8, Czechoslovakia.

Two examples concerning derivatives and M₃-sets.

In his paper [4] Zahorski defined a hierarchy of classes of sets \mathbb{M}_i , i=0, ..., 5 and a hierarchy of classes of functions M_i , i=0,...,5. Te then demonstrated that the M_i are closely related to the class of derivatives Δ . In this note we give the following examples concerning the classes M_3 and M_3 :

Example 1: There are sets $\emptyset \neq 0$, , $0 \neq 0$, l which can be separated by a derivative, but cannot be separated by any function of the form $F(x, f(x))$, where f is a bounded derivative and $F:R^2\rightarrow R$ is a continuos function.

Example 2: There is an M_{3} -set which cannot be written as $f^{-1}(G)$, where f is a derivative and G is an open set.

The first example is connected with the problem of characterizing the smallest "topologically characterizable" system of functions containing bounded derivatives. To be more precise, let us define F as the smallest system of functions defined on [0,1] possesing the following properties:

- F contains bounded derivatives (i)
- If $f \in F$ and $\varphi : R \rightarrow R$ is a continuos function, (ii) then $\varphi \circ f \in \mathcal{F}$

(iii) If $f_n \in F$ and $f_n \to f$ uniformly on $[0,1]$, then $f \in F$

It is not difficult to show that $\mathcal F$ admits a characterization in terms of pseudouniformities. (Use, for example, Theorem 3.1. from [3] and the Darboux property of derivatives.) Clearly FC b M_3 , where b M_3 denotes the system of bounded M_{γ} -functions defined on $[0,1]$. The example 1 shows that $F \neq b \mathcal{M}_3$, because the sets C_1 , C_2 can be separated by a function from $b\mathcal{M}_3$ and cannot be separated by any function from F . This follows from the fact that the closure of the set $Q = \{ g : [0,1] \rightarrow \mathbb{R} , g(x) = F(x,f(x)) \}$ $F:R^2\rightarrow R$ continuos, f is a bounded derivative in the topology of uniform convergence on $[0,1]$ contains F . We remark that we are able to prove $\mathcal{F} - \mathbb{Q} \neq \mathscr{B}$.

The second example shows that not every M₃-set can be written as $\{x, \varphi(f(x)) \geq 0\}$, where f is a derivative and φ is a continuos function. It is not known whether every \mathbb{N}_3 -subset of [0,1] can be written as $\{x, g(x) \ge 0\}$ with $g \in \mathcal{F}$.

We will use the following notation. If $x \in R$ and $A \subset R$ is a measurable set, we denote by $\underline{d}(x,A)$ the lower density of the set A at x. If $f:[0,1] \rightarrow R$ is a function and $a \in R$, we denote by $\{f > a\}$ the set $\{x \in [0,1]$; $f(x) > a\}$. The distance between two sets A and BCR is denoted by dist(A,B).

To begin with our examples, let us prove the following Lemma 1: Let $\varnothing = F_{-1} \neq F_0 C F_1 C F_2 \cdots C F_{2n+1}$ be closed, nowhere dense sets. (Here AC.B means, as usual, that AC B and every point of A is a point of density of the set B.)

Put $H_1 = \bigcup_{k=0}^{n} (F_{2k} - F_{2k-1})$, $H_2 = \bigcup_{k=0}^{n} (F_{2k+1} - F_{2k})$.
If f is a bounded derivative such that $dist(f(H_1), f(H_2)) \ge \delta > 0$, Put $H_1 = \bigcup_{k=0}^n (F_{2k} - F_{2k-1})$, $H_2 = \bigcup_{k=0}^n (F_{2k+1} - F_{2k})$.
If f is a bounded derivative such that dist(f(H₁),f(H₂))? δ >0,
then there are points $a_k \in F_k - F_{k-1}$ such that, for any k=0,..., then there are points $a_k \in F_k-F_{k-1}$ such that, for any k=0,..., 2n+1, e_{k} is an isolated point of the set $\{f > f(e_{k}) - \delta\} \cap F_{k}$
from the right and $f(e_{k}) \ge f(e_{0}) + k \delta$. Put $H_1 = \bigcup_{k=0}^{n} (F_{2k} - F_{2k-1})$, $H_2 = \bigcup_{k=0}^{n} (F_{2k+1} - F_{2k})$.

If f is a bounded derivative such that dist($f(H_1), f(H_2), g\geqslant 0$,

then there are points $a_k \in F_k - F_{k-1}$ such that, for any $k=0,...$,
 $2n+1$, a_k is a If f is a bounded derivative such that dist($f(H_1)$, $f(H_2)$) $>$ δ >0,
then there are points $a_k \in F_k - F_{k-1}$ such that, for any $k=0$,...,
2n+1, a_k is an isolated point of the set $\{f > f(a_k) - \delta\} \cap F_k$
from the right and **Proof:** We shall define the sequence a_0 , ..., a_{2n+1} by in-
duction. For a_0 take an arbitrary point of F_0 isolated from the right. Suppose the points $a_i \in F_i - F_{i-1}$, $0 \le i \le k \le 2n$ have already been defined. Find 700 such that (1) $(a_k, a_k + \gamma) \cap \{f > f(a_k) - \delta\} \cap F_k = \emptyset$ and put $M = (a^k, a^k, +\gamma) \bigcap \{f > f(a^k) - \delta\} \bigcap F_{k+1}$. As f is a bounded derivative and $\underline{d}(a_k,F_{k+1}) = 1$, the set M is nonempty. As (1) holds, we have $K \subset F_{k+1} - F_k$ which implies that $|f(x) - f(a_k)| \ge \delta$ for any $x \in M$. Hence $M = (a_k, a_k + \gamma) \bigcap {\{\text{f } \geqslant \text{f}(a_k) + \delta\}} \cap F_{k+1}$. We conclude that LI is a nonempty F^{\prime}_{δ} and G^{\prime}_{δ} subset of $F^{\prime}_{k+1}-F^{\prime}_{k}$. Thus there is a point y of M isolated from the right. Put $a_{k+1} = y$. Clearly $\{f > f(a_{k+1}) - \delta\} \cap F_{k+1} \cap (a_k, a_k+\gamma) \subset M$, from which it follows that a_{k+1} is an isolated point of the set { $f > f(a_{k+1}) - \delta$ } \cap F_{k+1} from the right. From the definition of a_{k+1} we see that $f(a_{k+1}) \geq f(a_k) + \delta \geq f(a_0) + (k+1)\delta$, which shows that a_{k+1} satisfies our conditions.

The construction of the sets C_1 , C_2 . For $n = 1, 2$, ... let I_n denote the interval $(1/2+1/(n+2))$, $1/2+1/(n+1)$. Find nowhere dense closed sets

 $\emptyset = F_{-1}^{n} \neq F_{0}^{n} C F_{1}^{n} C \dots C F_{2n+1}^{n} C I_{n}$ Let $H_1^n = \bigcup_{k=0}^n (F_{2k}^n - F_{2k-1}^n)$, $H_2^n = \bigcup_{k=0}^n (F_{2k+1} - F_{2k})$ and put $C_1 = \bigcup_{n=1}^{\infty} H_1^n$, $C_2 = \bigcup_{n=1}^{\infty} H_2^n$. If f is a bounded derivative, it follows from Lemma 1 that, for any $\gamma > 0$, we have dist($f(C_1 \cap (1/2, 1/2+\gamma))$, $f(C_2 \cap (1/2, 1/2+\gamma))$) = 0. Hence the sets C_1 , C_2 cannot be separated by any function

of the form $F(x, f(x))$ with $F: \mathbb{R}^2 \rightarrow \mathbb{R}$ continuos.

On the other hand, from [1] (Theorem 4.5.) it follows that C_1 , C_2 can be separated by a derivative, hence also by a bounded \mathcal{M}_2 -function.

To begin example 2, we prove the following Lemma 2: Let $f:[0,1] \rightarrow R$ be a derivative and $J = (a, b) \subset R$ an open interval such that $\Xi = f^{-1}(J) \neq \emptyset$. Then there is a portion of $\mathbb E$ which belongs to the class $\mathbb K_{\mathbf 4}$. Proof: Let $x_0 \in \overline{B} \cap (0,1)$ be a point of continuity of the function f/\overline{E} . Suppose, for example, $f(x_0) < b < b$. There is an open interval $I \subset (0,1)$ such that $x_0 \in I$ and $f(x) < b'$ for any $x \in \overline{E} \cap I$. As f is a Darboux function, we have $f(x) < b$ for any $x \in I$. We conclude also that $I \cap E = \{ f > a \} \cap I$ so that IOE is a nonempty M_4 -set. If $f(x_0) = b$, consider the function $g(x) = a+b-f(x)$. (Remark: We are able to show that in fact $\mathbb{E} \in \mathbb{N}_3^*$. (For the

definition of M_{3}^{*} see $[2]$.) But here we shall not need this fact.) Corollary: Let G= \bigcup (a_n,b_n) \subset R be an open set and f: [0,1] \rightarrow R a derivative. If $E = f^{-1}(G) \neq \emptyset$, then E contains a nonempty M_4 -set E_1 such that $E-E_1$ is an F_3 -set. <u>Proof</u>: Choose k such that $E_{o} = f^{-1}(a_{k}, b_{k}) \neq \emptyset$. Let $E_{1} = E_{o} \cap I \neq \emptyset$. be a portion of E_{o} belonging to the class E_4 . We can write $E-E_1 = \bigcup_{n \neq k} f^{-1}(a_n, b_n) \cup (f^{-1}(a_k, b_k) -I)$ and we see that $E-E_1$ is an F_4 -set. Example 2: Let Ξ be an \mathbb{N}_3 -set such that $\mathscr{D} \neq \mathbb{E}$ = $\bigcup_n \mathbb{F}_n$, with $F_n \subset F_{n+1}$ closed nowhere dense sets, and $\overline{d}(x, (R-F_n) \cap E) = 0$ for any $x \in F_n$, n=1,2, It is easy to see that the set E possesses the following property: If $A \subset \mathbb{Z}$ is an M_4 -set, then, for each n, $A \cap F_n$ is also $an M_4$ -set (which can, of course, be empty). Now let us sup- $\overline{d}(x,(R-F_n)\cap E) = 0$ for any $x \in F_n$, $n=1,2$, It is easy
to see that the set E possesses the following property:
If $A \subset \overline{z}$ is an \mathbb{M}_4 -set, then, for each n, $A \cap F_n$ is also
an \mathbb{M}_4 -set (which can, of bo see that the set E possesses the following property:

If $A \subset \mathbb{Z}$ is an \mathbb{M}_4 -set, then, for each n, $A \cap \mathbb{F}_n$ is also

an \mathbb{M}_4 -set (which can, of course, be empty). Now let us sup-

pose that $\mathbb{E} = f^{-$ If ACE is an M_4 -set, then, for each n, $A \cap F_n$ is also
an M_4 -set (which can, of course, be empty). Now let us sup-
pose that $E=f^{-1}(G)$ for some derivative fund open set G.
Find the set E_1 from the corollary of Le If $A \subseteq B$ is en M_4 -set, then, for each in, $A \cap P_n$ is also

an M_4 -set (which can, of course, be empty). Now let us sup-

pose that $E = f^{-1}(G)$ for some derivative f and open set G.

Find the set E_1 from the coroll to the class M_4 . Indeed, it is clearly F_d and, because we can write E^r \cap F^r = F^r \cap (R -(E-E₁)) , we see that it is also G^r . Purthemore, $E_1 \cap F_n \subset F_n$ and F_n is nowhere dense. We conclude that $E_1 \cap F_n$ contains a point isolated from the right and this is the required contradiction. class M_4 . Indeed, it is clearly F_6 and, be
ite $E_1 \cap F_n = F_n \cap (R - (E - E_1))$, we see that i
more, $E_1 \cap F_n \subset F_n$ and F_n is nowhere dense. W
 $1^{\cap} F_n$ contains a point isolated from the rig
s the required contradiction.

References :

CU: G.Petruska, ¥. .Laczkovich : Baire 1 functions, approxi-

mately continuos functions and derivatives, Acta Math. Sci. Hung. 30(1973).

[2] : D. Preiss: Level sets of derivatives, Trans. Amer. Math. Soc. 272 (1982)

[3] : D. Preiss, J. Vilimovský: In-between theorems in uniform spaces, Trans. Amer. Math. Soc. 261 (1980)

[4] : Z.Zahorski: Sur la première dérivée, Trans. Amer. Lath. Soc. 69(1950).

Received December 26, 1984