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 INTEGRABILITY CONDITIONS FOR APPROXIMATE DERIVATIVES

 1. Introduction:

 In light of Richard Fleissner's untimely death, the authors,

 who feel that the results have been influenced by Dick's work,

 dedicate this paper to him. It can be viewed as a natural next

 step based on the results of [3] and [4]. In [31 conditions were

 examined under which an approximate derivative became Lehesgue

 integrable. It was found that it is both necessary and sufficient

 to consider the Lebesgue integrability of the function F*.

 This F*, as in [4], equals F' wherever it exists and 0 elsewhere.

 Similarly, F*p will denote F^ when it exists and 0 elsewhere.
 Here both the wide and restricted Denjoy integrals will replace

 the Lebesgue integral. For the restricted V integral the

 situation is found to parallel results of [3], but for the wide

 sense V integral the results are negative.

 2. The restricted sense Denjoy integral, V*.

 Preliminaries:

 Definition. A function F: [0,1] - R is called Baire*l if

 1This author was supported in part by a grant from NSF.
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 oo

 there is a sequence of closed sets X such that U X = [0.1] and
 n n=l n

 F|Xn is continuous for each n.

 Theorem [3]: Let F: [0,1] ->• R be Baire*l Darboux. Let

 U(F) = interior {x: F is continuous at x}. Suppose that F has

 Lusin property (N) on U(F). Let P = {x: F' exists at x and

 F'(x) > 0} fi UCF). Then F is absolutely continuous on [0,1] if

 and only if F' is Lebesgue integrable over P.

 Corollary: Let F: [0,1] R and U(F) be as above. If F has

 (N) on U(F) and F' = 0 almost everywhere where F' exists, then

 F is a constant.

 We now have:

 Theorem: Let F: [0,1] -► R be approximately differentiable

 and let

 iF' where F' exists
 F* =••!

 Í 0 elsewhere

 Then, if F* is £>* integrable, F' is P* integrable.
 ap

 Proof. Let G be a P* primitive of F*. Let H = F - G.

 It is known that H is Baire*l, Darboux and has (N) (see [3], p. 261).

 Let x be a point where H' exists and at the same time both G' exists

 and G' = F*. Then F1 exists at x and hence G* = F' and H' =0.
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 Consequently, almost everywhere where H' exists it is equal to zero.

 By the corollary stated above, the function H must be a constant.

 This yields that F itself is a P* primitive of F*. This, in turn,

 requires that F* exists almost everywhere i.e., = F* a.e.

 So trivially F' is P* integrable. By similar arguments it can be
 ap

 proved that if F' is P* integrable, then F is a P* primitive and
 ap

 Fģp = F* almost everywhere. This means that
 F' is P* integrable <==> F* is P* integrable,
 ap

 It is clear that the above proof does not essentially depend

 on F being approximately differentiable. For example, if F were

 merely assumed to be selectively differentiable, [5], all the

 necessary conditions would be available to yield Fļ is

 P* integrable < - pF* is P* integrable.

 3. The wide-sense Den joy integral , P

 Let F: [0,1] -► R be approximately differentiable for all x in

 [a,b] . We wish to examine if the P integrability of F* will imply

 that F' is P integrable. If F is approximately differentiable
 ap

 and if Fļ is P integrable, then F is a P primitive of F^
 (this follows from the Corollary); in particular F is continuous.

 Moreover, if F is continuous and approximately differentiable,

 then it is a P primitive of F^ (see [3], p. 261). It is thus

 clear that the problem reduces to determining whether the

 P integrability of F* implies F is continuous. With that insight
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 it is perhaps not surprising that a counterexample exists. We will

 present such an example. Further we will present counterexamples

 for other possible conjectures.

 Lemma 1. Let [c,d] be an interval and a,ß two real numbers.

 Let E be any perfect nowhere dense but metrically dense subset of

 [c,d]. (By metrically dense, we mean that for each open interval I,

 I il E t (1) implies ļ IDE | > 0, where | | denotes Lebesgue measure.)

 Then there is a differentiable function g: [c,d] - R such that

 g is monotone,

 g(c) = a, g(d) = ß,

 g1 (c) = g' Cd) = 0,

 g' = 0 on any interval contiguous to E,

 g' ł 0 on any open interval intersecting E.

 Proof. This is a known result which can be obtained, for

 example, by an application of Theorem 6.8 in [2] (p. 35).

 Making use of Lemma 1, repeatedly, we define a function F^. Let

 I be any sequence of closed intervals [a ,b ] with
 oo

 0 < b . < a < b . a„ 0. and U I having density 0 at 0. n+l n n . n , n
 n=l ,

 For each n, in the left half of I we pick a nowhere dense,

 perfect, metrically dense set E^ containing a^. For

 [c,d] = [an, (an + bn)/2], a = 0, ß = 1, and E = En we apply
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 Lemma 1, to get a differentiable function gj1 with the stated

 properties. We extend the definition of to the right half of

 I by J reflecting ° about the line x=(a + b)/2, ' and let E * n J ° n n ' n

 denote E U (its reflection about the line x = (a + b )/2). y n n n y

 We define

 tí*) if X U n = 1,2, . . .
 F, (x) = ^

 1^0 otherwise in [0,11.

 Then is differentiable on (0,1] and approximately differentiable

 at 0, and F^ is not continuous at x = 0.

 Lemma 2. Let E be a perfect, metrically dense, nowhere dense

 subset of [c,d] containing c and d. There is a continuous

 function g: [c,d] -*• R such that

 g = 0 over E,

 g is approximately differentiable for all x in [c,d],

 g' =0 over E, '
 6ap '
 g is not differentiable at any x in E ,

 g is differentiable on [c,d]'E,

 sup{|g(x) |:x€[c,d]} < d-c.

 Proof. Let U denote the complement of E relative to [c,d].

 For convenience sake we arrange the components of U as in the

 construction of the Cantor set.
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 That is, for each n we select 2n * components of U, 1^,

 i = 1, 2, 2n ' as follows.

 Let GļL = [c,d].

 Let Iļļ be any component of U with Ujjl = sup{|jļ: J is a

 component of U}.

 Let the two closed intervals which compose the complement of

 I-Q, relative to [c,d], be designated as and ('22 '

 Let I21 be any component of U with l^jl = sup { ļ J ¡ : J is a

 component of UíX^}, 1 21 c

 Let I 22 be a similar component of U in G22'

 Let the four remaining intervals be designated as

 Proceed inductively to label G ^ i = l,...2n ' and pick

 components c G .. This process will arrange all the

 components of U, and for each x in E there will be a unique
 00

 nested sequence ^ of intervals G - with fi G • = fx}, and ^ m , ni
 n n=l , n

 |Gn^ I ■+ 0 as n ^ +«. Inside each I ' 1 . , we select an open n ' 1
 interval w . , centered about the midpoint ť of I . , ' in such a ni' . , ť ni . , '

 fashion that U w ^ has density zero at each point of the E.
 ni

 We are ready to define g: [c,d] -»• R.

 For each n,i fixed let [u,v] = closure of w Let g be any

 differentiable function with g(u) = g'(u) = g'(v) = g(v) = 0,

 g((u+v)/2) = |Gn^ I, and g strictly increasing from u to the

 midpoint of [u,v] and strictly decreasing from the midpoint to v.

 Let g(x) = 0 for all other x in [c.d].

 299



 Of the properties stated for g(x) in the conclusion of the

 leirana, it is only the nondifferentiability at points of E that

 may not be immediately clear. Let x belong to E and let G -
 a> n

 be the unique sequence such that D G . = {x}. Let m be the
 r,-i n-1 ni n r,-i n-1 n

 midpoint of w . . We have m € G . so m ->• x as n +°° and
 ni n ni„ n
 n n

 g O) - g (m ) Gmi
 x - m x-m

 n n

 Therefore g has a derived number of absolute value at least 1

 at x. But, in addition, since E is perfect and g = 0 over E,

 0 is a derived number of g at x. Therefore g is not differentiate

 at x.

 Example 1_. There is an approximately differentiable F such

 that F* is V integrable and F' is not V integrable.
 ap

 We now combine Lemma 2 with our construction of F^ above.

 For each n, ' let I = [a ,b 1 be the intervals in the construction ' n n 'n

 of F^ and let gn be the function of Lemma 2 for [c,d] = In and
 E = E *.

 n

 fe (x) if x € I n = 1,2,. . .
 Let F2(x) = < n

 1^0 elsewhere in [0,1].

 Then, because |g^(x) | < |I |, we have that F2 is continuous on

 [0,1], and approximately differentiable. Hence (F^áp ^"s

 V integrable.
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 Next, consider F = + F2: [0,1] -»■ R. F is not continuous

 but is approximately differentiable. A moment of checking verifies

 that F* = (F..) K ' . From this, ' we can conclude that the V K 2Jap . '

 integrability of F* will not imply the V integrability of F1
 ap

 unlike the situation for the L integral.

 In another sense, F* is near to being the proper object for

 determining the V integrability of F' . More precisely, again let
 ap

 F: [0,1] P be approximately differentiable and let aF = interior

 {x: F is differentiable at x}. It is known (see [1], Theorems 2

 and 3) that there is a differentiable function H such that

 H' = Fļ over [0,1]'AF. Consider then F - H and the corresponding

 (F-H)*. It is easy to see that

 i) Fļp is V integrable ^=>(F-H)ģ is V integrable,
 ii) (F-H)' = (F-H)*.

 dp

 Hence Fļ is V integrable <=?(F-H)* is V integrable.

 We now include some examples which point out the boundaries of

 the associated problems.

 If F is continuous and approximately differentiable, then

 F^ is V integrable but F* need not be V integrable. For let
 2 -4

 F^(x) = x sin(x ), with F^(0) = 0. Let E be any metrically dense

 subset of {x: F^'(x) > 0} with the additional property that the

 integral of F^'(x) over E is infinite. Then if F?(x) is 0 on E

 and ACG and F2*(x) does not exist if and only if x€E, then

 F = F^ + F2 is ACG but F* is not V integrable. The construction of
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 such an F 2 is given in [6], p. 224. This is because P - F* =

 Fļ' Xg which is not V integrable.

 From [4] and [6] it follows that if F is a continuous function

 satisfying (N) and if F* is £>* integrable, then F is a P*

 primitive of F', which exists almost everywhere. We finish this

 paper with a preliminary example and an example whose purpose is to

 show that the analogous result for the V integral does not hold;

 there is a continuous function G, satisfying O') , and approximately

 differentiable a.e. such that G* is V integrable 0 and G' is not V
 0 ap

 integrable .

 Preliminary Example. There exists a continuous function F on

 [0,1/2] which is differentiable almost everywhere, has (N) and is

 of unbounded variation on every subinterval of [0,1/2].

 fx*1, sin" (Fix if 0 < I X I 5 2 n ,
 Let g (x) = o

 0 otherwise

 Then g^ is differentiable and of unbounded variation in every

 neighborhood of 0. Let {r^}^^ be an enumeration of the rational

 numbers in (0,l/2),{nv} K be an increasing sequence of natural numbers, K k
 f = e fx-r ) F, = Z f and F = lim F, k . Then F is continuous. k = ' e fx-r n ) F, k = n=l Z n lt~ k

 ~nlc "nk
 Further let 1^ = [r^"2 >rk+?

 Jk ■ 'V(2"nk'ni?' v(z nk,nkn' and -V and E • KM
 Then | E | = 0 .
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 Claim A. If X does not belong to E^, then F'Cx) exists and

 equals F^(x). Thus F'(x) exists almost everywhere.

 Proof of Claim A. Let e > 0 : Choose M > N so that

 00 , 7 -a,
 Z -j - < e and set 5 = (nM-l)2 . Let 0 < ļ h ( < f¡.

 k=M n^-1

 If N 5 k 5 M, fk(x+h) = fk(x) =0. If k > M,
 f ~nk
 <2 if X + h is i I, k' , and then / „ n k' ,

 7 ~nv „
 fh| > (n^ -1)2 '

 |f, (x+h)-f,(x) ļ = ļ
 ! 0 if X + h is not in 1^.

 Then

 F(x+h) -Ffx) FNC^h)-PNW : £kC^h)-fk(x)
 h " h " k=M h

 / 2~nk 1 '
 5 Z

 k=M , 2 ~nk '
 ' k /

 Since e is arbitrar)', the claim A is established.

 _

 Claim B. Provided n^ are chosen so that < 2 ,
 F satisfies (N) .

 Proof of Claim B. It suffices to show that ¡F(E) | = 0
 c c

 because F is differentiable on E and thus has (N) on E . Since
 -V

 |f,(x) I < 2 for all k and E c U J for all N, it follows that
 K n=N n
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 oo oo

 I F CE) I < Z IFCJJ I = 2 0(F,J )
 n=N n n=N n

 oo

 - 2 Tun Ö(F, J )
 n=N k K' n

 S nV(Fn-rJn' n=N * n=N k=n

 oo no

 S 2 C2"n+ 2 2 )
 n=N k=n

 = C3/2)C2'N+1) = 3-2"N

 Since N is arbitrary it follows that |F(E) | = 0.

 Claim C. If nj, is chosen so that for each k, does not

 contain r^,r?, . . . ,r^_^, and |F^_ļ(x)ļdx< 2 , then F is of
 Jk

 unbounded variation on every neighborhood of (0,1/2).

 Proof of Claim C. We first note that since

 ""vi-V 5 ^k-i-V - ^ T iFk-i(x'idx < 2"k.
 - k

 F also satisfies (N). Furthermore, such n^ can be chosen

 inductively because F£ is Lebesgue integrable on each chosen

 interval which does not contain rļ » • • • anc* hence

 lim|IM>( !|T,|Fktlt)|dx:i = °-
 yi J

 r Given an interval I, it suffices to show that
 i

 ļ |F ' Cx) |dx = ».
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 f í
 But ! |F'Cx)|dx > ļ |F'Cx)|dx and if N is chosen so

 . I Jl'U J
 n>N n

 that r^€l,

 r- r>

 I F * (x) |dx = |F' fx) |dx = +-» .
 - INU J - INU J
 n>N n n>N n

 This completes the Preliminary Example.

 Example 2. There is a function G continuous on [0,1] which

 satisfies (N) and is approximately differentiable a.e. such that

 G* is V integrable, and G^ is not. V integrable.

 Construction. Let P be a perfect.' metrically dense subset of

 [0,1] with |P| = 1/2, P nowhere dense, and {0,1} c P.

 Let b(x) = |Pn[0,x] I , 05x51. Then h(x) is monotone nondecreasing,

 h' (x) = 1 for almost all x in P and h'(x) = 0 at every point of P .

 Let F be a continuous function, given in the preliminary example,

 which satisfies (N) and is not of bounded variation on any interval.

 Then Foh(x) has derivative 0 at each x in P and is differentiable

 at almost all x in P but is not of bounded variation on any portion

 of P. Let g(x) be the function defined in [7, p. 224) which is ACG

 0 on P, and not differentiable at any x in P. Let G(x) =

 g(x') + Foh(x) . Then, at almost every point x of P, G'(x) does not

 exist. Thus G'(x) = g*(x) = g* (x) is V integrable. But G(x)
 ap
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 is not of bounded variation on any portion of P. Therefore, since

 G* (x) = g'(x) in PC and G* = F'oh in P, it is not V integrable,
 dp ap

 For if it were, G would have to be its V integral by [41 and G would

 be ACG on P, a contradiction.
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