James Foran, Department of Mathematics, University of Missouri- Kansas City, Kansas City, Missouri 64110

 Richard O'Malley, * Department of Mathematics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201

INTEGRABILITY CONDITIONS FOR APPROXIMATE DERIVATIVES

1. Introduction:

 In light of Richard Fleissner's untimely death, the authors, who feel that the results have been influenced by Dick's work, dedicate this paper to him. It can be viewed as a natural next step based on the results of $[3]$ and $[4]$. In $[3]$ conditions were examined under which an approximate derivative became Lehesgue integrable. It was found that it is both necessary and sufficient to consider the Lebesgue integrability of the function F*. This F*, as in [4], equals F' wherever it exists and 0 elsewhere. Similarly, F_{ap}^* will denote F_{ap}^* when it exists and 0 elsewhere. Here both the wide and restricted Denjoy integrals will replace the Lebesgue integral. For the restricted ν integral the situation is found to parallel results of [3], but for the wide sense ν integral the results are negative.

2. The restricted sense Denjoy integral, D_{*} .

Preliminaries:

Definition. A function F: $[0,1] \rightarrow R$ is called Baire*l if

¹This author was supported in part by a grant from NSF.

 oo there is a sequence of closed sets X_n such that $U \times T = [0,1]$ and
 $n=1$ $F|X_n$ is continuous for each n.

Theorem [3]: Let F: $[0,1] \rightarrow R$ be Baire*1 Darboux. Let $U(F)$ = interior {x: F is continuous at x}. Suppose that F has Lusin property (N) on $U(F)$. Let $P = \{x: F' \text{ exists at } x \text{ and } x\}$ $F'(x) > 0$ \cap U(F). Then F is absolutely continuous on [0,1] if and only if F' is Lebesgue integrable over P.

Corollary: Let F: $[0,1] \rightarrow R$ and $U(F)$ be as above. If F has (N) on $U(F)$ and $F' = 0$ almost everywhere where F' exists, then F is a constant.

We now have:

Theorem: Let F: $[0,1] \rightarrow R$ be approximately differentiable and let

```
 iF' where F' exists
F. =′
     Í 0 elsewhere
```
Then, if F* is v_* integrable, F'_{ap} is v_* int

Proof. Let G be a \mathcal{D}_* primitive of F^* . Let $H = F - G$. It is known that H is Baire*l, Darboux and has (N) (see [3], p. 261). Let x be a point where H' exists and at the same time both G' exists and $G' = F^*$. Then F' exists at x and hence $G' = F'$ and $H' = 0$.

 Consequently, almost everywhere where H' exists it is equal to zero. By the corollary stated above, the function H must be a constant. This yields that F itself is a \mathcal{D}_* primitive of F^{*}. This, in turn, requires that F' exists almost everywhere i.e., $F'_{ap} = F^* a.e.$ So trivially F'_{ap} is ν_{\star} integrable. By similar arguments it can be proved that if F'_{ap} is v_* integrable, then F is a v_* primiti F'_{ap} = F* almost everywhere. This means that

 F' is ν_{\star} integrable \iff F* is ν_{\star} integrable.

 It is clear that the above proof does not essentially depend on F being approximately differentiable. For example, if F were merely assumed to be selectively differentiable, [5], all the necessary conditions would be available to yield F_S' is \mathcal{D}_* integrable \leftarrow \Rightarrow F* is \mathcal{D}_* integrable.

3. The wide-sense Denjoy integral, \mathcal{D}

Let F: $[0,1]$ + R be approximately differentiable for all x in [a,b]. We wish to examine if the $\mathcal D$ integrability of F^* will imply that F'_{ap} is ϑ integrable. If F is approximately different and if F_{ap} is ϑ integrable, then F is a ϑ primitive of F_{ap}^{\prime} (this follows from the Corollary); in particular F is continuous. Moreover, if F is continuous and approximately differentiable, then it is a $\mathcal D$ primitive of F^{\prime} (see [3], p. 261). It is thus clear that the problem reduces to determining whether the P integrability of F* implies F is continuous. With that insight

 it is perhaps not surprising that a counterexample exists. We will present such an example. Further we will present counterexamples for other possible conjectures.

Lemma 1. Let $[c,d]$ be an interval and α, β two real numbers. Let E be any perfect nowhere dense but metrically dense subset of [c,d]. (By metrically dense, we mean that for each open interval I, I \cap E \neq ϕ implies $|\text{InE}| > 0$, where $| \cdot |$ denotes Lebesgue measure.) Then there is a differentiable function g: $[c,d] \rightarrow R$ such that

> g is monotone, $g(c) = \alpha$, $g(d) = \beta$, $g'(c) = g'(d) = 0,$ $g' \equiv 0$ on any interval contiguous to E, $g' \not\equiv 0$ on any open interval intersecting E.

 Proof. This is a known result which can be obtained, for example, by an application of Theorem 6.8 in [2] (p. 35). Making use of Lemma 1, repeatedly, we define a function F^1 . Let I_n be any sequence of closed intervals $[a_n, b_n]$ with $0 < b_{n+1} < a_n < b_n$, $a_n \to 0$, and $\bigcup_{n=1}^{\infty} I_n$ having density 0 at 0. For each n, in the left half of I_n we pick a nowhere dense, perfect, metrically dense set E_n containing a_n . For $[c,d] = [a_n, (a_n + b_n)/2], \alpha = 0, \beta = 1, \text{ and } E = E_n \text{ we apply}$ 297

Lemma 1, to get a differentiable function g_n with the stated properties. We extend the definition of g_n to the right half of properties. We extend the definition of g_n to the right hal
I_n by reflecting about the line x = $(a_n + b_n)/2$, and let E_n^*
durate F ii (its usflection shout the line of $(a_n + b_n)/2$) I_n by reflecting about the line $x = (a_n + b_n)/2$, and let E_n
denote $E_n \cup$ (its reflection about the line $x = (a_n + b_n)/2$). We define

$$
F_1(x) = \begin{cases} g_n(x) & \text{if } x \in I_n \quad n = 1, 2, \dots \\ 0 & \text{otherwise in } [0,1]. \end{cases}
$$

Then F_1 is differentiable on $(0,1]$ and approximately differentiable at 0, and F_1 is not continuous at $x = 0$.

 Lemma 2. Let E be a perfect, metrically dense, nowhere dense subset of [c,d] containing c and d. There is a continuous function $g: [c,d] \rightarrow R$ such that

```
g \equiv 0 over E,
 g is approximately differentiable for all x in [c,d],
g'_{ap} = 0 over E,
g is not differentiable at any x in E,
g is differentiable on [c,d]\E,
\sup\{|g(x)|:x\in[c,d]\}\leq d-c.
```
 Proof. Let U denote the complement of E relative to [c,d]. For convenience sake we arrange the components of U as in the construction of the Cantor set.

That is, for each n we select 2^{n-1} components of U, I_{ni}. $i = 1, 2, ..., 2^{n-1}$, as follows. Let $G_{11} = [c,d]$. Let I_{11} be any component of U with $|I_{11}|$ = sup{ $|J|$: J is a component of U}. Let the two closed intervals which compose the complement of I_{11} , relative to [c,d], be designated as G_{21} and G_{22} . Let I_{21} be any component of U with $|I_{21}|$ = sup { $|J|$: J is a component of UNG₂₁ }, $I_{21} \subset G_{21}$. Let I_{22} be a similar component of U in G_{22} . Let the four remaining intervals be designated as G_{31}, \ldots, G_{34} . Proceed inductively to label G_{ni} , i = 1,...2ⁿ⁻¹, and pick components $I_{ni} \subset G_{ni}$. This process will arrange all the components of U, and for each x in E there will be a unique 00 components of U, and for each x in E there will be a unique
nested sequence of intervals G_{ni} with $\bigcap_{n=1}^{\infty} G_{ni} = \{x\}$, and G_{ni} hested sequence of intervals G_{ni} with $\bigcap_{n=1}^{\infty} G_{ni} = \{x\}$, and $|G_{ni}| \to 0$ as $n \to +\infty$. Inside each I_{ni} , we select an open interval w_{ni} , centered about the midpoint of I_{ni} , in such a nested sequence of intervals G_{ni} with $\bigcap_{n=1}^{\infty} G_{ni} = \{x\}$, and $|G_{ni}| \to 0$ as $n \to +\infty$. Inside each $I_{r,i}$, we select an open
interval W_{ni} , centered about the midpoint of I_{ni} , in such a fashion that Uw . interval w_{ni} , centered about the midpoint of I_{ni} , in such a
fashion that U w_{ni} has density zero at each point of the E.
 $\frac{n_i}{n}$ We are ready to define g: $[c,d] \rightarrow R$. For each n,i fixed let $[u, v]$ = closure of w_{ni} . Let g be any differentiable function with $\hat{g}(u) = \hat{g}'(u) = g'(v) = g(v) = 0$, $g((u+v)/2) = |G_{ni} |$, and g strictly increasing from u to the midpoint of [u,v] and strictly decreasing from the midpoint to v. Let $g(x) = 0$ for all other x in $[c,d]$.

Of the properties stated for $g(x)$ in the conclusion of the lemma, it is only the nondifferentiability at points of E that may not be immediately clear. Let x belong to E and let G_{ni} iability at points of E tha

x belong to E and let G_{ni}
 $G_{ni} = \{x\}$. Let m_n be t be the unique sequence such that $\bigcap_{n=1}^{\infty} G_{n} = \{x\}$. Let $\bigcap_{n=1}^{\infty} G_{n}$ midpoint of w_{ni} . We have $m_n \in G_{ni}$ so $m_n \to x$ as $n \to +\infty$ and sequence such that $n = 1$ n_1 n_2 n_3 n_4 n_5 n_6 n_7 n_8 n_9 n_1 immediately clear. Let x belong to E and let G_{ni}

que sequence such that $\bigcap_{n=1}^{\infty} G_{ni} = \{x\}$. Let m_n be the

f w_{ni} . We have $m_n \in G_{ni}$ so $m_n \to x$ as $n \to +\infty$ and
 $\frac{g(x) - g(m_n)}{x - m_n} \ge \left| \frac{G_{mi}}{x - m_n} \right| \ge 1$

$$
\left|\frac{g(x) - g(m_n)}{x - m_n}\right| \ge \left|\frac{G_{\min}}{x - m_n}\right| \ge 1
$$

 Therefore g has a derived number of absolute value at least 1 at x. But, in addition, since E is perfect and $g \equiv 0$ over E, 0 is a derived number of g at x. Therefore g is not differentiable at x.

Example 1. There is an approximately differentiable F such that F^* is ν integrable and F'_{ap} is not ν integrable.

We now combine Lemma 2 with our construction of F^1 above. For each n, let $I_n = [a_n, b_n]$ be the intervals in the construction of F^1 and let g^n be the function of Lemma 2 for $[c,d] = I_n$ and $E = E_n$ *.

Let
$$
F_2(x) = \begin{cases} g_n(x) & \text{if } x \in I_n \quad n = 1, 2, \dots \\ 0 & \text{elsewhere in } [0,1]. \end{cases}
$$

Then, because $|g_n(x)| \leq |I_n|$, we have that F_2 is continuous on [0,1], and approximately differentiable. Hence $(F_2)_{ap}^{\prime}$ is V integrable.

Next, consider $F = F_1 + F_2$: $[0,1] \rightarrow R$. F is not continuous but is approximately differentiable. A moment of checking verifies that $F^* = (F_2)_{\text{ap}}^*$. From this, we can conclude that the ν integrability of F^* will not imply the ϑ integrability of F'_{ap} unlike the situation for the L integral.

 In another sense, F* is near to being the proper object for determining the ν integrability of $F'_{\rm ap}$. More precisely, again let F: $[0,1] \rightarrow R$ be approximately differentiable and let $\Delta F =$ interior {x: F is differentiable at x}. It is known (see [1], Theorems 2 and 3) that there is a differentiable function H such that $H' = F'_{ap}$ over $[0,1] \Delta F$. Consider then F - H and the corresponding $(F-H)^*$. It is easy to see that

- i) F_{ap} is ν integrable \Leftrightarrow (F-H) $_{ap}^{\prime}$ is ν integrable,
- ii) $(F-H)'_{ap} = (F-H)^*$.

Hence F_{jn} is θ integrable \Leftrightarrow (F-H)^{*} is θ integrable.

 We now include some examples which point out the boundaries of the associated problems.

 If F is continuous and approximately differentiable, then F^{\prime}_{ap} is ϑ integrable but F^* need not be ϑ integrable. For let $F_1(x) = x^2 sin(x^{-4})$, with $F_1(0) = 0$. Let E be any metrically dense subset of $\{x: F^{-1}(x) \ge 0\}$ with the additional property that the integral of $F_1'(x)$ over E is infinite. Then if $F_2(x)$ is 0 on E and ACG and F_2 '(x) does not exist if and only if x€E, then $F = F_1 + F_2$ is ACG but F^* is not θ integrable. The construction of

such an F_2 is given in [6], p. 224. This is because F'_{ap} - F^* = F_1' ' x_F which is not D integrable.

 From [4] and [6] it follows that if F is a continuous function satisfying (N) and if F^* is \mathcal{D}_* integrable, then F is a \mathcal{D}_* primitive of F', which exists almost everywhere. We finish this paper with a preliminary example and an example whose purpose is to show that the analogous result for the ν integral does not hold; there is a continuous function G , satisfying (N) , and approximately differentiable a.e. such that G^* is $\mathcal D$ integrable and G'_{ap} is not $\mathcal D$ integrable .

 Preliminary Example. There exists a continuous function F on [0,1/2] which is differentiable almost everywhere, has (N) and is of unbounded variation on every subinterval of [0,1/2].

Let
$$
g_n(x) = \begin{cases} x^2 \sin^2(\pi x^{-4}) & \text{if } 0 < |x| \le 2^{-n}, \\ 0 & \text{otherwise} \end{cases}
$$

Then g_n is differentiable and of unbounded variation in every neighborhood of 0. Let $\{r^{\ }_{k}\}_{k=1}^{\infty}$ be an enumeration of the rational numbers in $(0,1/2)$, $\{n_k\}$ be an increasing sequence of natural numbers, $f_k = g_{n_k}$ $(x-r_n)$, $F_k = \sum_{n=1}^{K} f_n$ and $F = \lim_{k \to \infty} F_k$. Then F is continuous. $n^{\text{-n}}$ k $n^{\text{-n}}$ k Further let $1^k = \lfloor r^k \rfloor^2$, $r^k + \frac{1}{2}$, $J_k = [r_k - (2^{-n_k} \cdot n_k^2), r_k + (2^{-n_k} \cdot n_k^2)],$ and $E_N = \bigcup_{k=N}^{\infty} J_k$, and $E = \bigcap_{N=1}^{\infty} E_N$.

Then $|E| = 0$.

Claim A. If x does not belong to E_N , then F'(x) exists and equals $F_N^{\dagger}(x)$. Thus $F^{\dagger}(x)$ exists almost everywhere.

<u>Proof of Claim A</u>. Let $\varepsilon > 0$: Choose M > N so that Proof of Claim A. Let $\varepsilon > 0$: Choose $M > N$ so that
 $\sum_{k=M}^{\infty} \frac{1}{n_k^2 - 1} < \varepsilon$ and set $\delta = (n_M^2 - 1)2^{-n_M}$. Let $0 < |h| < \delta$.

If $N \le k \le M$, $f_k(x+h) = f_k(x) = 0$. If $k \ge M$,

$$
|f_{k}(x+h) - f_{k}(x)| = \int_{0}^{1} \int_{0}^{1} |f_{k}(x+h) - f_{k}(x)| dx = \int_{0}^{1} \int_{0}^{1} |f_{k}(x+h) - f_{k}(x)| dx
$$

Then

$$
\frac{F(x+h)-F(x)}{h} - \frac{F_N(x+h)-F_N(x)}{h} = \sum_{k=M}^{\infty} \frac{f_k(x+h)-f_k(x)}{h}
$$

$$
\leq \sum_{k=M} \left(\frac{2^{-n}k}{(n_k^2-1)\cdot 2^{-n}k} \right) < \varepsilon.
$$

Since ε is arbitrary, the claim A is established.

Claim B. Provided n_k are chosen so that $\theta(F_{k-1}, J_k) < 2^{-K}$, F satisfies (N) .

Proof of Claim B. It suffices to show that $|F(E)| = 0$ because F is differentiable on E^C and thus has (N) on E^C . Since $|f^{\,}_{\mathbf{k}}(\mathsf{x})\,| < \,2^{\mathsf{-k}}$ for all k and $\mathsf{E}\, \subset\, \cup\, \mathsf{J}_\mathsf{n}$ for all $\mathsf{N},\,$ it follows that $|k(x)| < 2^{-k}$ for all k and $E \subset U J_n$
n=N

$$
|F(E)| < \sum_{n=N}^{\infty} |F(J_n)| = \sum_{n=N}^{\infty} O(F, J_n)
$$

\n
$$
\leq \sum_{n=N}^{\infty} \overline{\lim}_{k} O(F_{k, J_n})
$$

\n
$$
\leq \sum_{n=N}^{\infty} O(F_{n-1}, J_n) + \sum_{k=n}^{\infty} (O(f_{k}, J_n))
$$

\n
$$
\leq \sum_{n=N}^{\infty} (2^{-n} + \sum_{k=n}^{\infty} 2^{-k})
$$

\n
$$
\leq N+1 \qquad \dots N
$$

$$
= (3/2) (2^{-N+1}) = 3 \cdot 2^{-N}
$$

Since N is arbitrary it follows that $|F(E)| = 0$.

Claim C. If n_k is chosen so that for each k, J_k does not contain r_1,r_2,\ldots, r_{k-1} , and $\int\limits_{\omega}^{\omega} J_k^{[F^{\prime}_{k-1}(x)]dx} < 2^{-k}$, then F is of unbounded variation on every neighborhood of (0,1/2).

Proof of Claim C. We first note that since

$$
\theta(F_{k-1}, J_n) \leq \text{Var}(F_{k-1}, J_k) = \int_{J_k} |F_{k-1}^{\prime}(x)| dx < 2^{-k},
$$

F also satisfies (N). Furthermore, such n_k can be chosen inductively because F_k' is Lebesgue integrable on each chosen interval which does not contain r_1, \ldots, r_{k-1} and hence $\lim_{x \to 0} |I| \to 0$ || $|I|$ ^{|F}k^(x)|dx) = 0. r_{k} _{EI}

Given an interval I, it suffices to show
 $\begin{aligned} \int_{\Gamma} |F'(x)| dx &= \infty. \end{aligned}$

1 $\int_{-\pi}^{\pi}$ $\left| \mathbf{F}^{\, \prime} \right|$

But
$$
\int_{I} |F'(x)| dx \ge \int_{I \setminus \bigcup_{n>N} J_n} |F'(x)| dx
$$
 and if N is chosen so

that $r_N \in I$,

1,
\n
$$
\int_{\frac{1}{N}} |F'(x)| dx = \int_{\frac{1}{N}} |F'_{N}(x)| dx = +\infty.
$$

This completes the Preliminary Example.

Example 2. There is a function G continuous on $[0,1]$ which satisfies (N) and is approximately differentiable a.e. such that G^* is \hat{v} integrable, and G^{\dagger}_{ap} is not \hat{v} integrable.

Construction. Let P be a perfect, metrically dense subset of $[0,1]$ with $|P| = 1/2$, P nowhere dense, and $\{0,1\} \subset P$. Let $b(x) = |P\cap[0,x]|$, $0 \le x \le 1$. Then $h(x)$ is monotone nondecreasing, h'(x) = 1 for almost all x in P and h'(x) = 0 at every point of P^C . Let F be a continuous function, given in the preliminary example, which satisfies (N) and is not of bounded variation on any interval. Then $Foh(x)$ has derivative 0 at each x in P and is differentiable at almost all x in P but is not of bounded variation on any portion of P. Let $g(x)$ be the function defined in $[7, p. 224)$ which is ACG 0 on P, and not differentiable at any x in P. Let $G(x) =$ $g(x)$ + Foh(x). Then, at almost every point x of P, $G'(x)$ does not exist. Thus $G'(x) = g^*(x) = g^*_{ap}(x)$ is θ integrable. But $G(x)$

is not of bounded variation on any portion of P. Therefore, since $G_{ap}^{*}(x) = g'(x)$ in P^{C} and $G_{ap}^{*} = F'$ oh in P, it is not D integrable. For if it were, G would have to be its D integral by [4] and G would be ACG on P, a contradiction.

$\frac{X}{X}$

- References

[1] S. Agronsky, R. Biskner, A. Bruckner, J. Marik, Representations

of functions by derivatives, Trans. Amer. Math. Soc. 263 References

[1] S. Agronsky, R. Biskner, A. Bruckner, J. Marik, Representations

of functions by derivatives, Trans. Amer. Math. Soc. 263

[1981] p. 493-500. Extreme Controller

S. Agronsky, R. Biskner, A. Bruckner, J. Marik, Representations

of functions by derivatives, Trans. Amer. Math. Soc. 263

(1981) p. 493-500.

(21 A. M. Bruckner, Differentiation of real functions. Lect
- Notes in Math. #654, Springer-Verlag (1978).
- [3] K. Fielssner and K. O Malley, Conditions implying the
simmability of approximate derivatives. Colloquium Math. $\frac{S}{}$ $\frac{S$ Vol. 41 (1979) p. 257-263.
- [4] J. Foran, A chain rule for the approximate derivative and change of variables for the *D*-integral, Real Analysis $\frac{1}{2}$ Section $\frac{1}{2}$ Math. $\frac{1}{2}$ (1982-83) n 443-454 at EXChange, VOI. $\frac{3}{2}$, W. I (1909 04) p. 190 140.
- [5] R. O'Malley, Selection derivatives, Acta Math. Acad. Sci. Hungar., Vol. 29 (1977) p. 77-97.
- [6] S. Saks, Sur Certaines Classes des Fonctions Continues, change of $\frac{1}{2}$ change of $\frac{1}{2}$ integrated of $\frac{1}{2}$ integrating $\frac{1}{2}$, $\frac{1}{2}$ integrating $\frac{1}{2}$ integrating $\frac{1}{2}$ $E = \frac{1}{2}$
- [7] S. Saks, Theory of the integral, Monografic Matematyczne 7, $\frac{1}{2}$ r. $\frac{1}{2}$ r. $\frac{1}{2}$ and $\frac{1}{2}$ math. Actual. $\frac{1}{2}$ and \frac

Received August 30, 1984 T_{rel}

306