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 UNIQUENESS OF DERIVATIVES OF FUNCTIONS DEFINED ON CLOSED SETS.

 0. Introduction.

 In [6], Whitney introduced the space C (F) of k times differenti-

 ate functions on an arbitrary closed subset F of |Rn, and showed that

 C^(F) is the trace on F of the space C^ (|Rn ) . The elements in C^(F) are

 families ^^^ļjļ^k' w^ere one can think of the functions f^^ as deri-
 vatives of f ^ . In general, the functions f^^ are not uniquely deter-

 mined by and so it is natural to ask for which sets F one has uni-

 queness. This problem was solved by Glaeser in [1], Chapter III, §5 (see also

 [2], Chapter II, §3). Here we consider the corresponding problem for the Lip-

 schitz spaces Lip(a,F) and A^CF). The condition for uniqueness of deriva-
 tives in these spaces depends on a; in this respect the situation is not the

 same as in the C (F)-case, where the condition is independent of k. The

 main result is given in Theorem 2 in §3. As a tool, we first prove in §2 a

 theorem on a general kind of multiplication of functions in the Lipschitz

 classes; this theorem also has a counterpart in Glaeser [ 1 ] .

 The following notation will be used throughout the paper. F denotes

 a closed subset of the Euclidian space IRn with points x=(x,j . . . ,x^) , a
 a positive real number, and k the integer such that k<a<k+1 . The letter

 c denotes a constant, not necessarily the same each time it appears. B(x,r)

 is a closed ball with center x and radius r. We use the usual multiindex

 notation: If j = (j1,j2»*--» Ün^ is a multiinteger of length | j | = j1+j2+- • •+jn>

 then D^f is the corresponding partial derivative of f of order |j|,
 i ^ 1 ^ n

 xJ=xr..xn and j : = j 1 ! j 2 i - - . jp I -
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 1. The spaces Lip(a,F) and h^{F).
 The classical definition of these spaces in the case when F=|Rn is

 as follows: A function f defined on |Rn belongs to the Lipschitz space

 Aq^IrH) if and only if f is k times continuously differentiate and there

 exists a constant M such that |D^f|£M, |j|<k, and the derivatives D^f

 of order |j|=k satisfy |D^f(x+h)-2D^f(x)+D^f(x-h) | j£M|h|a Taking in-

 stead the first difference, we obtain the space Lip(a,IRn). If a is nonin-

 teger, the two spaces coincide.

 Lipschitz spaces have also been defined on arbitrary closed sets F.

 The spaces Lip(a,F) are studied e.g. in [5], while the spaces A (F) were

 introduced in [2]. An extensive treatment of these spaces is given in [3]. We

 shall now list a number of their properties which we need, referring to [3]

 for details. The main result for the spaces A (F) is a trace theorem,
 a

 stating that the pointwise restriction to F of the derivatives {D^f},

 I 1 j I <k , of a function in A (|Rn) is an element in A (F), and conversely 1 , a a

 every element in A (F) may be extended to a function defined on |Rn be-

 longing to Aa(|Rn). The corresponding result for Lip(a,F) is a version of

 the classical Whitney extension theorem. There are many equivalent defini-

 tions of the space A^CF), and we choose here one suitable for our purpose,

 see [3], Chapter III, §3, Proposition 4. The functions f^ in the defini-

 tion may be thought of as derivatives of f^'

 DEFINITION 1. Let N be an integer, N>Ja], and ^^^'|j|<k a
 functions defined on F. Then {f^}i . i .. 6A (F) if and only ' if the follow- |j|ik . .. a '

 ing conditions hold:

 For every cube Q with sides of length 6£1 and intersecting F there

 exists a polynomial Pq of degree at most N so that
 267



 a) |f(j)(x)-DjPQ(x)| < M6a~lj|, |j|£k, x€QnF

 b) |Pq(x) I <_ M, xGQ, if 6=1, and
 c) if Q'cQ is a cube intersecting F and having side 6' such that

 6£26 ■ , then

 |PQ(x)-PQI(x)| < M6a, x€Q 1 .

 The norm of ^^^|j|<k ^ the possible constants H.
 Different values of the integer N above give rise to equivalent

 spaces. The space Lip(ot,F) is obtained if we take polynomials of degree <k

 instead of degree <N in the definition above; in this case condition c) may

 be omitted. The spaces Lip(a,F) and A (F) coincide if a is non-integer.

 If Q has sidelength 6£1 and Pg is associated to a family ^^^|j|<k
 belonging to A Ct (F) or Lip(a,F) as in the definition, then ļ D^Pn u ( x ) | <cM, Ct u

 xGQ, for |j|<k, where the constant c only depends on k and n, and if

 ļ j I =k+1=a we have in the A cl -case |D^Pq(x)| ul < cM( 1 + | ln<5 1 ) , xGQ. This fol- cl ul

 lows from Lemma 1, Lemma 2 and Remark 4 in Chapter III of [3]. Taking Q

 with 6=1, we get |f'^| <_ cM, |j|<_k.

 The definition of A (F) may be simplified if we consider more spe-

 cial sets F. Suppose that F preserves Markov's inequality in the sense

 that for all positive integers K, for all polynomials P of degree at most

 K and all balls B=B(xg,r) with xq& ar,d 0<r<1 we have max | grad P| _<
 _ 1

 c(F,n,K)max r _ 1 |P|, where the maximum is taken over FnB. Then the func-

 tions f^ are uniquely determined by f^ if the family ^^^|j|<k
 belongs to A^(F) or Lip(a,F), and we may identify the family with the

 single function f=f^' Furthermore, fEA^(F) if and only if |f|<_M and

 for every cube Q with sides of length 6<_1 (the number 1 may of course be

 replaced by any number and with center in F there is a polynomial
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 Pq of degree at most [a] such that |f-Pg|£Móa on QnF. Replacing [a]
 by k we get a characterization of Lip(ot,F). Examples of sets preserving

 Markov's inequality are closed balls and the whole space. If F=IRn, then the

 spaces A (F) and Lip(a,F) are equivalent to the classical spaces A^OR0)

 and Lip(a,Fn) as defined in the beginning of this section. Also for certain

 nice subsets of |Rn, the Lipschitz spaces may be defined by means of diffe-

 rences. Consider for example the case when F is a closed ball B with in-

 terior B0. Then f€A (F) if and only if f is continuous on B and
 0 a

 fEA^Bg) in the sense that f is k times continuously dif ferentiable in

 Bg with bounded derivatives and, for | j | =k and x,x-h,x+hGBg, |D^f(x+h)-

 2D^f(x)+D^f(x-h) I ^cļhļ01"^. The equivalence of this definition and the one

 given above for sets preserving Markov's inequality, follows e.g. from the

 fact that the trace theorem has been proved in both cases, see [4], pp. 380-

 383, cf. also [2], §4.1.

 It is well-known that A^QR0) and Lip(a,IRn) are algebras, and using

 the trace theorem we see that A^(F) and Lip(a,F) are algebras if F pre-
 serves Markov's inequality. We will also need the following result.

 The corresponding lemma for Lip(a,lRn) is also valid; to see this replace

 [a] by k in the proof.

 LEMMA 1. Suppose ï-i- that f£A (IRn) and that f(xn)¿0. Then there exists a closed
 - ï-i-

 ball B=B(xn,r) such that 1/fGA (B).

 Proof. Let B and s be so that |f|>s>Q on B, and let Q be a cube

 centered in F with sidelength 6 satisfying 0<6<6q, where 6^ is a fixed
 ct

 number chosen so small that < s/4, where Mg is the A^CD-norm of f.

 Choose a polynomial Pq as in Definition 1 with N=[a] and the constant M

 less than 2Mg. Then we have K-PqI £ M6a < ^g^g < s/2 on BnQ, so

 I Pq I 2: s/2 on BnQ, and thus | 1/f-1/PQ | = | (Pg-f )/( fPg) |£côa/s2=cóa on BnQ.
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 We shall prove that the inequality | 1/f-l/Pg |£c6a remains true on BnQ if

 we replace 1/Pq by some polynomial Rg of degree £[a]. By the characte-
 rization of A (F) when F preserves Markov's inequality it then follows

 that 1/fGA (B), since |l/f|CI/s=c on B.
 OC

 Let Rg be the Taylor polynomial of order [a] of 1/Pg expanded

 about the center of Q. Then M/Pq-Rq |<>c6^a^+'' sup|D^(1/Pg)(Ç) | on Q,
 where the supremum is taken over all j with |j|=[a]+1 and all ÇGQ. Since

 DJPn=0 if I j I =[a]+1 , 0J(1/Pn) ij is a sum, where each term is a product of (j , ij

 factors D^Pg, |H|£[aJ and factors 1/pg, the number of factors being less
 I

 than a constant, say m, depending on a. By the estimates on D Pg given

 after Definition 1, such a term is <c if no multi-index 2/ is of order

 [a]=k+1, and if some are, then at least the term is less than c( 1 + | ln<5 1 )m.

 This gives 1 1/Pg-Rg |£cô'-0l-'+1 ( 1 + | lnô | )m _< c6a on Q since a<[a]+1, and

 thus I 1/f-Rg l£c6a on BnQ.

 2. The product of functions in Lipschitz spaces.

 If f6Aa([Rn) and g€A^(|Rn) , then fgGA^GR0), where y=min(a,R),

 but in general fg does not belong to A^ , (|Rn ) for some y'>y. On subsets
 of |Rn, the situation is more varied, if one defines the "product" of fami-

 k
 lies of functions in a suitable way. For the spaces C (F) this was shown

 by Glaeser in [1], p. 33-34. In this section ka will denote the nonnegative

 integer such that__ k <a<ka+1 , and analogously for R and y. In the state-

 ment of the theorem below the following definition is needed.

 DEFINITION 2. Let I be a nonnegative integer, Ka. A family

 f={f^}| I J I- defined on F is of type (I, a) if fGA^CF) and f^ = 0 I J I- a
 on F for |j|<?"
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 Thus, any function in A (F) is of type (0,a). When we below say

 that we "formally compute the jth derivative of f^g^", we consider the

 functions as derivatives of and differentiate as if anc|

 were both j times differentiable. Thus in the theorem is given

 by 7 £ - - r-r f^v^q^~v' * where the sum is taken over all multiindices v<j 7 „ v:(j-v): r-r * -
 ( ' ( ' ^

 such that f and g ' are both defined. In the theorem, all functions

 are defined on a closed set F.

 THEOREM 1. Suppose that f is of type (?.,a) and g of type (m,ß), where

 0<ř<a and 0<m<R and let Y=min(a+m,S+Ā.) . Then h={h^^}i I J . i I ^ is of type I J I - ^ -w

 ( J i ) ( 2,+m , y ) , where h J is the function obtained by formally computing the jth

 derivative of f^^g^ (see above) by means of Leibnitz' rule, interpreting

 a product f^g^' j=v+y, as zero if one of the factors is not defined.
 / v )

 Note that if j=v+u, and, say, |v|>_k^+1 so that fv v ) is
 not defined, then |u| = |j|-|v| < y-R _< ß+H-S = £, so g^^=0. Thus in the

 interpretation of the product f^g^ in the theorem, we adopt the conven-

 tion that a product of a derivative which is not defined and one which is

 zero, is zero.

 Proof of Theorem 1 . It is clear that h^=0 if |j|<2,+m, and we shall pro-

 ve that h€A^(F). For every cube Q with sidelength 6<1, intersecting F,

 choose, as in Definition 1, polynomials Q=Pf and P^ Q=Pg degrees

 £[a] and £[ß] respectively, so that | f ^ ^-0^Pj.ļ£c6a~ ^ ^ on FnQ, |j|£ka,

 I P f q- P p* Qr|£c^a on Q'CQ if 6<_26' , |Pf|<c on Q if 6=1, and similarily

 for Pg. Define Pg by P^rP^P^; then Pg is a polynomial of degree at

 most N=[a]+[R]. According to Definition 1 to prove that h€A^,(F) we shall
 show that
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 a) ļh/^-D^Pgl £ c<5y~^ on QnF, |j|_<k^,
 b) - c ^ on Q ' *- Q if ô<2ó', and

 c) |PqI£c on Q
 Because of the definition of and Pg, a) follows if we prove that on
 FnQ, for |j|<k , j=v+u,

 | f ^g^-DVP ^.D^Pg | <_ c6^~ ^ I if M£ka and |u¡<kR (1)
 and

 |DVPfDMPg| < côY" I J I if |v¡>ka or |u|>kß. (2)
 The left side of the inequality (1) is less than

 |f(v)-DVPf| |g(u)|+|DVPf| |g(u)-DMPg| = S1+S2. If |u|<m, then g(w)=0 since
 g is of type (m,R), and if |u¡2.m> then, as we saw after Definition 1,

 |g^|£c, so S,j<côa~ I vl=côa+^ ^ ~ ^ ^ £ c<5a+-m~ ^ <_c6^~^L Similarily, if

 ļvļXĪ., then S2<_cô^ ^ £ c<S^+^ ^ £ cóY and if |v|<£, then

 ^2- Cl^01~ ^ ^ y ' rcS014"^- ^ Ui ^ I . Thus we always have S^+S2<^c6^~ ^ ^ which

 proves (1).

 By symmetry, it is enough to consider the case lvl>ka in the proof

 of (2). If a is noninteger, then DvPj.=0 if |v|>ka=[a] since P^. has

 degree £[a], so we assume that |v|=ka+1=a. Then (see the remark following

 Definition 1) |DVP^| £c(1+|lnô|), and we have ļ y | = ļ j ļ - ļ v| <y-a£a+m-a, so

 ¡DVPfDUPg|=|DVPf I |DUPg-g(u) I £ c(1+|ln6| )6R~lyl = c(1+| ln6 ļ )ôB+a" ' ^ UcôY" ' ^ '
 since y<a+ß> ar|d (2) is proved.

 Next we prove b), putting P^ q,=PJ.. Then ^

 lPQ-PQ'l = lPfVPr%ll1Pf-Pfl|Pg|ł|PfllVPŚl = T1+T2-

 To estimate ļ Pg | , let x^ be the center of Q', and write

 Pg^ = |n|<[B] Af|^X')' where Ar/x^=Dnpg^xo^x_xo^ri/'ri: * Let now xÇQ'- If

 I fll <m, then | A(ļ | <c6ß" ' n' 5 ¡ nl =c5B<c6mf if m<|o|<kR, then | | <cô ' n ' <c6m ,
 272



 and if ļn|=i<g+1 and B=k^+1 then |A^|<c(1+| lnô| )ô^<cóm; here we used the
 estimates on derivatives given after Definition 1. Thus we have <cóa6m<cô^.

 Since the term is handled in the same way, b) is proved. Since c) is

 immediate, the proof of the theorem is finished.

 The result above holds if we replace A (F) by Lip(a,F) in Defini-

 tion 2 and Theorem 1. According to the definition of Lip(y,F) we must prove

 that the statements we called a) and c) in the proof above hold with a poly-

 nomial Pg of degree instead of <N, N^>[y], Taking PgzP^P^ as above
 (with the degree of one sees that a) and c) hold with an analogous,

 but simpler, argument as in the A^-case. We must replace Pg with a polyno-

 mial Lg of degree Let be the center of Q, and put Lg=Pg-Rg,
 where Rn(x)= Z D^PpCxp^x-Xp^/n! , N=k +k0. Since Dr'Pp is a sum of

 Q k < I r, I <N , a ß Q
 V u

 terms of the form D PJD P , r|=v+y, ' and since all derivatives of Pc and
 f g' , ' f

 k +1

 Pg are bounded on Q, we see that |Rg|_<cô ^ £c6^ on Q and, by Markov's

 inequality, | D^Rg |_<cô^ ^ on Q. This shows that a) and c) hold with Pg re-

 placed by Lg, a polynomial of degree

 3. Uniqueness of derivatives.

 We shall now give a general theorem, which in particular characterizes

 the sets F, for which the functions are uniquely determined by f^)

 if {f^ i j i <|<SAct(F ) . Analogous results are valid for Lip(a,F): Replace
 A (IRn 1 ) by Lip(s,lRn~1 ) in Definition 3 and A (F) by Lip(u,F) in The- s ot

 orem 2. The proof is the same. To simplify the formulation of the theorem, we

 make the following definition.
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 DEFINITION 3. F has the property G(s), s>1, if and only if the following

 does not hold: There is a point xg€F, an open neighbourhood U of Xg and
 an (n-1 )-dimensional A -surface M such that FnllcMnU.

 s

 Here, by an (n-1 )-dimensional A -surface we mean a surface which for
 s

 some i is of the form {xQRn:x^=4»(x^ , . . . ,x^ i >xi+1 ' ' ' ' 'xn^ ' $€AsflRn~^ ) } .

 Informally, the condition G(s) means that no portion of F is contained in

 a A -surface,
 s

 Taking m=k in the theorem below, we get the criteria for uniqueness

 of derivatives in A (F). An example of another consequence of the theorem is

 the following. If f^ is as in the theorem, a>2, and F has property

 G(a), then the functions f ^ , |j| = 1, are uniquely determined by f^' but

 not all functions f^' ļ j 1=2, unless F has property G(a-1). As usual-,

 k<a<k+1, and the functions f^ are all defined on F.

 THEOREM 2. Let a>1 , let f^ be such that there exist functions f^

 so that {r^^}ļjļ<k 6 ^(F), and let 0<m<k. Then the functions f^'
 |j|<m, are uniquely determined by if and only if F has property

 G(ot-m+1).

 Before proving the theorem, we illustrate it by giving a corollary.

 The corollary follows using the trace theorem mentioned in the beginning of

 Section 1. Conversely, Theorem 2 in the case when m=k follows from the

 corollary and the trace theorem.

 COROLLARY 1. Let a>1 , k<a<k+1 , and consider the statements (A) : fGA^ClR") , __

 f(x)=0, xGF , and (B) : f^A^ClR0) , Djf(x)=0, x6F, |j|<k. Then ( A ) =>( B ) if and

 only if F has property G(a-k+1).

 Proof of Corollary 1 . Assume first that F has property G(a-k+1 ) and that

 (A) holds. By the trace theorem, {f^ | j | (^^(F) , where f^=D^f|F.
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 Here D^f|F denotes the pointwise restriction of D^f to F. By Theorem 2,

 f^=0, |j|<k, and hence (B) holds. Assume next that (A)=>(B), let

 {f^^}|j|<k be any collection in A^(F) and assume first that f ^ ° ^ = 0 . By
 the extension part r of the trace theorem, 7 there is a function f£A (IRn) such r 7 ot

 that D^f|F=f^' By our assumption it follows that f^=0, |j|<k. Thus the

 functions f^ are uniquely determined by f^ if f^=0, and hence in

 the general case also. Thus, by Theorem 2, F has property G(a-k+1).

 Proof of Theorem 2. It is enough to consider the case when f^ = 0. We first

 prove that if f^' |j|<m, are not uniquely determined by f ^ , then F

 has not property G(a-m+1). Let y be a multiinaex of least order such that

 f^ is not identically zero, and take xg^F such that f^'xg)¿0. By the

 extension theorem for A^(F) (cf. the beginning of §1), there is a function

 Ł f GA^ (lRn ) such that D^(£f) = f^^ on F, |j|£k. Take il of order ļ p ¡ - 1

 so that, ' for some variable x., ' D^= ' x., i ' 3x .
 £ 1

 Put E={x:D (£f)(x)=0}; then FcE. The version of the implicit function the-
 5/ o n

 orem given in Proposition 1 below, used with g=D (cOGA^ o ļļjļ+i^ gives

 us a certain neighbourhood U of x^ of the form U={x=(z,xJ:

 z = (x^,...,x^ ^ ,Xļ+-ļ , - • • ,xn)Goj,x^6I} and a function ^GA^ such that

 EnU={x : x^=$( z ) , zGcü} . The function <î> may be extended to a function

 *6Aa_ i y i (IRn )cAa_m+1 (IRn ) , and thus FnUcEnUzMnU, where M={x:x^ = £,j<Î>(z) ,

 zGftn is an ( n-1 )-dimensional A .-surface. This proves one half of a-m+1

 the theorem.

 The proof of the other part of the theorem is obtained by means of

 Theorem 1. Assume that F has not property G(a-m+1), and take Xg, U, U

 bounded, and M, as in Definition 3; we may assume that M is given by

 y=xn=<ř(z), z=(x1,x2,...,xn_ļ), where ^Aa_m+1 (|Rn~1 ) . Take <J£C°°(|Rn) so
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 that ^ is identically 1 in a neighbourhood of Xg and zero outside U,

 and consider l(z , y )=»K z ,y ) ( y-<p(z) ) . Then L6Aa m+1('Rn) (both factors are,

 if we replace, as we can without changing L, the term y in the second fac-
 00

 tor by a C -function of y with compact support which equals y on an

 interval big enough). Defining by í/^(x)=D^L(x) , x€F, the family

 } J j J <(<_fn+1 belongs to Aa_m+1(F), and since L=0 on F, we have

 that 2. is of type (1,a-m+1) (see Definition 2 in §2). If m=1 we are done,.

 otherwise take f and g in Theorem 1 equal to Z, and construct a function

 h=h^ of type (2,a-m+2) as in Theorem 1; then h/^(xg) = 2!¿0 if

 j=( 0, 0, . . . , 0 , 2 ) . Next we take f=h^ and g=H in Theorem 1, and obtain a

 function h^ of type (3,a-m+3) such that h^ = 3; if j=(0,0, . . . ,3) . (By

 construction, h^^ is a formal sum of terms of the form with
 j=v+u, where both factors are well defined and nonzero only if ļ v | = 2 ; the

 coefficient of this term is 3.) Proceeding in this way, we obtain in the

 (m-1)th step a function h . of type (m,a) such that =m!¿0 if
 m-1 m-1

 j=(0,0, . . . ,m) . This concludes the proof of the theorem.

 Finally we prove the version of the implicit function theorem used in

 the proof of Theorem 2. In the proposition, y denotes one of the variables

 X. and z the other ones, z=( x„ , . . . , x . .,x. „,..., x ), and we write i 7^77 , , 1_-ļ . 1+i „,..., 'n

 x=( z , y ) and Xg=(z0,yQ).

 PROPOSITION 1. Let a>1 and gGA^QR0), and suppose that 3g/3y ( Xg)¿0. Then

 there is a neighbourhood U o£ x^ of the form {x=(z,y) :z£to,y€I}, where

 w is an open ball in lRn~^ with center z^ and I an open interval with

 center y^, and a function ÍEA^uj) such that {x:g(x)=0}nU={x:y=<î'(z) ,
 zGio} .

 Proof: We may assume that i=n, so Y=xn ar|d z = ( xļ , • • • , xn_-j ) • By the im-

 276



 plicit function theorem we find U as in the proposition and a function $

 in C^(to), continuous in w, satisfying -1^- (z) = - ( z ,i>( z) )/ (z,$(z))t
 dX . oX . Oy
 1 1

 zGo), i = 1 ,2, . . . ,n-1 .

 We shall see that things may be arranged so that $ actually belongs to

 A (Ü)) .
 a

 Since 8g/3y(xg)¿0 and dg/dyGA^^ (lRn) there is by Lemma 1 a closed

 ball B=B(xg,r) such that 1/( 3g/3y ļGA^^ (B) . We may assume that B con-

 tains U. Since 3g/3x. ^ also belongs to A .(B) and A .(B) is an alge- ^ i a-1 a-1

 bra, ' we have 3$/3x . (z)=H . (z ,$(z) ) , zGco, for some H.GA .(B). Then ' ii . . , i a-1

 l-LGC^"^ (Bq) with bounded derivatives, where B^ denotes the interior of B.

 Thus $GCk(o)) , with a derivative of order <k given by a certain sum, where

 each term is a product of factors of the forms D^H^(z,$(z)) and DV4>(z),

 where n and v are multiindices of orders <k-1 and lengths n and n-1,

 respectively. To prove that 4>GA (io) , it is (see §1) enough to show that the

 derivatives of orders <_k are bounded (this is obvious), and that the deri-

 vatives of order k belong ^ to A , (co), with A . (cu) defined as in §1 with ^ a-k , a-k .

 differences. Since DV$GC^ (co) with bounded derivatives if |v|£k-1 we have

 (e.g. by means of the mean value theorem), since 0<a-k£1 , that DVi>GA^

 if |v|£k-1 and thus, since A^ i-s an algebra, it remains to show that

 also D^hLizjSKz^GA^ ^(co) , |n|£k-1.

 Put JzD^H.. Then JGA . (B) since H.GA .(B). For a<k+1 we may J i a-k i a-1 J

 use first differences, and obtain immediately for z and z+h belonging to

 co, since $GLip( 1 ,co) , that

 I J(z+h,$(z+h) )-J(z,$(z) ) |£c| (z+h,$(z+h) )-(z,0(z) ) |a"k <_ c|h|a~k.

 Suppose next that azk+1 , and take z, z+h, and z-h in co. We then

 have, putting G( z )= J( z ,$( z ) ) ,

 A^G(z)=J(z-h,ł(z-h))-2J(z,ł(z))+J(z+h,i(z)+ł(z)-«(z-h))+J(z+h,ł(z+h))-
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 J(z+h,$(z)+$(z)-i|(z-h) ) (we may assume that 8 contains 0)x3I, where 31

 is the interval with same center as I but three times longer, so that the

 last term is defined). The sum of the first three terms constitute (we now

 take differences in |Rn) J(z,$(z)) where h. = (h,i>(z)-$(z-h)) , and since
 h^ l'

 1 Ih. I <c I ■ h ■ I and JGA , (B)=A„(B), the absolute value of this second diffe- 1 1 ■ ■ a-k , 1
 >j

 rence is less than c|h|. The sum of the last two terms is -A, >j J(z+h,$(z+h) )
 2

 2
 where hn=(0,-A, $(z) ) . Since JGA„(B), the modulus of this difference is

 2 h 1

 less than cļh^ld+lln h^ | ) (this can e.g. be deduced with aid of the esti-

 mate on the derivatives of Pq given after Definition 1).

 Now, since gGA^dR1"1) where oi=k+1 we certainly have, if k<a'<k+1,

 gGAot,(lRn), ana so by the non-integer case already considered, we know that

 at least $GA , (co) . Since a'>1 we have A ,(co)cA (co) for some v with
 a , a y

 1<y<2, which gives |h?|£c|h|Y and it follows that |A^ J( z+h ,$( z+h ) ) |<c | h ļ .
 2

 Thus J( z ,í>( z ) )^A ^(^) also when a=k+1 , and the proposition is proved.
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