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 A category analogue of the density topology,

 approximate continuity and the approximate derivative.

 "The suggestion to look for a category analogue,

 or a measure analogue, has very often proved

 to be a useful guide." (Oxtoby, [23], p. 74)

 The aim of this survey is to present a definition of a category analogue

 of density point and almost all results connected with this notion which were

 obtained in Lodz during the last three years. One can find the first, very

 short presentation in [36]. In what follows R will denote the real line, ß

 will stand for Lebesgue measure on R and N for the set of natural numbers.

 In [19], [20], [21], [5], [35], and [28], p. 29 one can find the notion of

 category at a point. Recall that a set E c r is said to be of the first

 category at a point x if there exists a neighbourhood U of x such that

 U n E is of the first category. The definitions of second category at a

 point and (more important) of residuality at a point are formulated in an

 obvious way. More general notions of this kind have appeared in [13].

 Although these points play some role in differentiation ([8], [21]), in

 cluster sets ([35]) and also in the theory of sets having the Baire property,

 they cannot be regarded as a very exacting analogue of dispersion and density

 points. When we consider first category points and residual points of a set

 we have only extremal possibilities: either the set is very small (first

 category) or it is very big (residual) in some neighbourhood of a point under

 consideration. It is obvious that if x is a dispersion point of E, then

 the measure of E n CJ can be positive. for each neighbourhood a of x, and

 if x is a density point of E, then the measure of E n U can be smaller

 than the measure of U for each neighbourhood U of x. Moreover, if we

 define "measure zero at a point x" and "full measure at a point x" in an

 obvious way, then it is easy to find a measurable set E of real numbers
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 which differs from the set of its full measure points by a set of positive

 measure, and this means that a Lebesgue density theorem for these points does
 not hold.

 To obtain the category analogue of a density point which estimates the

 size of the set in the vicinity of a point more precisely than to say either

 the set is very small or very big, we shall analyze the definition of a

 metric) density point. Let's start with the common definition: 0 is a

 density point of a Lebesgue measurable set E if and only if limh_o+
 [(2h)"1,^(E n (-h,h))] = 1. Observe that this condition is fulfilled if and

 only if limļļ-ņņti 2"in),¿i(E n (-i/n,i/n))] = 1. This is equivalent to saying

 that limn-a, ļi(( n-E) n (-1,1)) = 2, where n*E = {nx: x e E}, and this means

 that the sequence of characteristic functions of the sets ( n£ ) n (-1,1)

 tends In measure to the characteristic function of the interval (-1,1). In

 the sequel the characteristic function of a set A will be denoted by xa-

 But convergence in measure can be described without measure! Indeed, if

 (X,S,u) is a finite measure space, then a well-known theorem due Riesz says

 that a sequence (fn)neN real valued S-measurable functions converges in

 measure to a real valued 5-measurable function f if and only if every

 subsequence ^nJineN of {fn)neN contains a subsequence (fnm }peN which
 converges u-a.e. to f. To describe convergence u-a.e. one needs only the

 a-ideal of sets of u measure zero, not the measure u itself. So from the

 above it follows that the notion of a density point can be described without

 measure. Only knowledge of the a-ideal of null sets is necessary. Now we are

 ready to formulate our definition. Let 5 be a or-algebra of subsets of R

 having the Baire property and I c 5 - the a-ideal of sets of the first

 category. We shall say that some property holds /-almost everywhere (in

 abbr. r-a.e.) if and only if the set of points which do not have this property

 belongs to I. We shall say also that the sequence {fnJneN 5-measurable

 (i.e., having the Baire property) real valued functions defined on (-1,1)

 converges with respect to I to some S-measurable real valued function f

 defined on (-1,1) if and only if every subsequence of ffn)neN

 contains a subsequence (^nm )p^N which converges to f I-a.e. on (-1,1).
 We shall use the denotation

 f _L f .
 n n=oo
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 Definition 1. We shall say that 0 is an / -density pointy of a set

 A e S if and only if

 X((n*A) n (-1,1)) n-co 1'

 We shall say that x0 is an I -density point of A if and only if 0 is an

 /-density point of A - x0 = {x - x0 : x e A} . We shall say that x0 is an

 I -dispersion point of A if and only if x0 is an I -density point of R -

 A. Right-hand and left-hand J-density and J-dipsersion points are defined

 in the natural way.

 Observe that 0 is an /-dispersion point of A if and only if

 X -- 0.
 ( ( n • A ) n (-1,1)) n-Œ

 Observe also that 0 is an /-density point of A if and only if lim i.nfn^xy

 ((n-A) n (-1,1)) is residual in (-1,1) and 0 is an r- dispersion point of

 A if and only if lim supn-^30 ((n*A) n (-1,1)) is of the first category.

 These remarks are very useful in many proofs.

 Looking at the definition we see that we have used only the sequence of

 natural numbers. This is analogous to using only intervals of the form

 ( -n,n) in the usual definition of metric density. The following theorem (See

 [31].) shows that all sequences tending to infinity have equal rights:

 Theorem 1. The point 0 is an I -density point of the set A e S if and

 only if for every increasing sequence {tn}n€N °f positive real numbers

 tending to infinity there exists a subsequence {^n^m^N such that

 - l

 ^(tr^-A) n (-1,1)) m-5 - l "a*e' '

 The second natural question is: does the notion of /-density point

 differ from the notion of residual point? The answer (positive, fortunately)

 is included in the following theorem (See again [31].)-

 Theorem 2 . There exists an open set E = an,bn ) , where {t»n)neN

 tends decreasing ly to zero, an+i < bn+1 < an for each n « N, such that 0

 is an /-dispersion point of E.
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 We shall sketch the construction to present a typical technique. Let

 (an)n^N and (^nJn^N ^ two decreasing sequences tending to zero and such

 that

 ( i ) an+i < bn+i < an for n « N

 (ii) lim - - - = 0
 n-œ an

 ..... , lim . an"bn+Ł (in) ..... , lim .

 n-œ a°

 ( It suffices to take for example an arbitrary > 0 and then an = bn

 oo

 and bn+Ł = jjj an). Put E = u (an,bn). Let be an arbitrary
 n=i

 increasing sequence of natural numbers. We want to show that there exists a

 subsequence {n mpJp^N such that

 X( ( "mp " E ) n (0,1)) P1® °

 r-a.e. on (0,1). For each natural number m, let km be the smallest

 natural number such that (nm-(aļ^fb]^) ) c (0,1). The sequence

 {nm'bk^meN is hounded, so it contains a convergent subsequence which

 we shall denote fnm^'by^ }p,*N- Let b = lim nm^-bv^ . Two cases are

 possible. First case: b = 0. Then observe that lim inf n^a^ P ? 1. p-co P

 Indeed, if lim inf nm av < 1, then from (ii) it follows that for in-
 p^o P

 finitely many p' s we should have n^-by^., < 1. This is a contradiction

 to the definition of km. So

 ^((njOp-E) n ( 0 , 1 ) ) } p«N
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 converges to 0 at every point of (0,1). Second case: b > 0. Then ob-

 serve that lim n^* aļC^.i = + oo. (This follows from the fact that

 an.,
 lim - - =+oo, which is a consequence of (iii).) Also lim n« * a^ = b,
 n-œ n p-œ P

 cLn

 because from (ii) we have lim - = 1 and lim n« • bj^ = 0. (This is
 n-œ n p-œ P

 again a consequence of (iii).) Hence lim sup ( ( n« • E) n (0,1)) c {b},
 p-œ

 and because a singleton {b} is of the first category, we conclude that 0

 is an I -dispersion point of E.

 Observe that sometimes it is more difficult to prove a fact about

 I -density than to prove the corresponding fact about metric density because in

 the process of choosing subsequences there is no possibility of estimating

 the size of sets under consideration. However, there are also conditions

 under which the situation is simpler: namely, each set having the Baire

 property differs from an open (or closed) set by a set of the first category

 (while a Lebesgue measurable set in general can be approximated up to null set

 fcy Fa or g6 set). Consequently numerous theorems in the sequel shall be

 formulated for open (or closed) sets having the Baire property.

 Having this last remark in mind and using the notation <t>(A) = {x e R:

 X is an I -density point of A} for A e S ; while A ~ B means that

 A a B el we obtain the following theorem:

 Theorem 3 . For every A,B e. S

 1) <t>( A ) ~ A

 2) if A ~ B, then <P(A) = <&(B)

 3) <D(j3) = 0, $(R) = R

 ¿) ' $(A n B) = ♦(A) n $(B).
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 The above theorem has been proved in [30]. From this we see that the

 operator <t> transforms S into 5 and is the so-called "lower density".

 (See [28], Th. 22.4..) Put Tr = {0(A) - I: A e S, I /}. Similar to Th.

 22.5 in [28] (using the fact that every disjoint family of sets of the second

 category having the Baire property is at most enumerable) we can prove:

 Theorem 4. ([30]). Tj is a topology on the real line.

 The only difficult part is to prove that the arbitrary union of sets in

 Tj belongs to 5. Observe that Tr = {A e S: A c ♦(A)}; this means that Tr

 consists of all sets in S with the property that each point of the set is an

 /-density point of the set. This description is more familiar (also for the

 density topology - see [9] and [10]). Obviously Tj is stronger than the

 natural topology on the real line, so it is a Hausdorff topology. But if Q

 is the set of rational numbers, then {0} and Q - {0} cannot be separated

 by sets from Tj, and hence Tj is not a regular topology. Here are some

 other properties of T¿ (See [30] and [31].): the topological space (R,Tj)

 is not a separable space and any closed interval is connected but not compact

 in this space.

 It is not clear at first glance if there is some connection between

 density and / -density points or dispersion and /-dispersion points. The

 following theorem (See [1].) explains that there is no connection. Observe

 that c) and d) are not simple consequences of taking complements in a) and b)

 and the construction of the example in d) is rather complicated.

 Theorem 5. a) There exists an open set E^ such that 0 is a density

 point of but not an /- density point of E¿.

 b) There exists an open set E2 such that 0 is an /-density point

 of E2 but not a density point of E2.

 c) There exists an open set E3 such that 0 is a dispersion point

 of E3 but not an /-dispersion point of E3.

 d) There exists an open set E4 such that 0 is an /-dispersion

 point of E^ but not a dispersion point of E4.

 Let us introduce the following definition.
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 Definition 2. We shall say that a set A c r is a Tj -neighbourhood of

 X e R if and only if there exists a set A x e S such that Ał c a and x

 is an I -density point of Ax. (Compare to [29].)

 We have the following theorem which corresponds to the well-known theorem

 about the density topology:

 Theorem 6. ([29]) A set A c r belongs to Tj if and only if A is a

 Tj -neighbourhood of each of its points.

 Observe that the non -trivial part of this theorem says that A has the

 Baire property which is not supposed in the definition of T¡ -neighbourhood .

 d Tr

 In the sequel we shall denote by Int 7^ A, CI 7^ A, Fr^ A and A 1
 the interior, closure, boundary and derivative, respectively, of the set A

 in the topology Tj. The meaning of Tj -open, Tj -closed set is obvious. The

 same symbols without index Tj are always used for the natural topology on

 the real line. The following theorems show that the properties of these

 operations are very similar to those of the density topology.

 Theorem 7. ([29]). If A e S, then Int^ A = A n <t>(A), Cl^ A =

 = A U (R - 4>(R - A)), FrTj A el.

 From the last part it follows immediately that Cl^ A - A e I and

 A - Int 7^. A el. Observe that if A ¿ S, then it can happen that

 ClTj A - Int 7- j A ¿ I.

 Theorem 8. ([29]). If A,B e S, then Ad7"r = BdTr if and only if

 A ~ B. If A e S, then AdTr = R - <t>(R - A).

 If we define the operation k: 2r - S in the following way:
 k( A ) = A), then we have:
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 Theorem 9. ([29]). If A « 5, then k(A) = A) .

 d Tr 1 Theorem 10. ([29]). If A 1 = R - k(R - A), then A e S. (Compare

 also to [39] . )

 The following results were obtained (among others) in [29] for the

 operator A: 2R - S defined ( in the same fashion as the similar operator

 in [24.] for the density topology) by the formula A( A) = Cl^ ( Int^ A).

 Theorem 11. A - A(A) c FrTļ. A. If AŁ c Az, then A(AŁ) c A(A2).

 AZ(A) = A( A( A ) ) = A(A).

 Theorem 12. If A « S, then A - A(A) e I; A(A) = ¡S if and only if

 A e I; ClTj A = A U A( A) .

 Now we shall study real functions of a real variable. (See [30] and

 [31]. )

 ■Definition 3. We shall say that a function f:R - R is I- approximately

 continuous at x0 if and only if for every e > 0 the set f " -■-( ( f(x0 ) - 6,

 f(x0) + <s ) ) has x0 as an I -density point. We shall say that a function
 f:R - R is /-approximately continuous if and only if for every interval

 <3i »3Ł ) the set f'MiJi »Ä )> belongs to J . (This means simply that f
 is a continuous transformation from (R ,Tj) into R equipped with the

 natural topology. )

 Recall that in real analysis there are at least two frequently used

 definitions of approximate continuity at a point x0. The first of them

 (similar to Definition 3 above) says that f is approximately continuous at

 x0 if and only if for every e > 0 the set f'L((f(x0) - e, f(x0) + e))

 has x0 as a density point, the second deals with some restriction of f,
 namely, f is approximately continuous at x0 if and only if there exists a
 neighbourhood E of x in the density topology such that fļg is continuous
 at x0 (in the natural topology restricted to E). If we should take any
 topology T instead of the density topology, we would obtain the
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 "topological" and "restricted" definitions of continuity at x. According to

 [1¿] (Theorem 5) these conditions are equivalent for a topology T invariant

 with respect to translations if and only if the following condition is

 fulfilled (We quote this condition in the formulation convenient for our

 purposes.): for every descending sequence (En}neN of right-hand

 (left-hand) T- neighbourhoods of 0 there exists a sequence (hn}n6N such

 that hn > 0, lilting hn = 0, and the set

 oo oo

 {0} u u (En n [hn+i,hn)) u ( {0} u u (En n ( -hn, -hn+JL J ) )
 n=i n=i

 includes a right-hand (left-hand) T- neighbourhood of 0.

 Since for any descending sequence {En}n6fl sets having 0 as a point

 of right-hand density there exists a sequence {hn}n€N, hn > 0, lin^^ hn = 0

 oo

 for which the set u (En n [hn+^hn)) also has 0 as a point of right-hand
 n=i

 density, the above quoted two definitions of approximate continuity are

 obviously equivalent. Observe also that the above condition can be formulated

 in terms of points of dispersion.

 From the following theorem we can conclude immediately that for the

 topology Tj the "topological" and "restricted" definitions are not

 equivalent. Obviously "restricted" continuity always implies "topological".

 Theorem 13 . ([31]). There exists an increasing sequence (An}nćN of

 sets having the Baire property such that for every natural n, 0 is an

 I -dispersion point of An and for any sequence {hn}n€N numbers tending

 decreasingly to zero, the point 0 is not an I -dispersion point of the set

 oo

 A = u ( An n [hn+1 ,hn) ) .
 n=jL

 The construction is based upon two easy observations: If 0 is an

 I -dispersion point of BL and B2, then 0 is an I -dispersion point of

 Bł u bz. If 0 is an I -dispersion point of B, then for every a e R, 0

 is an I -dispersion point of a-B. Let E be the set constructed in
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 Theorem 2. Put A^ = E and An = An.x u u (- • E) for n > 1. The
 i=i

 sequence (An}n6N fulfills all requirements.

 In the sequel we shall not pay attention to "restricted" continuity,

 taking into account only the "topological" version.

 Theorem 14. ([31]). A function f:R - R has the Baire property if and

 only if it is I -approximately continuous I-a.e..

 The above theorem as well as the next one have very well-known analogues

 for Lebesgue measurable function.

 Theorem 15 . ([30]). If a function f:R - R is /-approximately

 continuous, then f is in the first Baire class and has the Darboux property.

 In the mathematical literature one can find several proofs of similar

 theorems for approximate continuity. However, most of them use some

 properties of the Lebesgue integral. Our proof is in a way similar to the

 proof in [9] (which does not use the integral). A very essential role is

 played by the following lemma.

 Lemma 1. ([30]). If 0 is an r-density point of the set A ć 5, then

 for every natural number n there exists a number 6n > 0 such that for each

 h fulfilling the inequality of 0 < h < 6n and for every natural number k

 k k+i
 such that -n < k < n-1 we have An {[- • h,

 n n

 The proof that f is in the first Baire class is difficult. The Darboux

 property follows immediately from it and Theorem II. 1.1. in [4.].

 The connectedness of [a,b] in Tj (mentioned earlier) is an easy

 consequence of Theorem 15.

 Observe also that in [1] one can find an example of an /-approximately

 continuous function having a (specially constructed) perfect nowhere dense set

 as the set of points of discontinuity (with respect to the natural topology).

 The construction is straightforward.

 If we denote by A and A/ the class of approximately and
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 I- approximately continuous functions, respectively, then using Theorem 5 we

 immediately obtain the following result.

 Theorem 16. Neither Aj c a, nor A c Aj.

 We can also compare the class Aj with some classes of derivatives. We

 use the following notation: A (derivatives), bA (bounded derivatives), bAj

 (bounded I -approximately continuous functions) and obtain the result which

 differs slightly from Theorem II. 5. 5. in [¿]: bAj £ bA, Aj £ A, bA £ bAj.

 It is known that the density topology is completely regular ([9]), so it

 is the coarsest topology relatively to which all approximately continuous

 functions are continuous. As we observed earlier, for the topology Tj the

 situation is different - is is not regular. Already in [30] it was proved

 that if f is an I -approximately continuous function, then for each open

 interval (yi,y2) the set f"i((y1,y2)) is of the form G u Z, where G is

 open (in the natural topology) and Z is of the first category. If T1 j =

 {U 6 Tj: U = G u Z, where G is open and Z is of the first category},

 then it is not difficult to verify (See [29].) that TLj is a topology

 stronger than a natural topology but weaker than Tj. Also it is easy to

 observe that the topological space (R , T^j) is connected and that

 Tx i -compact sets are merely the finite sets.

 It is natural to seek the coarsest such topology corresponding to the

 I -approximately continuous functions. It was found independently in [17] and

 [29]. It turned out that T1/ is still too strong. Now we shall present

 this coarsest topology starting from some facts proved in [29]. Denote by

 C(R,V) the family of all real functions which are continuous with respect to

 some topology V. Then C(R 9TL¿) = C(R,7j) = Aj. We shall introduce two

 definitions of some variations of I -density points.

 Definition 4. A point x0 is called a special (deep) I-density point of

 A e S if and only if there exists an open set C such that Cl C 3

 R-A(C3R-A) and x0 is an I -dispersion point of C.

 The first part of the definition is justified by the following theorem:
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 Theorem 17 . If a function f:R - R is I -approximately continuous, then

 for every interval (yA,y2) each point x0 of the set A = is a

 special I -density point of A.

 Looking at Definition U one can observe without difficulty that deep

 / -density points are much more convenient to handle. At this point we are

 fortunate because the following theorem holds:

 Theorem 18. If A e T1/, then x0 is a special r-density point of A

 if and only if it is a deep / -density point of A.

 Observe also that each point which is a deep r-density point of A

 belongs to A.

 Now let T = {A e TŁj: every point x e A is a deep /-density point of

 A} . It is easy to see that T is a topology on the real line between the

 natural topology and T1 j . Observe that the set

 oo n

 A = R * n=i u vu k=jL Wt* n=i k=jL

 belongs to but not to T, because 0 is not a deep /-density point

 of A. For T the analogue of Lusin-Menchoff Theorem is valid.

 Theorem 19. Let E e TŁj and let F c e be a closed set such that every

 point x e F is a deep /-density point of E. Then there exists a perfect

 set P such that F c p c e and every point x e F is a deep /-density

 point of P .

 From this theorem it is not difficult to deduce that (R , T) is a

 completely regular (Tychonoff) topological space. By virtue of the fact that

 C( R, Tļ ) = C(R,T) (This is a consequence of Theorems 17 and 18.) we obtain:

 Theorem 20. T is the coarsest topology for which every /-approximately

 continuous function is continuous.

 In [17] there is the following description of the topology T:
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 Let P(x) denote the collection of all closed intervals [a,b] such
 oo oo

 that X e (a,b) and of all sets of the form u [an,bn] u u [cn,dn] u
 n=i n=i

 oo œ

 u {X} or u [an,bn] u [c1(x] or u [cn,dn] u [x,b.J, where for all n
 n=i n=j.

 X < bn+i < an < bn and cn < dn < cn+1 < x and x is the limit of

 (an)neN and of Ccn)neN*

 Theorem_21. ([17]). Let T be the collection of all sets U 6 Tj

 fulfilling the following condition: if U * 0, then for every x e U there

 exists a set P e P(x) such that P c int U u (x} and x is an I -density

 point of P. Then T is the coarsest topology for which all I -approximately

 continuous functions are continuous.

 We used the same letter T here as earlier for the obvious reason.

 Let us remark that in both papers [29] and [17] there are some other

 interesting observations concerning the topologies T^-j and T.

 Recall that a well-known theorem of Maximoff ([4],' p. 36 or [32]) says

 that if fsR - R is Darboux and Baire one, then there exists a homeomorphism

 h of R onto itself such that f o h is approximately continuous. In [1]

 it was observed that there exists a function f:R - R which is Darboux and

 Baire one and for every homeomorphism h of R onto itself f o h ¿ Aj. Any

 function f which is Darboux and Baire one and f = 0 a.e. but not

 everywhere has this property. (Ccorapare to [4], p. 12.) Using Theorem 21 we

 can observe that if a function f:R - R can be transformed by an inner

 homeomorphism onto an I -approximately continuous function, then for each

 interval (y±9yz) and each point x0 <= f "1( ( y¿ ,yz ) ) there exists a set
 P e P(x) such that P c int f '*•( ( yL ,y2 ) ) u {x0}. It is natural to ask if

 this condition ( it is a kind of two-sides quasi -continuity in the sense of

 Kempisty) together with Darboux and Baire one implies the existence of a

 homeomorphism transforming a given function into an /-approximately

 continuous function. Unfortunately, the answer is not known as yet. We know

 only the following theorem for sets: (Compare to [11].)
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 Theorem 22. ([33]). If ü c r is a set having the following property:

 for each x e U there exists a set P e P(x) such that P c int U u {x} ,

 then there exists a horaeomorphism h of R onto itself such that h(U) c

 <= *<h(U)).

 After this short and incomplete information about creating I- approximate

 continuity we shall discuss some results on preserving /-density and

 / -approximate continuity as they were presented in [2]. Recall that

 homeomorphisms preserving density points were studied by Bruckner (See [4.],

 p. 138.) and Niewiarowski in [23]. We shall consider only increasing

 homeomorphisms h:R - R.

 Definition 5. We say that a homeomorphism h preserves I -density (deep

 I -density) at x0 if and only if for each set A e S if x0 is an

 /-density (deep /-density) point of A, then h(x0) is an /-density (deep

 /-density) point of h(A). We say that h preserves /-density (deep

 /-density) if it preserves /-density (deep /-density) at each point

 x0 6 R.

 It is easy to see that in the above definition we can use only open sets

 instead of sets having the Baire property. The following theorems are

 somewhat more difficult to prove:

 Theorem 23 . A homeomorphism preserves /-density if and only if it

 preserves deep /-density.

 Theorem 24». A homeomorphism h preserves /-density at x0 if and only

 if it preserves /-density for sets belonging to P(x0).

 The last theorem allows us to simplify many of the proofs in [2]. Using

 it we can immediately obtain the following:

 Theorem 25 . If hL and h2 preserve /-density, then hL + h2,

 max(hlfh2) and min(hi,h2) also preserve /- density.
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 Theorem 26. If h and h"1 fulfill a local Lipschitz condition, then h

 preserves I -density.

 As with the analogous result concerning density preservation, the

 above-mentioned condition is not necessary. It is not difficult to give

 examples (See again [2].) which preserve I-density without fulfilling a

 Lipschitz condition (neither by h, nor by h"1). Also there exists a

 homeomorphism h preserving I-density such that h"1 does not preserve

 I-density. The following theorem shows the similarity between approximate

 continuity and I -approximate continuity (Compare to [4], p. 138.).

 Theorem 27. A function f o h is I -approximately continuous for every

 I -approximately continuous function f if and only if g = h"1 preserves

 I-density.

 We shall conclude the part of a paper devoted to I -approximate continuity

 of functions of one variable with two problems. Neither of them has a

 complete solution as yet. The first is connected with the characterization of

 the set of points of I -approximate continuity and was studied in [22] where

 one can find the following theorem.

 00

 Theorem 28. If B = n Gn u J, where Gn is open (in the natural
 n=i

 oo oo

 topology) for each n € N, J e I, J n n Gn = 0 and J c n <t>(Gn),
 n=i n=i

 oo

 and if n <P( Gn ) - B is countable, then there exists a real function
 n=i

 f of a real variable for which B is exactly the set of all points of

 I -approximate continuity .

 Observe that if R - B ć I, then by virtue of Theorem 14., f cannot have

 the Baire property. It is unknown whether in the above theorem the

 oo

 countability of n ♦(Gn) - B is necessary.
 n=i

 The second problem is connected with the characterization of the class

 Sx(Aj) of pointwise limits of sequences of I -approximately continuous

 functions. The following theorem can be found in [3]. (Compare to [12].)
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 Theorem 29. Let f e Bx(Aj). Then the following condition holds: for

 any a,b « R, a < b and nonempty sets U,V if

 (1) U c {x: f(x) < a}

 (2) V c {x: f(x) > b}

 (3) U c A(C1 U) and ve a(C1 V), then

 ü - cl v * p and v - cl u * 0.

 Observe that the condition U c A( Cl U) means that the closure of U in

 the topology T is a perfect set in this topology. (See [17] and [29].)

 Using the above theorem and some special sets belonging to the families P(x)

 the authors in [3] have proved the following theorem.

 Theorem 30. Bi c ba(Aj) c b2

 Here BL and Bz denote the first and the second Baire classes for the

 natural topology.

 The problem of finding a complete characterization of B¡_( Aj ) remains

 unsolved.

 Now let us pay some attention to /-density points of plane sets. (See

 [6].) Here 5 and I will denote the classes of subsets of the plane having

 the Baire property and the cr- ideal of sets of the first category.

 Definition 6. A point (0,0) is an I -density point of A « S if and

 only if for every two increasing sequences {kńłneN» ^n^neN natural

 numbers for which there exists a number a > 1 such that for each n e N

 1 kn
 - < - < a the following holds:
 a k

 n

 {X(((K¿.kS)'A, n ([-1.1] x [-l,ll)),neN converges to 1 with respect to

 A point (0,0) is a strong I -density point of A if and only if for every

 two increasing sequences (^nJneN» (^nJneN natural numbers

 (X(<(^,*;)-A)n((-l.l)* (-l.il))>»« conver2es to 1 with respect to
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 The definitions for (x0,y0) in place of (0,0) are obtained by translation
 as in the one dimensional case.

 Obviously in the above definition (a,b)#A = {(ax, by): (x,y) e A} . It is

 not difficult to prove that in the definition of I -density point one can use

 the sequence (kn>kn> instead of (*A,kn). Of course each strong I -density
 point is an I -density point of A, but not conversely. If for A e S we

 denote by 4>(A) the set of all I -density points of A and by $s(A) the

 set of all strong I -density points of A, then the operators 4> and $5

 have the same properties as the one -dimensional operator $ (Theorem 3).

 Exactly in the same way we define topologies Tj and using and $5,

 respectively. These topologies have the same properties as the one

 dimensional topology Tj. I -approximately continuous functions of two

 variables (and strongly /-approximately continuous functions, which

 constitute a smaller class) are Baire one. The coarsest topology for which

 all /- approximately continuous functions are continuous is described exactly

 as in the one dimensional case using the notion of deep /-density. The

 problem of finding the coarsest topology for strongly /-approximately

 continuous functions is open. However, there are some partial results in this

 direction connected with the notion of deep strong /-density. Also the

 following theorem is true. (Compare to [9].)

 Theorem 31. If f : R2 - R is strongly /-approximately continuous, then

 for each x0 e R, f(x0,y) is /-approximately continuous as a funtion of y.

 Using a method similar to that in [7] the following theorem has been

 proved .

 Theorem 32 . ([37]). If the function f:R2 - R has the following

 property: if for each x0 e R, f(Xo,y) is /-approximately continuous as a

 function of y and for each y0 e R, f(x,y0) is /-approximately continuous

 as a function of x, then f has the Baire property (as a function of two

 variables ) .

 It is an open problem as to whether the function from Theorem 32 is Baire

 one. The method of proof in [7] uses the integral and, as a consequence,

 cannot be adopted here.
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 In the next part of the paper we shall present some results concerning the

 category analogue of the approximate derivative. we shall start with a

 definition. (Compare to [34.].)

 Definition 7 . ([18]). A collection C of closed subintervals of an

 interval [a,b] is said to be an /-approximate full cover of [a,b] if and

 only if to each x e [a,b] there corresponds a set Ax e S such that x is

 an I -density point of Ax (right-hand I -density point if x = a, left-hand

 / -density point if x = b) and every interval I with x « I and with

 endpoints in Ax belongs to C.

 The following lemma is also in [18].

 Lemma 2. If 0 is an /-dispersion point of the open set G, then there

 exists a natural number k and a real number 6 > 0 such that for every h €

 (0,8) there exist two natural numbers ir» it 6 such that

 ir-i ir -it -it+1
 (- • h, - • h) n G = f> and (- • h, - • h) n G = ß.

 This lemma together with Lemma 1 enables us to represent the interval
 co oo

 [a,b] as the countable union [a,b] = u u EL . with the property:
 k=l j=l K,J

 if xx,x2 « Ł and 0 < x2 - xA < i then Ax n Ax n [x^x^ * f»
 K. f J J i 2

 (where Ax^ and Ax^ are sets associated with xx and x2 in the above

 definition). This decomposition is the main tool in the proof of the

 following theorem.

 Theorem 33. ([18]). If C is an I-approximate full cover of an

 interval [a,b], then C contains a partition of every subinterval of

 [a,b].

 By a partition of an interval we mean a finite family of non -overlapping

 intervals the union of which is the given interval. In the proof of the
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 corresponding theorem in [34] the following fact has been used: there
 GO

 exists a decomposition [a,b] = u En with the property that if xL,
 n=l

 x2 6 E, 0 < x2 - xL < ì , then Ax^ n Ax^ n [a,b] * 0, where Ax^ and

 Ax^ are the sets associated with xL and x2 in the definition of Thomson

 ( Xļ_ is a density point of A^, i = 1,2). To obtain this decomposition

 it suffices to take En = {x: for each h e (0»^ ]»

 h"1 • )ll(Ax n ( x - h, x + h ) ) > ^ } . The construction of the decomposition

 in our case is more complicated.

 Having the above theorem at our disposal we are able to repeat the proofs

 of all theorems from [34] for the case of the r-approximate derivative.

 However, in the sequel we shall prsent some stronger theorems. Now we come to

 the definition of r-approximate derivative.

 Definition 8 . ([18]). Suppose f:R - R has the Baire property in a

 neighbourhood of x0. The upper J -approximate limit of f at xD

 (lim supx-x<3 I-ap f(x)) is the greatest lower bound of the set (y: (x:
 f(x) > y} has x0 as an /-dispersion point). The lower r-approximate

 limit (lim inf^x^ I-ap f(x)) right-hand and left-hand upper and lower
 r-approximate limits etc. are defined similarly. If lim supx_Xq r-ap f(x)
 = lim infx_Xo r-ap f(x), their common value is called the r- approximate
 limit of f at x0 and denoted by r-ap f(x).

 Definition 9. ([18]). Let f:R - R be any function with the Baire

 property in some neighbourhood of x0, and let C(x,x0) = ( f(x)-f(x0 ) )/(x-x0 )

 for x * x0. We define the r- approximate upper right derivate

 (D+j-apf(x0)); the r-approximate lower right derivate (D+ j-apfiXo)); the
 r- approximate upper left derivate (D' j-apf( Xq ) ) ; the r-approximate lower
 left derivate (D. j-apf(xo))î ttìe r-approximate bilateral upper derivate

 fr-ap(xo))> r-approximate bilateral lower derivate (í'r-ap(xo)) as
 the corresponding extreme limits of C(x,x0) as x tends to x^. When all
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 of these derivates are equal and finite we call their common value the

 I -approximate derivative of f at x0 and denote it by f'j-api^o)-
 In [25] one can find a theorem saying that the approximate derivative (if

 it exists everywhere) is a selective derivative for some selection. In [18]

 we proved that for the I-approximate derivative the situation is similar.

 Theorem 34. If f:[0,l] - R has a finite J -approximate derivative

 f'j-ap(x) at all x e [0,1], then there exists a selection S such that
 sf'(x) = f'j.ap(x) for all x.

 This theorem at once becomes a powerful tool for proving several theorems .

 (Compare to [25], [26], [15] and [4], pp. 155-157.)

 Theorem 35. Suppose f: [0,1] - R has a finite /-approximate derivative

 f/-ap(x) f°r x € [0,1]. Then
 (a) There is a sequence of closed sets {EnłneN whose union is [0,1] such

 that f is continuous on each En relatively to En.

 (b) The function f has the Darboux property.

 (c) There is a dense open set U on which f is continuous.

 (d) The I-approximate derivative has the Darboux property.

 (e) The set of points of continuity of fj-ap(x) dense in [0,1] and
 f is defferentiable at any point of continuity of the I-approximate

 derivative .

 (f) f is differentiable for I-almost all x in [0,1].

 (g) The function f has an approximate derivative f'ap(x) for almost
 all x 6 [0,1] .

 Theorem 36. ([18]). Suppose f:[0,l] - R has an I-approximate

 derivative at all x e [0,1]. If a = inf (fj-ap(x)),
 x

 b = inf f(X^"y(y) y » c = sup (f'r-ap(x)), d = sup f(X¿.y(y) y , x*y y x x/y y

 then a = b and c = d.
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 Theorem 37. ([18]). Let f be an increasing function defined on [0,1].

 Then, for each x fi (0,1), D+f(Xo) = D+ j-apf(x0). The corresponding
 equalities for the other extremal derivates and extremal I -approximate

 derivates are also valid.

 Theorem 38. ([18]). Let f be increasing on an interval [0,1]. If f

 is I -approximately differentiable at x0 e (0,1), then f is differentiable

 at x and f'(x0) = f'i-ap(x0).

 Theorem 39. ([18]). If f is /-approximately differentiable on [0,1]

 and f'j.ap(x) > 0 for all x e [0,1], then f is nondecreasing on [0,1].

 Theorem ¿0. ([18]). Let f be I -approximately differentiable on [0,1]

 and let g be differentiable on [0,1]. If f'j.ap(x) ^ g'(x) for all
 x e [0,1], then f is differentiable on [0,1] and f'(x) = f'/-ap(x) for
 all x.

 Theorem 41 . ([18]). (Mean Value Theorem). If f is /-approximately

 differentiable on [0,1], then to each pair of numbers a,b e [0,1] there

 corresponds a number c between a . and b such that

 f(b)-f(a) _

 Theorem ¿2. ([18]). Suppose f:[0,l] - R has a finite /-approximate

 derivative at all x 6 [0,1] and a,b e R, a < b. If A =

 {x : a < f'j.ap(x) < b} * 0, then the Lebesgue measure of A is positive.

 The following general theorem on monotonicity (Compare to [4], p. 181.) is

 also in [18].

 Theorem ¿3 . Let f:[0,l] - R be Darboux and Baire one. Assume that

 (i) fj-ap(x) exists except on a denumerable set

 (ii) f'j,ap(x) ^ 0 almost everywhere.
 Then f is non -decreasing and continuous on [0,1].

 From the fact that the /-approximate derivative is equal to a selective
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 derivative it follows immediately that the /-approximate derivative is in the

 second Baire class. (See [15].) Recently it was shown that this result

 concerning the Baire class of the I -approximate derivative can be

 strengthened. Mrs. Lazarów has proved the following characterization of

 I -dispersion points ([16]).

 Theorem 44. . a point 0 is the dispersion point of the open set G if

 and only if for every natural number n there exists a natural number k and

 a real number S > 0 such that for each h e (0,8) and for each i e

 {l,...,n} there exist two natural numbers jr>Jt € {1, - . . »Ič} such that

 f(i-l)-k + jr-l (i-l)'k + jr i
 G n I n'k n*k ; J

 f (i-l)-k+jt (i-l)'k + jt-l h i
 Go L n-k n-k J

 Using this characterization she was able to prove that in Theorem 34. one

 can choose a balanced selection. From this fact the next theorem follows

 immediately (see [27]):

 Theorem ¿5. ([16]). Suppose f:[0,l] - R has a finite /-approximate

 derivative f'j.ap(x) at all x 6 [0,1]. Then f j-ap(x) is Baire class
 one .

 Recall once more that we still assumed that all sets under considerations

 have the Baire property or are Lebesgue measurable (with only one exception in

 Theorem 6). This is essential because if we consider the following

 conditions :

 1. 0 is an /-density point of some set B c a having the Baire

 property.

 2' X((n-A) n [-1,1]) n-œ 1-

 3. For each increasing sequence {tn}neN of positive real numbers

 tending to infinity there exists a subsequence {tf^Jm^N such

 that X... AV r ,

 ((trijn'A) AV n [-1.1] r , ) n-®
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 then for A € 5 all three conditions are equivalent. However, if

 A jí 5, then it can happen that each of them has a different meaning.

 (See [38].) (Observe that it is possible that a sequence of functions

 without the Baire property converges I- a.e. to a function having the

 Baire property). In the case of density points (in which case we must

 make natural changes in all above conditions) the situation is quite

 similar. Obviously we can define a topology for each kind of density

 (or I -density) described above, but the studies of properties of

 these topologies are in statu nascsendi.
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