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 Transformations of Functions

 For the present note, a transformation of a function f will

 mean a function of the form h c f where h is a homeomorphism

 from the reals to the reals. Clearly, some classes of functions

 are unchanged by transformations; such as C, A, (the

 classes of continuous, approximately continuous and Baire 1 Darboux

 functions). That, is, h ° f belongs to the class for each f in

 the class and each homeomorphism h . If P is a class of func-

 tions HP will denote {h ® f : f ( P and h is a homeomorphism}.

 Clearly, every g € HP can be transformed by a suitable homeomor-

 phism to a function f ( F .

 To date three non- trivial classes of functions have been

 characterized. They are:

 (in C) 1. HBV = HBVG* = = B2 [11
 (in C) 2. HAC = H Diff = HAGfi* - HS =• S' [6]

 (in A) 3. HA = Gs.a.c. [7]

 Here BV, AC, Diff, are the functions of bounded variation, abso-

 lutely continuous functions, and differentiate functions ("defined

 on a closed interval); the definitions of BVG*, ACG* , ACG and BVG

 are standard (cf. [9]). The remaining classes are defined as

 follows :
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 T^: f (i if I {y: f ^(y) is infinite }| = 0 .
 B2 - f * B2 if {y: f *(y) is finite} is c-dense in the

 range of f .

 S : f € S if for each p, > 0 there is a 6 > 0 so that

 |E|<fi implies |f(E) | < e .

 S': f ( S' if for each interval J in the range of f

 there is a 6 > 0 so that |E(<-ô implies J is not

 contained in f(E) .

 ^1' ^ € ^l ^or eac'1 ^nterva^ ^ the range of f
 there is a 6 > 0 so that 1E|«5 implies

 |J v. f (E) ļ > 0 .

 L : f ( L if every point x in the domain of f is a

 Lebesgue point of f .

 s.a.c. : f is s.a.c. on a set E provided that for each a -> 0
 ¡1 n (|f [>T ) I

 there is T >0 so that lim

 a X€l |I1
 each x e E . 1 1 ļ->0

 Gs.a.c.: f t Gs.a.c. if f is approximately continuous and

 every closed subset of the domain of f contains a

 portion on which f is strongly approximately con-

 tinuous (s.a.c.)

 Since every VBj function is equivalent to a Lebesgue

 integrable derivative under a suitable change of variables Ca

 theorem of Maximoff which has been given a clear proof by Preiss
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 in [8]), it follows that an investigation of what makes a func-

 tion a derivative must necessarily either look at properties which

 are invariant under transformations or examine properties which

 are neither invariant under transformations nor under changes of

 variables. The symbols bA, LA, and a will denote the classes

 of bounded derivatives, Lebesgue integrable derivatives and deriva-

 tives each defined on [0,1], It would be valuable to have charac-

 terizations of Hb A , H LA , and Ha within the class V Bj .

 For this purpose, the Den j oy- Clarkson property [5], Zahorski 's

 properties Mj and [11] for A and bA , and Weil's prop-
 erty Z are all invariant under transformations (Cf. also [4]).

 The purpose here will be to point out some of the anomalies and

 regularities of the three known classes (new observations which

 are of value in their own right) and to make comparisons to and

 observations of the class of transformations of derivatives.

 To begin at the beginning, Nina Bar)' in her investigation [1]

 of sums of compositions of absolutely continuous functions and sums

 of compositions of continuous functions of bounded variation came

 upon a characterization of continuous functions in HBV . She

 denoted this by B2 (defined above). It is clear that B2 is

 preserved by all transformations. To see that the property is

 right is a two step process. First, if f is continuous and

 satisfies ī>2 , then there is a homeomorphism so that
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 g = h o f € . This homeomorphism expands the set of points

 y where f *(y) is finite into a set of full measure in the

 range of f . Second, if g is continuous and satisfies ,

 there is an absolutely continuous homeomorphism h so that hog

 is of bounded variation. The function h is defined by

 h(y) = >,y 1/s (t) dt
 c ë

 where [c, d] is the range of g and

 s (y) = the cardinality of {x ļ f(x) = y}
 S

 The combined transformation of f to a continuous function of

 bounded variation involves a property of what homeomorphisms can

 do and a second 'mechanical' homeomorphism.

 A similar two step process is involved with the class HDiff.

 If f is continuous and satisfies S' , then f can be trans-

 formed to a Lipschitz function by a homeomorphism. This homeo-

 morphism is defined 'mechanically' in terms of f by

 (O if y = c where [c, d] is the range of f
 hjCy) - i

 [^inf (t : 3 E with f(E) d [c, y] and t. = ļ E | } .

 That g = h^ o f satisfies a Lipschitz condition with a single

 Lipschitz constant is a straightforward calculation using only

 that f is continuous. Then is defined so as to be differ-

 entiate and so that {y : b'2(y) = 0} contains the image under

 g of the set of points where g is not different iable. Since
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 this image set is of measure 0 , there are homeomorphisms with

 this property (cf. [11]). Since S' is HS', since S c S'

 and since a continuous function is in S iff it is of the form

 h ° f where h is a homeomorphism and both h and f are

 absolutely continuous (cf. [1] or [9] p. 296-289), the characteri-

 zation of HAC -S' is also established.

 Finally, in order that a function be transformed into L ,

 it is necessary that it be approximately continuous. The property

 G s.a.c. is preserved by transformations. Let E be the sets

 on which f is s.a.c. Then, for each natural number k there is

 a positive number T^OO and 6^ > 0 such that

 |I fi (|f|> Tn00)| ~ ļl ļ whenever x e I n En and ļl| < .

 Clearly, the T^(k) can be chosen such that Tn(k) ->■ « as

 k -* « . The functions Tn(k) give rise to 'mechanically' to

 homeomorphisms which transform each of the countable sets

 on which f is s.a.c. Specifically, if h(x) / x -«-0 as x -> <*>,

 and if h is an odd homeomorphism with h (T (k)) < k - 1 , for
 n n n

 k > 1 , h « hn transforms f to a function whose Lebesgue points

 contain En . Then f is transformed by a homeomorphism which

 is odd and eventually smaller than each of the homeomorphisms

 h o hn (cf. [7]).
 While HL is a subset of Ha , it is a particularly nice

 subset. Specifically, it is a uniformly closed algebra of
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 functions and if I = UE and f e HL on E then f í HL
 n n

 (cf. 7) .

 The class H Diff is not so nice. In fact, if f is de-

 fined to be a strictly increasing singular function from [0, Ì]

 to [0, 1] and is defined on [^, 1] by f(x) = 2 - 2x , then
 f can be transformed on either half of the interval (by its

 inverse) but. can not be transformed on the unit interval because

 it takes a set of measure 0 onto its range.

 It is tempt ing then to try to find a property or properties

 which guarantee that f can be transformed on the union of two or

 finitely many intervals whenever f can be transformed on each

 of them. If f € S on ^ and if, on 1^ , f € S^ , then

 f € S' on Iļ U I2 • Clearly, is necessary on I^ for

 transforming each function f on U 1 2 when f ( S on 1 2 •

 Define the property Sļ by "f satisfies Sļ iff for each
 interval J contained in the range of f , there is a 6 > 0

 so that |Eļ<5 implies |J'f(E)ļ > 6 . It is clear that Sļ
 is sufficient on I^ for a function satisfying S on I2 to be

 transformable on Ij U I 2 •

 Theorem 1. = Sļ (The proof is given at the end of the paper.)

 One can further play with this notion and define S , p é CO, 1)

 by f € S iff for each J contained in the range of f ,

 3 6 > 0 so that |E| < 6 implies |f(E) n J| < p |J| . If
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 f 6 Sp on and zp^ < 1 , then f ( S' on UI^ . Here we

 find ourselves 'driven back' to condition S . In fact,

 Theorem 2. S = (The proof is again given at the end of the

 paper.) Oddly enough, the same type of phenomenon occurs for

 continuous functions in B2 . This is a consequence of the

 following theorem:

 Theorem 3. If E is a dense Gg set in [c, d] with H = Ec
 also dense, then there is a continuous f : [0, 1] onto [c, d]

 such that {y : f * (y) i¿ perfect o E and, except for an at

 most countable set of points of H , f * (y) is finite for y ç H .

 (The proof is again deferred.)

 Thus, it is possible to define a function f which is on

 I^ and on but not on I^ U ^ • For example, let E^ be
 a G subset of [0, 11 of measure 1 whose complement is c- dense

 6

 and E2 be a Gg subset of measure 0 containing E^ . Define

 f on I^ and I2 = Ij U I 4 so that f ^ (y) has uncountably

 many preimages in IļCl^ for each y € (E2) and f is

 linear on I3 and continuous on U ^ ■ If f *(y) is

 finite in Ij (I4) at all but an at most countable set of points

 of E^CE^) , then f ś B2 on 1^ and but. not on 1^ U I2 •

 It turns out that the class Ha and, in fact, the class

 HbA exhibit the same type of phenomena; namely, there are func-
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 tions in Hb A on and on ^ which are not in HbA on

 u 1 2 - It is possible to use Bruckner's 'inflexible derivatives'

 (cf. [2] or [3]) to show this. (This can be done by transforming

 an inflexible derivative at 0 = f(0) on [0, ^0 = Ij with a
 homeomorphism h which is not symmetric in any internal containing

 the origin (with h(0) = 0) . If the transformed function is then

 extended on [y, 1] = ^ to a inflexible derivative at 1 , the

 resulting function will not be transformable on 1^ U ^ even

 though it is on and on ^ .) However, the following example

 is simpler and will also be used to illuminate HbA later.

 Example 1. There exists f on [0, 1] such that f € HbA on

 each interval [0, 1- e ] and [e, 1] but f £ Hb¿ on [0, 1] .

 Construction. Í0 if x = 0 , or 1

 Let g(x) = ^ 1 if X = ì or

 k1 if
 and extend g linearly on the intervals between these points.

 On [0, i] , let f(x) = g(n (n+l)(x - i)) for x e [^, ¿]

 n > 1 . Let f(0) = 0 and on (y, 1) let f(x) = -f(l-x) .
 Pictorially speaking, f has two upward saw teeth for each

 downward one on [0, and the reverse on [y, 1] . It is

 easy to check that * x ^ x > g
 h, (x) = i
 1 l2x if x < 0
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 transforms f on [0, 1-e] and that

 { 2x X if if X X > < 0 0
 transforms f

 2x if X > 0

 on [e,. 1] .

 Let h be any homeomorphism with h CO) = 0 . Then

 fl/v i A ® if®
 j n(loc) dx = i ^ h(x) dx and ļ h(kx) dx = ^ ļ _1 h(x) dx . " ¥ _1
 Suppose that h » f ( ļ . Then on I = [0, - ] .

 n n

 n h ° f " § h ł T Lļ h and 0n I'n = [1" ïï' 11
 n

 n' h » f = i ļ h + ļ ļ h. Thus if as n -* <» ,
 JV J0 J-1

 n

 ( f1 1 f°
 n ' h o f -»■ 0 , then ' h = - -=■ ¿ ' h . Consequently as I J0 ¿ J-1

 n

 f f ®
 n -► » , n ' h°f=-' h does not approach 0 . Since

 r„ '-1
 there is no loss in assuming that h(0) = 0 , if h ° f is a

 derivative at 0, it is not a derivative at 1 .

 Note that all of the associated sets of f are sets. (HbA

 cannot be characterized by associated sets). Further, if
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 Í(1 fCx) + h if f (x) x if e ķ, X 1] e [O, , ¿] 2
 2

 fCx) if x e ķ, 1] , Then

 each fn £ HbA and f -> f uniformly. Thus, while a is closed

 under uniform limits, HbA is not. However, if f f HbA and

 c(x) is a bounded approximately continuous function which is

 0 at each point x where f is not approximately continuous,

 then f(x) + c (x) e HbA . In fact the same homeomorphism h

 which transforms f(x) transforms f(x) + cCx) . This is

 because

 ^ h(f(xļ + c(x)) dx _ j h(f(x)) + ^ h(ffx)) ♦ c(x)) - h(fÇx))
 I |I| I |I| I |I|

 and the last term tends to 0 as I -* x at each x where
 0 o

 c(xQ) = 0 , due to the uniform continuity of h .

 At all other points f(x) + c(x) is approximately continuous and

 hence h(f(x) + c(x)) is the derivative of its integral.

 The f(x) in example 1 is not in HbA , but the proof

 relies heavily on the triangular character of the graph of f

 and the equal heights of the triangles. Thus it is not clear as

 to whether a function slightly different from f might be in

 HbA . A principle for distinguishing is given below. It is

 based on a very simple fact; namely, if hj(x) > l^Cx) on an

 interval I and h, (x) >h0(x) on a set of positive measure of

 1 , then given any homeomorphism h, J h ° h, > J h ° h? ¿ . 1 I ¿
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 This is, of course, because equality would imply that

 h ° h^ = h » a. e.
 Given any g measurable and defined on [0, 1], let

 ga(x) = sup {y : 1 (g > y) | > x> . (This follows [9, p. 1441)

 Given any f measurable and defined on I = [a, b] , let

 gjCx) = f(t) if X = (t-a)/(b-a) . Let hj(x) = gja(x) .
 Note that ga(x) is a nondecreasing function which is

 'equimeasurable' with g(x) ; i.e., ļ (ga < y) ļ = |(g< y) ļ
 f1 f1

 Thus ' ga(x) dx = ' g(x) dx . Note further that if f is
 ;0 J0

 Lebesgue integrable, then for each interval I

 ' íSll dt = ' gT(x) 1 dx = ' hT(x) 1 dx I |I| J0 1 J0 1

 where hj(x) is non -decrea sing on [0, 11 . Then for homeomor-

 phisms h which preserve the Lebesgue integrability of f ,

 * 5 h ° dt = í1 h o h (x) dx .
 I 1 1 ļ J0 1

 This gives rise to the following criteria for determining that a

 function f ¿ HLa . (These criteria work e.g. on f of

 example 1.)

 1. If there are two sequences of intervals I and J so that
 n n

 Xn "* xo » Jn X1 ' f(xo} = f(-xl-) ^o my equal V

 such that hj > h, and if there is a set E with |E| ? 0
 n n
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 on which h j > hj , then f can not be transformed. (This
 n n

 is because of the 'simple' principle and the relationship*)

 2. If there are two sequences of intervals I and J so that
 n n

 In xQ , Jn -»■ Xj , f(x ) = fCxj) such that hj > h. and
 n n

 if there is an e > 0 and sets E with |E | > e on
 n n

 which h, - hj + f. , then f can not be transformed,
 n n

 (This is because | E | 5 e where E = lim E . Then 1
 n

 applies for a subsequence of the hj .)
 n

 3. If there is a sequence of intervals In and for each I
 a sequence n J with I -v x , ' J -* x and n nm n o , ' nm m

 f(x ) = f(x0) f°r m 3^ hj > h» for all m and
 n nm

 n and there is an e > 0 so that for all n and m there

 is a set E m so that hT > h, + e on E , ' then f nm m I cJ nm , '
 n nm

 cannot be transformed (for similar reasons).

 4. If there are sequences n I and J with I -»■ x^ , J -> x, n n n n o , n 1

 and f(x ) > f(x,) and hT <hT , then f cannot, be
 n n

 transformed.

 (This is because to transform such an f consists of finding

 an increasing homeomorphism h such that

 ^ ° ^ -> h(f(x )) and ^ h 0 f ^ h(f(x )) .
 i li 1 n1 I 0 r n 1 ijj n1 n 1 n1 n 1 n1
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 5 Łtl = ļ', J° hj < f J° h . hj - ' àJ-£ .) rn "ni J° hj n J° hj " J„ U„l
 It is not known to the author whether these principles characterize

 the bounded V functions which satisfy the Den j oy - Clarkson

 Property and have associated sets in class M ^ but cannot be

 transformed into bounded derivatives. The principles have the

 property that they are preserved under transformations and can

 fail to hold on two intervals 1^ and I 2 while holding on

 Ij U I? . It would be interesting to see a function for which

 the principles do not suffice.

 Proofs of Theorems 1, 2, and 3.

 1. Clearly S'^ implies . Suppose holds and S'^
 does not. Then there is an interval J contained in the

 range of f and 0 > 0 so that f does not take any set

 E with IE I < 6 onto almost all of J . There are also
 ' 1 o

 sets E with |E 1 I < ñ =6 • 2 n such that n 1 n1 n o

 I J 'f(En)| < 5n • But then E = UEn satisfies ļ E ļ < ßQ •
 However |J'f(E)ļ = 0 , a contradiction.

 2. Clearly S c . Suppose there is a continuous f ç S S .

 Let e. > 0 be given and suppose 3 with [E^ļ <2 n and

 |f(En)| - s. Since f is continuous, the sets f (E^) and

 En can be chosen to be compact. Letting
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 B = lim f (E " ) , |B¡ > e and, if A = U E, , B c f(A ) " ri K n
 n

 for each natural number n . Let G be an open set with

 G d B and with ļB ļ > p |G ļ . Then there is a component

 interval J of G such that |B n Jļ > p |J| . But. then

 jfCA^) n J| > p |J| for each n and since ļAnļ •-> 0 ,
 this contradicts the fact that f ç S .

 P

 3. Given a rectangle R = [a, b] x [c, d] and an open set

 G c [c, d] let fR (a) . c , fR = d , fR (2^) - c

 fR (b) - d , gR (a) - d , gR (^§Ą = c , gR (S^2b) = d ,

 gj^ (b) = c and define f^ and linearly between these
 points. Let afR, I, G) and a' (R, I, G) consist of the

 graph of f^ (resp. along with all points belonging to

 rectangles I x J where J c G and f^CI) = J (resp.

 gß[I] = J)- If E is a Gß subset of [c, d] , let Gn
 be a decreasing sequence of open sets with E = nG . For

 R1 = [0, 1] x [c, d] , let E1 = aCRx , [0, 1] , Gj) .

 Replace each rectangle R in with either a(R, I, G2)

 or a' CR» I > G2) , where R = I x J , in such a fashion that

 the resulting set E2 is connected. Continuing this from

 the rectangles of En to form the set E^+j results in a

 sequence of closed sets E^ whose intersection is the graph
 of a continuous function. It is observable from this
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 construction that if x € F = G and x is not an end point 1 of n n 1

 a component interval of G , then f *(f(x)) consists of no more

 than 3n points. For all x in fìGn , f *(f(x)) is a perfect
 set. Thus f satisfies the conclusion of the theorem.
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