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 SOME APPLICATIONS OF PARTITIONING COVERS.

 P.S. BULLEN

 1 » Basic Ideas

 Let I =» [a, b] be a compact interval and let 5 be the set of all
 o o

 closed sub-intervals of I •
 o

 A finite subset of H * I , tt = {(I., x.), 1 < j < n} say, is called a
 "'o o 3 3

 n o o

 PARTITION of [J provided I 3 . /1 I = $, 1 < j * k < n .
 3 / /

 Suppose that with all x e I we have associated an j £ Y such that the
 O ¿V ^ X 4/ o

 collection T = {l; I e , x z I } covers I then 4f is called a COVER OF v x , o o ^

 I .
 o **

 A cover ^ is said to be PARTITIONING, or a PARTITIONING COVER, iff

 VI tĻ Wť ^partition tt = {(I., x.), 1 < j < n), of I for which I. e , J o Wť 3 jť 11
 'i < j < n; then tt is called an J -PARTITION of I.

 2t Examples and an Elementary Lemma.

 2.1 If 6 e Rř 6 > 0 and Vx e I , j = {l ; x z I, III < o, I zj " }, then V o , * x " o

 we write %-i and call this the UNIFORM COVER of I^. ^¿is obviously

 partitioning and a /¿-partition of [c, d] zj w can be written tt = (a , w o o

 . . . , a ; x , . . x ) where c = a <a < . . . < a = d, a, < x. < a. ,
 n 1 n o 1 n i-1 i i

 a - a < ô# 1 < i < n.
 i i-1

 This note owes much to many discussions with Dr. John Upton of the Department
 of Mathematics, University of Melbourne, and was written while the author was
 visiting research fellow in the department.
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 2.2 If 6: I R, 6 > 0 and Vx e I , Y = (i; x e I, 'il III < 6(x), O J" O , •'X 'il
 ICY}, then we write and call this the ORDINARY-COVER of I . A
 Jo o

 simple compactness argument shows that^^ is partitioning; (see Thomson

 [9,10].) An¿^-partition of [c, d] z£0 can written as is the bi-

 partition in 2.1 except that now we require that, a, - a. ļ < Ô(x^),
 1 < i < n.

 Remarks (1): Both ^^and would be better described as and^^
 respectively as they are completely determined once 6 is given.

 Sometimes this is expressed by saying that ^^or is ¿-FINE. Similar

 comments apply to later examples.

 2.3 If E CI , then the LOWER INNER RIGHT DENSITY of E at x is
 o

 + ¡E Ą [x, u] |#
 p. * (E, x) = liminf - * „ u - x

 u-*-x+ „

 Here ļ E ļ A denotes the inner Lebesgue measure of E). In a similar way we

 can define ~£#(E, x), the LOWER INNER LEFT DENSITY of E at x.

 Suppose that with all x e I we associate a set A^ with

 _P*(Ax, x) > X, +.£*(AX' > p' with obvious modifications if x = a or x
 = b. For this to be meaningful we clearly require 0 < p, X < 1; it is

 extended to allow p and, or, X to be 1, by then requiring the respective

 densities to be equal to 1 .

 Now Vx e I let y = (tu, v] ; u < x < v, u, v e A , [u, v] e y }
 o » x x * o
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 and then J' = (P, X) is called the ( p, M-DENSITY COVER of Iq. A

 category argument shows that if p + A >1, then ( p, X)-^ is

 partitioning; (see Thomson, [9, 10].) A ( p, ^)-Jr partition of [c, d] e

 if
 can be wrxtten as xn 2.1 except that now we require tht a^

 Sí , ^ A ę 1 ^ 1 ^ n«
 1 X,

 1

 The special partitioning covers (1, and {Ļ are called the
 APPROXIMATE, and PREPONDERANT COVERS, respectively. We will write

 Qf= d, n-$ ór = (i '

 2.4 Suppose that with x e we associate a filter ^ that converges
 to x. Then Vx e I let 4* = {[u, v]; u < x < v, u, v e F, F
 * OX X

 [u# v] e^Q}- Putting $ ~ J we 9et a FILTER COVER of Iq.

 Particular choices of x e 1^} give the previous two examples.

 General properties of the filters ^ 9 x e can be given that will

 imply that ^ is partitioning; (see Thomson [9].)

 2.5 If in, 2.2 we define = ÍI; I C lx - <5(x), x + 6(x) [, I e

 then $ -v is called the SHARP COVER of I ^ As for it is easily seen

 that 4^ is partitioning, and an^-partition of [c, d] can ^
 written as in 2*2 except that now we require

 [a, , a.lClx. - 6(x.), x. + 6(x.)[, 1 < i < n.
 i-i ii ii i

 2.6 If T r then j is said to be (a) ADDITIVE iff whep [c, d] and

 3 T £ r then j is said to be l (a) ADDITIVE Z iff whep t
 [d, e] are in j this implies te, e] E J ; (b) J -LOCAL, J a cover of
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 I , (as in 1.), iff X e i ,j C ~f .
 O O X v

 The usefulness of partitioning covers is in part due to the

 following very simple lenuna#

 v

 Lemma • If Ho is both additive and local for some partitioning cover

 I , then ļ v « # f # o , v # o

 3# Some Simple Applications

 3.1 (Darboux Properties)» If f: continuous and never zero,

 let » {[u, v); [u, v] tif0 and f(u)f(v) > 0 }• Clearly f is additive
 and the hypotheses on f imply £ is local. Hence by the lemma

 i.e. ¥u, v, a < u < v < b, f(u)f(v) > 0, which is equivalent to saying

 that f is Darboux#

 If we had only assumed f to be approximately continuous ,

 preponderatly continuous, or even just ( p, X) -continuous, p + X > 1,

 then $ would have been local, respectively and so

 again, by the lemma, i-i , and f is Darboux.

 3.2 (Bolzano-Weiers trass Theorem). Let AC I , A' = and put
 o

 ^ = {ij I zýQ an<i I/ļ A is finite}. Obviously j i s additive and
 local; in fact, |/x e I > 0 such that if x e I, ļlļ < 6(x), ánd

 if I , then either I^A = $ or I/^A = {x}. Hence, by the lemma

 f-L and so, in particular, A ® A ^ 1^ is finite#
 3.3 (Heine-Borei Theorem)# Let {g} be an open cover of I and define

 o
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 ^ a il j I c £ and ß finite subset of (g) that covers l). £ is

 additive and^-local; in fact Kx e I ^ G e {g} with x e G and so ^

 ô(x) > 0 such that I etf , xci and ļl| < 6(x) implies I¿G. Hence by

 the lemma and so, in particular, IQ can be covered by a finite
 subset of {g}.

 3.4 (A weak Vitali Theorem). Let be an ordinary full cover of I ,
 O

 and let £= {is I e^x» * e <fcan be thought of as an
 ordinary full cover of E.

 J «»
 Given e > 0 let I ef , n = 1, 2, 3, ..., E^(/l and

 n v o n
 n=1

 CO / 00 4
 y L 1 ' 1 I < 1 I E 1 I * + e; further let J t j, n » 1, 2, ..., I ~ E £ (V J L ' n' 1 1 n ¿o j, ..., o v' n
 n=1 n=1
 œ oo

 and I I J ļ < J I - e|* + e; then I |jR| < b - a - (e^ + e.
 n*1 n=1

 We now define another full cover^' of Iq as follows:

 if x e E, t ' = il? I e Ļ and I ¿1 I for some n}; (0) J x vx n

 if x 1. E,y*x * {lj I e^0r * c I and Jn for some n).
 Let it » (a , a ; x. , ..., x ) be an ^'-partition ^ of I : then o , n 1 n ^ o

 n

 b - a - J (a - a > = I (a - a > ♦ J (a - a >,
 1=1 i ea ICE

 where
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 A = (i; ce) and B = {i; € e}.

 Clearly, on the one hand

 CO

 I (ai - Ví* * I I1«! < Ie I* + e'
 i £A n-1

 and on the other hand,

 CO

 I (a. -a. ) = (b - a) - £ (a. - a ) > (b - a) - £ Ł (j ' | > |e|. ' * - e. . X 1-1 . i 1-1 Ł ' n ' *
 leA . i eB n=1

 Thus given any E CLl^t e > 0 and any full cover £of E then £
 o o

 contains a finite subset I , I with I /%!. ' = $, 1 < k * j < n,
 i n k ' [ j

 such that

 n

 N*- e < I ¡I K J < I E I * + e. (1 ) k=l K

 3.5 (Integrals) Let f: I ♦ R, then we say that f is (/^INTEGRABLE on I ,
 O o

 with //-INTEGRAL EQUAL TO c iff j/e > 0 5 5í I + R, 6 > 0 such that (/ó-
 ñ O

 fine ^»partitions ñ (i.e. v£^-partitions, see Remark 1) of 1^,
 ti s (a r «•*, a ; x . • »., x ), we have that

 o n 1 n
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 n

 I I f(xi)ai- a^) - c| < e.
 i=1

 In a similar way we can define^-, ( p, + ^ and
 INTEGRALS. Each of the integrals defined this way is a well known

 classical integral: (a) the ^-integral is the Riemann integral; (b)

 the integral is the Perron integral; (c) the {/-integral is the

 Lebesgue integral; (d) while the ( p, X)-^-integral appears to be new,
 special cases are well known; the $>-integral is the Burkill

 r Ď
 approximatley continuous Perron integral, and the »/"-integral is the

 preponderantly continuous Perron integral of Izumij (see Bullen [2),

 Burkill [1], Henstock (3, 4], Izumi (6), Pfeffer [7] and Thomson [9,

 101.)

 The elementary properties of all of these integrals follow by

 simple modifications of the elementary procedures used for the Riemann

 integral. In all cases except the ^-integral, (1) implies that if

 |e| «=0 and 1 (x) « 1, x e E and 1 (x) = 0, x CE, then 1 is integrable
 £ E £

 to 0, and so the extension of the definitions to finite almost

 everywhere, or even to defined almost everywhere functions, is fairly

 straightforward.

 There is no particular difficulty in extending the above definition

 to obtain Stielt jes' integrals; (see in particular the above references

 Henstock, Pfeffer and Thomson.)
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 4. Monotonicity Theorems

 4.1 The lemma above can be used to prove the following elementary

 monotonicity theorem.

 Leruns 1 . Let F: I + R be such that DF > 0, then F is increasing.
 o

 Proof s

 Given e > 0 let^= {[u, v); a < u < v < b and F(v) - F(u) > - e(v - u) }.

 Clearly ^is additive and Q- local and so f-i ; e being arbitrary the
 result is immediate.

 4.2 The object of this section is to see how Lemma 1 can be

 generalised. Simple examples show that if DF(x) > 0 fails to hold at

 one point, the result can be false; in the above proof this is because

 Ì fails be Ř J fails to be (/¿-local at that point. We will consider various

 hypotheses that will allow us to define an ^ that is^^local# For

 simplicity we will assume that the point c at which DF(x) < 0 is neither

 a nor b; the cases c = a, c « b are easily considered.

 Lemma 2. If F: I + R is such that DF(x) > 0, x * c and
 o

 limsup F(c-h) < F (c) <F(c) < liminf F(c + h),
 ķ-K)+ h+0+

 then F is increasing.

 Proof: Given e > 0 we define y , x e I , as follows:
 w X O
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 X * c:

 = ítu, v]; a<u<x<v<b, and F(v) - F(u) > - e(v - u) }; (2)

 T = {[u, v];a<u<if<v<b, and F(v) - F(u) > - e}.
 / /ń

 Clearly^« (i; I / , x U } is an ¿/-full /ń cover of I . Let

 it = (aQ, . .., an^/-partition of [u, vj (3)
 n

 Then F(v) - F(u) = £ F(a.) - F(a. ..)
 i- 1 1 Ł"

 - ( I + I 3(FC« ) - F(a )) (4)
 ieA i£B - ^ /

 where A =» (i? ^ * c) and B = (i; *1 « c}. (S A/ļf
 Hence F(v) - F(u) > - e ] (a. - a. „ ) - e (5)

 • ^ 1 1-1 „ 1 • £A

 > - e(b - a) - c

 which, since e > 0 is arbitrary, gives the result.

 The result can easily be extended as follows. (Let n.e. stand for

 nearly everywhere, that is, except on a countable set.)

 Lemma 2'. Let F: I + R be such that
 o

 (a) DF > 0 n.e.

 (b) Vx e i limsup F(x - h) < F(x) < liminf F(x + h)? then F is
 ^ h-K)+ h "K)+

 increasing.

 Proof: If c^, n = 1, 2 ... denotes the countable exceptional set in
 (a), then ifx*c,n=1, 2...f is given by J (2), while if x = c V n tfx J n'c

 n

 *•£
 is given as in (2) except that -e is replaced by - , then the proof

 2n

 proceeds as above.
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 4.3 A different kind of generalisation of Lemma 1 is given by:

 Lemma 3« If F: I * R is such that DF(x) >0, x * c and DF(c) > - <*>
 Ö -

 then P is increasing.

 Proof: Proceed as in the proof of lemma 2 up to the definition of

 Since DF(c) > there is an n e N such that DF(c) > - n. Define

 £ « {[u, v] ; a<u<X<v*b, v - u < - and F(v) - F(u) > -n(v - u) }.
 c n

 ^ jj
 Then, as in lemma 2, ^ is an (J-tull jj cover. Let Tf be as in (3) when
 F(v) - F{u) is given as in (4). Hence

 F(v) - P(u) > - e £ (a. - a ) - n ' (a. - a. .) (6) , x 1-1 . ÍL i 1-1
 i , CA 1 . EB

 > - e(b - a) - e

 which completes the proof.

 Because of the significant difference between (5) and (6) the

 extension of lemma 3 to lemma 3' is very different from that of lemma 2

 to lemma 2 ' •

 Lemma 3*. Let P: I + R be such thta (a) DF > 0 a.e.
 o -

 (b) DF >

 then F is increasing.

 Proof: Define E by
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 E = ix? DF(x) < 0}, (7)

 Then |e| = 0. Given t > 0 if x ^ E we again define f as in (2).
 Now let n e N, and (a) define E = {x; -n + 1 > DF(x) > -n} and

 n -

 (b) cover E by an open r set G , Ig 1 I < - - • If x e E then let r n , 1 n' _n • n
 n2

 J « {[u, v] ; a < u < x < v < b, (u, v] £ G , and F(v) - F(u) > -n(v-u)}.
 x n

 /V

 Clearly, given the hypotheses J is an^full cover and if tt is as in

 (3),

 09

 F(v) - F(u) ■ I F(a Ł . ) - *(«..> 1 *11 P<a.) 1 - F(a._ 1 > i €A Ł 1 n=1 i£B 1 1
 n

 where

 A = ii; X. EE), B = {i; x. € E }, n e N.
 i n in

 Then

 00

 F(v) - F(u) > - e £ (a. 1 - a._ ) - I n I (a. 1 - a 1 ) i €A 1 n*1 i eB 1 1
 n
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 00

 > - e (b - a) - 5 n - - - = -e(b - a) - e,
 « «n

 n«1 « n2

 and the lemma is proved.

 4.4. Since the definition of an ^cover is a local one, the arguments

 used to prove lemmas 2 ' and 3 ' can be combined to prove

 Theorem 1: If F: I + R is such that (a) DF > 0 a.e., (b) DF > n.e.,
 o - -

 (c) limsup F(x - h) < F(x) < liminf F(x + h) for x e I ,
 h "K)+ h"K)+

 then F is increasing.

 4.5 Since the use of ( p, ')-$ full covers, p + X > 1, makes no

 difference to the above arguments, various non-trivial generalisations

 of Theorem 1 are immediate. For instance,

 Theorem 1 * s If Ft I ♦ R is such that
 o

 (a) ap - DF > 0 a.e.

 (b) ap - DF > -œ n.e.,

 (c) ap - limsup F(x - h) < Fix) < ap - liminf F(x + h), x el ,
 h-K)+ h+0+ °

 then F is increasing.

 A similar result using preponderant lower derivatives in (a) and

 (b), and preponderant limits on (c), or even just ( p, X)-limits and

 derivatives, p + X > 1, is readily written down.
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 4» 6 The various generalisations of lemma 1 can be considered as being

 conditions holding on an exceptional set that make the second term on

 the right hand side of (4) small, or more precisely not very negative.

 There is another way of doing this that leads to another type of

 mono toni city theorem e

 Lemma 4» Let Ft I + R be AC and such that DF > 0 a«e.# then F is
 o - -

 increasing.

 Proof: Given e > 0, let E be as in (7) and if x ^ E def ine as in

 (2).

 Since F is A C, > 0 such tht T < b^ < a^ ••• < b^ , with

 n n, /f
 I (b ~ a ) < 6 we have £ F(b. ) - F(a, ) > -e. Let I zp * , 4 k k . k k n * o , k-1 4 . k«1

 » CO i

 n = 1, 2 . E Ś (J I n and ' ļl I < 6. If x e E, define^ X as in n=1 n n-1 X

 f J"
 is an $-full cover. Let it be an v> -partition as in (3): then if

 A » {i; E} and B » (i; x^ e E>,

 F( v) - F(u) - { I + I ) (f ( a . ) - P(a, ))
 i EA i e3 1 1

 > -e I (a. - a. , ) - e
 • « * 1-1 , ' « EA
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 > - e(b - /) - e

 and the lemma is proved.

 Lemma 4' s Let F: I + R be such that F is continuous, DF(x) > 0, x e E,
 o -

 I E I =0 and F is AC^ on E, then F is increasing.

 Proof: First note that since F is continuous, then F is actually AC on

 ¥; (see for instance Saks [8, p. 22].)

 Proceed exactly as in Lemma 4 and consider the [a^ a^], i e B»
 Then x. EE, a. . < x, < a.. Put a. ^ = inf Ï /* [a. „ , a.], i 1-1 . i i i-I ^ ' ' 1-1 „ , i

 a. = s up r E [a. „ , a . ] . i r 1-1 „ , i .

 By lemma 2' F is increasing an [a. Ä , a, „ ] • Hence 1-1 Ä , 1-1 „

 £ F(a . ) - F(a. ) > ][ F( a. ) - F(a.) > - £, . ^ i . 1-1 . ^ i-i i i . GB ^ i . 63 ^

 as in lemma 4. This is sufficient to prove the lemma*

 Theorem 2: If F: I * R is continuous and ACG and if DF > 0 a.e. then F
 o

 is increasing.

 CO

 Proofs I = Lj A and in each A F is AC. There is no loss in
 o ^ n n -

 n=1
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 generality in assuming Ar ^ A^ = n * m. Let E^ = E ^ Ar,
 n * 1 , 2, . . . , where E is given by ( 7 ) .

 Since P is AC on Ē f T i such that V a, < b, < aÄ < ... < b , - n f •/ n 112 ... m
 m m

 points of E with ļ (b - a ) < 6 , we have £ (F(b ) - F(a )) > - .
 n k»1 K K n ic=1 h 2n
 Ê to »

 Let I ey, ni « 1, 2, ♦ E L/ I and T II 1 I < 6 • mvo ♦ n « m « 1 m* n
 m=1 « m=1 «

 If X e E , define Y as in (0).
 n vx

 Proceeding as in lemma 4 the second term, summing over i e B,

 becomes

 I I (fU ) - F(a .))» B - Uî X e E }
 n ics X 1-1 n in

 n

 and the argument of lemma 4* completes the proof.

 4.7 The remarks of 4.5 apply here except that unless F is continuous we

 cannot now say in the proof of Theorem 2 that F is AC^ on 13 unless we

 assume each A^ is closed. This can be done by replacing ACG by [ACG].

 Theorem 2' s If Fs I + R is approximately continuous and [ACG] ' and if
 O '

 ap -DF > 0 a#e* then F is increasing»

 A similar result using preponderant lower derivatives and
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 preponderant continuity, or even the more general ( p, X)-concepts with

 p + ' > 1 , is easily written down.

 5. It is well known that if F: I + R is of bounded variation, then F1
 o

 exists a.e., and is L~integrable, but that F is not necessarily an L-

 primitive of F1. If however F1 exists everywhere, then F is in fact

 absolutely continuous, and F is therefore an L-primitive of F. This

 result, due to Lebesgue, can be found in Hobson, [5, p. 549]. A simple

 way of seeing this is to note that in this case F1 is Perron integrable

 and so F is ACG* and continuous. An L-primitive of F' is also ACG* and

 continuous (being of course absolutely continuous). Two continuous ACG*

 functions having the same derivative, F*, a.e. differ by a constant and

 so F is an L-primitive of F1.

 The purpose of this section is to give a simple direct proof of

 this result.

 Theorem 3: If F: I + R is such that F1 is finite and L-integrable,
 o

 then F is absolutely continuous.

 Proof: Given e > 0 choose c e R, n e Z, such that:
 n

 (i) 0 < c - c < e, n ez,
 n-ri n

 (ii) lim c = -lim c = -
 n*-® n it*" n

 (iii) if E = ix; c < F'(x) < c }, then
 n n n+1

 554



 |/Vl - I Ici |E |ļ < E»
 a nez

 Now choose e > 0, n e z, such that / e le I < e, and
 n „ nł n1

 ! nez „
 Ik e Y , n e Z, k = 1, 2, ... such that E C Lpl*, and T tlk| 1 < Ie 1 I + n vo , ... n n Z' 1 n' 1 n1

 k k

 e .
 n

 Consider the family

 ý » {[u, v]; a < u < v < b, ļcn I - e < |F(vļ ~ F(u) ļ < ļcn ļ + e,

 [u, v] , n e Z, k » 1, 2 ...}.
 n

 Then £ is an^-cover and suppose n, as in (3), is an^-partition of
 k k

 [a, b]. Let A = {i; x. ei }, n e Z, k = 1, 2, . .., then
 n x n

 |F(b) - P(a)|< I I |F(a.) - F(a )ļ
 n,k i EA

 n

 « n,k I îeA '' ('Cn' * tHV "i-ť n,k îeA
 n

 < I I |c I |lN ♦ C(b - .)
 A k
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 b

 < / |f'| + e(2 + b - a)
 a

 Since in this argument [a, b] can be replaced by any [c, d] £ [a, b]

 this suffices to prove the theorem.

 Corollary 31: If F is of bounded variation and F1 exists everywhere,

 X

 then F(x) - F(a) = L - / F'.
 a

 The proof of the above theorem and corollary remains essentially

 the same if we assume F' exists, or even that Fł exists.
 ap pr

 6. As we have seen the proofs of Theorems 1-3 are both simple and

 easily extended to any general derivative which defines a partitioning

 cover, such as the approximate or preponderant derivatives. However

 similar results for unilateral derivatives (Theorems 1 and 2), or upper

 and lower derivatives, unilateral or bilateral, (Theorem 3) cannot be

 obtained by our method as the associated full covers are not

 partitioning? (see Thomson [9, 10].
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