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 §1. Introduction. The notion of set porosity has, in recent years,

 found a renewed application to certain problems in the differenti-

 ation theory of real functions. As a local concept it arose origin-

 ally in the work of Denjoy some sixty years ago but attracted little

 notice until the introduction of the notion of o-porosity by

 Dolzenko in 1967. Since then these ideas have been applied in a

 number of investigations.

 Globally the concept provides a class of exceptional sets (the

 o-porous sets, the o-(tjj)-porous sets) that permits a refinement

 in many cases of the notion of a first category set. Locally,

 porosity can be used to provide certain insights into the differen-

 tiability behaviour of real functions.
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 In this article we explore some of the applications of porosity

 in differentiation theory. Most of the results follow directly from

 the elementary porosity estimates that are made in section 2. To

 describe the results in the most immediate language we have chosen

 to introduce the notion of a "porosity derivative", which is a

 generalized derivation much like approximate derivation but using

 porosity requirements rather than density requirements. Each of

 the results presented attempts to show how it is that some infor-

 mation about the porosity derivatives of a function may give rise

 to information about the ordinary deri vates.

 The language is rather technical and so it would seem appro-

 priate to illustrate the ideas with some preliminary comments.

 Suppose that a continuous function f and a positive number M

 are given, and that the sets

 Ex - [y : ļ ļ SH,y*x]
 are constructed at each point x. If each of these sets Ex contains

 a sequence converging to x, then one can assert, at most, that the

 function f has a derived number at each point x whose value is in

 the interval

 This does not give much information about the function f. Pre-

 sumably if more information about the sets Ex is available, then

 greater knowledge of the behaviour of the function may be deduced.

 For example at the extreme case if each set Ex is a (deleted)

 neighborhood of x, then it is easy to prove that the function

 f satisfies a Lipschitz condition

 I f(x) - f(y) I Ś M |x - y I .
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 If however one is told less, say that each set E has upper

 density 1 at x, then the function may still be quite i 11 -behaved;

 for example this may occur at almost every point x and yet f

 may fail to have an approximate derivative at any point.

 There is some information which, at first sight, may appear

 marginal and yet from which some reasonable behaviour of the function

 f may be deduced. If each set E contains on one side or the

 other at x a sequence of points {xn) that converges to x but
 not too quickly, i.e. so that

 then there must be a dense open set G so that f is differen-

 tiate almost everywhere on G. In the language of set porosity

 this sequence is required to have porosity less than 1; in the

 language of porosity derivatives the function f is required to

 have a certain type of derivative that assumes its values in the

 interval [-M,M]. (See Theorem (5.3) ff . )

 It is concerns of this nature that arise in the article. In

 each case information about the deri vates of a function is obtained

 from some porosity computation, which may always be reduced to

 assertions about derived numbers taken relative to certain slowly

 converging sequences.

 §2. Porosity Computations. We give the necessary definitions of

 the porosity notions that we require.

 (2.1) DEFINITION. Let E be any set of real numbers and let

 a < b. By '(E,a,b) we denote the length of the largest sub-
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 interval of (asb) that is complementary to the set E. Then the

 two porosities (left and right) of E at a point x are defined

 as the extreme limits

 pł(E;x) = lim sup ,

 and

 p-(Eix) - 11. sup .

 Loosely the porosity measures the relative sizes of the gaps

 in E. A natural generalization of this is to measure this relative

 size in some other appropriate fashion. If 0 < a < 1, then we may

 define in a similar way the notion of the (x01) - porosity by writing

 p/(E;x) = lim sup h<Qł [W,x,x+h)3 _

 and

 Pa"(E;x) = lim sup .

 More generally still if is some nonnegative real function, we

 may write

 d +(E-x) ^t,x; = lim nin sud sup *KME,x,x+h)) d p4> ^t,x; = lim nin sud sup h-»0+ h

 and

 p^(Eix) = lim sup ilíMLxdUíll .

 Note that if we permit as a limiting case that the function tļi have

 iļi(ū) = 0» 4<(t) = +» (t > 0), then a set E will have zero
 -f »

 p . (p ) porosity at a point x if and only if E is dense on
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 the right (left) at the point x.

 In order to provide some substance and insight into the nature

 of sets having various porosity requirements we consider some

 examples. A sequence {hn} converging to zero is said to have

 a porosity p in one of these senses (right porosity, left porosity,

 right (xa)-porosity, etc.) if the set of points

 { h^ , hg , hß , h^ , . . . }

 has that porosity at the point 0. If { hn } isa descending

 sequence with lim hn = 0 and if

 •i lim . • x ^n+l •i lim . "inf • x „ - r h - = r , „ n*® r h
 n

 then the sequence has right porosity 1 - r. Thus slowly converging

 sequences have zero porosity; similarly a sequence that has porosity

 1 must converge to zero quite quickly. In the case of (xa)-porosity

 the number s (0 Š s 5 +»)

 (hn " W"
 s = liB sup nxo

 is the right (xa)- porosity of the sequence {hn}. If a sequence has

 right (xa)-porosity finite (s < +«) for some 0 < a < 1, then the

 sequence has right porosity 0 in the ordinary sense, and also too

 in the (x^)-sense for any a < ß Š 1. Thus again while for zero

 porosity the sequence must be slowly converging to zero, for the

 (x0)- porosity to be finite it must be even more slowly converging

 to zero. These concepts allow a precise language for "slowly converg-

 ing to zero" together with a tight interrelationship between these

 notions and various estimates for the Di ni derivatives of various classes
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 of functions.

 We provide an example to show how one may generate sequences

 that exhibit certain porosity behaviour.

 (2.2) Example. Suppose that »ļi is a continuous strictly increas-

 ing function on [0,+«) such that

 iļi(t) = o(t1/k+1).

 We show how a sequence of numbers {xn} may be constructed that has

 zero (iļ<)-porosity on the right.
 k+1

 Let a(x) = x - X . For any xe (0,1) define the sequence

 {xn} by writing inductively

 = or(x) , x2 = «(x-j^) , ... Xj = aiXj^).

 We claim that this sequence must have zero (iļi)-porosity on the right.

 The sequence {xn} is decreasing to zero and so the porosity computa-

 tion requires that we establish the limit

 lim nm - <>(t)) = o lim nm t-»0+ t

 But

 m - g(t)) = m(tk+1)
 t t

 and for t sufficiently close to zero

 «M < t1^.

 This gives for small t,

 0)(t - a(t)) _ 4>(tk+1)
 t t
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 < t(k+l)/(k+äs) - 1 = tl/(2k+l)

 and the limit is established as required.

 In order to provide some feeling for the nature of such

 sequences we carry through the necessary computations in order to
 îç

 provide a sequence of numbers which has zero (x )-porosity. The

 sequence {x } is computed as above using the function

 a(x) = x - x3.

 n xn x xn x„

 1 .100000000000 .010000000000 .001000000000 .000100000000

 2 . 099000000069 . 009999000000 . 000999999000 . 000099999999

 3 .098029701062 .009998000300 .000999998000 .000099999998

 4 .097087653028 .009997000900 .000999997000 .000099999997

 5 .096172503685 .009996001800 .000999996000 .000099999996

 Observe that even for x^ = 0.0001, the sequence of numbers

 {x } is already very slowly converging.

 The basic computation from which all of our results follows

 is a simple estimate on the porosity of a set that arises in the

 comparison of the Dini derivatives. It first appears explicitly

 as a porosity computation in the article of Evans and Humke [6] but

 considerations of this type can be found in a number of theorems.

 For example the proof of Misik's theorem in Bruckner [l,p.l54] uses

 such an estimate and the sequential derivation problems in Shukla

 [13] and in Laczkovich and Petruska [9] require some such calcula-

 tions. Doubtless similar technical details can be found in much
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 earlier reports.

 (2.3) POROSITY LEMMA. Let f be a monotonie nondecreasing

 function such that at a point Xq one has D+í(Xq) ś r < s. Then
 the set of points

 f(y) - f(xn)
 Y = y :

 L y :

 has right porosity at Xg at least 1 - Similarly if

 Ď+f(Xg) Ž s > r, then the set of points

 f(y) - f(x0)
 Y = y :

 L y y " X0

 has right porosity at Xq at least 1 -

 PROOF. The computational details appear in full in Thomson

 [15, p. 418-419].

 We give an example to show that the estimate in the lemma is

 sharp.

 (2.4) Example. For any number 0 < p < 1 take the sequence

 h„ = U-P)2n

 and define the function f by setting

 f (x) = (l-p)hn_1 (hn < x ś hn-1)

 and f(x) = 0 otherwise. Then one checks easily that D+f(0)

 = 1 - p and the set Y,
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 Y = rv • ííy)." f(°) > ~ i"
 L y ~

 is complementary to the intervals

 ((l"p)hn-l'hn-l^

 Thus Y has porosity p on the right at 0, which is just the

 estimate that the lemma provides.

 This porosity lemma generalizes to much broader classes of

 functions. For ordinary Lipschitz functions (i.e. functions f

 that satisfy everywhere an inequality of the form

 ļ f(x) - f(y)| Š M|x - y|

 for some number M > 0) a generalization is immediately available.

 We observe that for such a function f the functions f(x) ± Mx

 are necessarily monotonie. This leads to the following lemma.

 (Alternatively the computations can be done directly (see Thomson

 [15,pp.419,420])).

 (2.5) LEMMA. Let f satisfy a Lipschitz condition

 I f(x) - f(y)| Ś M|x - y|

 for some M > 0. If at a point Xq one has 0+f(xQ) á r < s,
 then the set of points

 f(y) - f(xn)
 Y = y :

 L y " xo

 M ^

 has right porosity at Xq at least 1 - ^ + ■■■ ■ . Similarly if

 (T^fix^) à s > r, then the set of points
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 f(y) - f(xn)
 Y = y :

 L y - x0 -I

 has right porosity at Xq at least 1 - + g .

 Even more generally the porosity lemma permits a generalization

 to the class of continuous functions f that satisfy an inequality

 of the form

 I f(x) - f (y) ļ š 4*(| X - y ļ )

 where t|> is a given modulus of continuity. That is to say iļj is

 defined for all nonnegative reals, is increasing,

 x^o+ = = 0

 and for all real numbers x and y if x - y Ś 1, then

 I f(x) - f (y) i Š i|i(| x - y|) .

 The class of continuous functions that permit such an inequality

 shall be denoted as C(^). Of course the most interesting special

 case occurs with 4>(x) = Mxa for 0 < a š 1, and for M a positive

 real constant.

 Note that the extreme case with 4i(t) = +» (t > 0) and

 4>(0) = 0 is not permitted by the assertion of the lemma, but that

 the lemma is nonetheless true for such a function iļ> since in that

 case positive (tjj)-porosity of a set A at a point is equivalent to

 the nondenseness of the set A at that point.

 (2.6) LEMMA. Let f be a continuous function that satisfies an

 i nequal i ty
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 f(x) - f(y) š Iļ>(| X - y! )

 for a modulus of continuity 41 that is defined and continuous on

 [0,+°°), with <ļ>(0) = 0 and with tJf+'(0) = +». Suppose that at

 a point Xq one has D t(Xq) š r < s. Then the set of points

 f(y) " f(xn)
 Y = y :

 L y y " xo

 has right (4>)-porosity at Xq at least s - r. Similarly if

 ū f(Xg) ž s > r, then the set of points

 f(y) - f(xn)
 y = y ;

 L y ' xo

 has right (iļ>)-porosity at Xg at least s - r.

 PROOF. We prove the first statement of the lemma. Since

 D+f(Xg) < r, we may select a sequence of positive numbers {hn}

 descending to zero so that

 f(x 0 * hn) - f(x0)
 hn

 We will show how to choose numbers {8^} , 0 < 6^ < 1, and a sub-

 sequence {h } in such a way that 0. ■* 1,
 k K

 rOí(hn (1 - ej) ļ
 I k
 - i I

 M '

 and

 <f((i - V' >
 k
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 Let us suppose for the moment that these numbers can be so

 chosen. If so, then we can obtain the porosity estimate promised

 in the statement of the lemma. Consider the set of points

 f(y) - f(xn)
 Y = y : L y y-xo

 and the sequence of intervals

 '(*0 + Vn/O + •

 We observe that each of these intervals is necessarily disjoint from

 Y since if there is given a point y,

 xo ł ek' < y < *0 * ' '

 we must have using the t|r inequality on f that

 f(y) - f(xQ)
 _______

 f(y) - f(x0 + h^) ł ^ f(x0 + h^) - f(x0)
 ł ^ '

 *(y ■ X0 - V> i r <

 y • xo 8k

 < 1 h«1 - Vhnk>
 1 e4 ' .

 As each interval (xft + 0.h„ ,xn + fi ) is now seen to be disjoint
 0 k n^ u n^

 from the set Y, we compute that the (tļi)-porosity of Y on the
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 right must exceed the number

 *((1 - ek)hn )
 1™ sup k_w

 '

 But, from the way in which these sequences have been chosen, this

 limit is s - r which is exactly the porosity which we were required

 to obtain.

 Thus it remains for us to prove that these sequences may be

 selected in the way that we have stated. Consider in the (£,y)

 plane for 0 á Ķ š 1 the straight line

 y = sĶ - r

 and for any h > 0, the curve

 y = K «d - î)h) .

 For fixed 4 < 1»

 w* = (1 - tH+'(0) = ♦».

 Note that the line passes through the point (l,s-r), and the

 curve passes through the point (1,0). This allows us to select

 points *•* anc' indices n^^.n^, ... inductively so

 that n^ = 1, and
 t|i((l - 4->)h,)

 s V > - •

 «a - Ci» )
 slļ - r < h

 2

 Í2 > 1 "
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 +((1 - t2)h ,
 St2 - r >

 2

 and so on in this fashion so that {£.} and {fi } are obtained
 j n .
 . 3

 and satisfy the inequalities

 t. > i-i
 j

 ♦«1 - tj)h ,
 r « V ]1 ' Vi

 *((1 -

 " r > - V~ ' Vi

 Since iļ) is continuous, we may choose numbers ^j+ļ) ^r'om ^e
 intervals »4 so that

 *C(1 - VA*
 cfì . - r -

 j+1 . hn .
 j+l .

 and it is clear that these sequences are precisely what was required

 in order to complete the proof.

 §3. Estimates for the Pini derivatives. Our estimates require a

 generalized version of the Di ni derivative. We shall consider this

 a porosity version of the usual Dini derivative and we define it in

 a way that should be familiar to the reader. (For example compare

 with the definition of the approximate Dini derivatives in Saks

 [12, p. 219]).

 (3.1) DEFINITION. Let f be a real function and let 0 Ś p < 1.

 Then at any point x we define the four porosity Dini derivatives,
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 with index p, as

 PDp+f(x) = inf{ y: has ri'^ht porosity š p at x} ,

 PDp+f(x) = sup{ y: j': ^t-x^ > y] has right porosity š p at x},

 Pūp f(x) = inf{ y: < yj has left porosity ś p at x},

 and

 £Dp f(x> = inf{ y: [t-:'^^x^ > y] has 1eft Poroslty = P at x).

 Similarly using (x )-porosity and any number 0 š t < -*» we may

 define the versions P0 4.+f(x), PÏÏ . f(x), PD ++f(x), and
 U ) L Of y Ir , L

 PD Of t f(x); more generally still using an appropriate function »Jj Of j w»

 and a number 0 Ś t < ■*» we may define the versions PÏÏ. ++f(x), L l[J , L

 ^,t Ąi,t+f^x^' and Ą,t~f^ using
 For any indices 0 š p ů q á 1 one must have the inequalities

 D+f(x) < PDq+f(x) Š PÜp+f(x) Ś Ü+f(x)

 and

 D+f(x) š PDp+f(x) Š PDq+f(x) Ś D+f(x) .

 Note, however that there need be no relation between the upper and

 lower porosity derivatives themselves; indeed the lower may exceed

 the upper.

 The basic estimates on the Di ni derivatives that we require

 are contained in the next few assertions. Each is just an easy

 consequence of the porosity computations of the preceding section,

 but expressed in terms of a porosity version of the Di ni derivatives.
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 (3.2) LEMMA. Let f be monotonie nondecreasing on a neighborhood

 of a point Xg and let p be a number, 0 š p < 1. Then at Xq
 one has the inequality

 (l-p)PDp+f(x0) Ś D+f(x0) ś Ď+f(x0) Ś ^ PDp+f (xQ) .

 PROOF. Suppose that ū+f(xQ) < r. Then by the porosity lemma (2.3)

 the set of points

 f(y) - f(xn)
 v= y = y.x ss>r

 has right porosity at Xq, exceeding 1 - -. If PDp f(Xg) > s,
 then this set Y needs to have porosity less than p. This then

 requires that

 i -i<p

 or equivalently

 (1 - p) s < r.

 The first inequality in the theorem now follows; the last can be

 obtained in a similar fashion.

 The remaining lemmas are similarly proved using the other

 versions of the basic porosity computations. We omit the details.

 (3.3) LEMMA. Let f satisfy a Lipschitz condition,

 |f(x) - f(y)| Ś M|x - yļ

 and let p be a number, 0 ś p < 1. Then at any point Xq one
 has the inequalities
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 -Mp + <l-p)PDp+f(x0) g D+f(x0) ž D+f(x0) š ir^PDp+f(xo) + Mp>

 (3.4) LEMMA. Let f satisfy an inequality of the form

 I f(x) - f(y)ļ Š m|x - y |a (I X - y| Ú 1)

 for some numbers M > 0 and 0 < a < 1, and let t be a number,

 0 š t < +». Then at any point Xq one has the inequalities

 -Ht * PD^/fíx,,) S 0+f(x0) S Błf(x0) S f5Ojt+f(*0) t Mt.

 (3.5) LEMMA. Let f be a continuous function that satisfies an

 inequality of the form

 |f(x) - f(y)j š iļ)(|x - y| ) ( I X - yļ Ś 1)

 where 41 is a continuous increasing function on [0,+») for which

 4i(0) = 0 and for which ty+'(0) = +». Suppose that t is a number,

 0 á t < +«. Then at any point Xq one has the inequalities

 -t ♦ S D+f(x0> i o+f(x0) s rełitłf(x0) ♦ t.

 §4. Basic results. Each of the results in this section is a direct

 and easy consequence of the preceding estimates. It is a remarkable

 fact that so many observations can be made to rely directly on

 these elementary computations.

 (4.1) THEOREM. Let f be monotonie or Lipschitz. Then at every

 point the four Di ni derivatives and the four porosity zero Di ni

 derivatives agree:
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 PD0+f(x0) = D+f(x0), f^0+^x0) = Df(x0),

 and

 PD0"f(x0) = ÏÏ'f(x0), P_D0"f(xc) = D'"f(x0).

 PROOF. With p = 0 in lemma (3.2) and (3.3) this is immediate.

 (4.2) THEOREM. Let f be monotonie nondecreasing at a point Xq

 and suppose that 0 Ś p < 1. If PDp f(*g) = then it must be

 the case that f'+(*Q) = if ^p+^xo^ = ^ must
 the case that f'+(xg) = 0.

 PROOF. This too is an immediate consequence of lemma (3.2).

 These results apply immediately to provide some well known

 estimates for the approximate derivative and approximate derivates

 of monotonie functions.' This gives us a theorem of Khintchine [8]

 and of Mi si k [10]. We write f'aD(xn) ior the approximate deriva-

 tive of a function f at a point Xq, and we write Oap+f(xo)»
 - D f(xn), etc. for the approximate Dini derivatives of f at - 3p U

 this point.

 (4.3) THEOREM. [Khintchine] Let f be monotonie or Lipschitz.

 If f'ap(xQ) exists at a point Xq then f must be differen-
 tiate there.

 PROOF. This follows directly from the observation that sets having

 density 1 at a point must have porosity zero at that point. Conse-

 quently at any point the inequalities

 525



 Ū+f(x) š Pap+f(x) š PD0+f(x)

 and

 D* f(x) ž Õap+f(x) â PÕ0+f(x)

 must hold, along with similar assertions for left hand deri vates.

 The proof is then completed by an application of theorem (4.1).

 (4.4) THEOREM. [Misik] Let f be either a monotonie or a

 Lipschitz function. Then at any point Xq

 = = Sap^V-

 »"«V ="Vf<xo>- 2"«xo) = V,(xo>-

 PROOF. The same observations that were used in the preceding theorem

 supply the proof.

 There are several results that are merely restatements of the

 fact that a function that is monotonie or Lipschitz and differenti able

 at a point x^ relative to a set that is nonporous at Xq must be
 differentiate. In each case the proof is obvious and is omitted.

 (4.5) THEOREM. Let f be monotonie or Lipschitz and differen-

 tiate relative to a set E at each point of Et i.e. at each

 x e E the limit

 iim f(y) - f(x)
 y*x, ye E y - x

 exists. Then f is differentiate at each point of E with the

 possible exception of a porous set.

 (4.6) THEOREM. Let f be monotonie or Lipschitz and differen-
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 •ti abi e relative to each of a sequence of sets { En> , i.e. at each

 point X € Er and for any n = 1,2,3,... the limit

 lim Ky) - fM
 lim Mmyx, yGEn y-x

 exists. Then f is differenti able at each point in the union of

 the sets {En} with the possible exception of a crporous set.

 Note in particular that as a consequence of this if such a

 function f is differenti able relative to each of a sequence of

 sets that covers the entire real line, then it must be differenti able

 everywhere except on a cr-porous set. Also if P isa perfect null

 set that is not a-porous (because of Zajiček [17] we know that such

 sets exist) and a monotonie function f is not differentiate at

 any point of P, then certainly, by (4.6), P may not be expressed

 as a union of a sequence of sets {En) so that f is differenti able
 relative to each member of the sequence.

 (4.7) THEOREM [Evans-Humke] Let f be monotonie or Lipschitz.

 Then at every point x with the possible exception of a a-porous

 set the relations

 ÏÏ* f(x) = lTf(x) = ÏÏf(x)

 D+f(x) = D'f(x) = Of(x)

 must hold.

 PROOF. As in most theorems of this type one considers the set of

 points

 Xrs = [x : ÏÏ+f(x) < r < s < D f(x)j
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 for r,s rational. This set is partitioned into a sequence

 {X } in a familiar way (cf. Saks [12, pp. 237-238]) so that for

 pairs of points x,y G Xrsn, x < y the inequality

 ÍM-lHÍ) < r
 y - x

 holds. Then the porosity lemma applies to show that each set X^sn

 must have positive porosity at each of its points. As the excep-

 tional set of the theorem may be expressed as a denumerable union

 of such sets the theorem follows.

 Theorem (4.4) generalizes easily and with an identical proof

 to apply to the class of functions C(*ļi) for a fixed modulus of

 continuity iļ>. Again we assume that 4» is a continuous increasing

 function for which i}>(0) = 0 and vp+ ' ( 0 ) = +^.

 (4.8) THEOREM. Let f be a function in class C(i[0- Then the

 relations

 Ū* f(x) = (Tf(x) = Df(x)

 and

 0+f(x) = D~f(x) = Df(x)

 hold at every point x with the possible exception of a o-(ty)-

 porous set.

 §5. Generalized Young-Evans-Humke theorem. The Evans-Humke theorem

 as given above together with its generalization to the class C(iļ*)

 in theorem (4.8) really belongs in a hierarchy of theorems ranging

 from a theorem of W.H.Young [16] that for a continuous function f
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 the set of points of right and left disagreement

 [x : ÏÏ* f (x) ^ Ü f(x) or D+f(x) í D f(*)J

 is first category, through the various classes C(«|>) each time

 improving the exceptional set beyond merely first category to some

 0-(tļ>)-porous set.

 This class of theorems permits yet another type of generali-

 zation. In place of discovering a comparison between the right and

 left ordinary Di ni derivatives one can ask how far this extends to

 thinner derivates. For example Pu, Chen and Pu [li] have checked

 that this theorem of Young extends to the approximate Di ni deriva-

 tives and Zajicek [17] has pushed it (and the Evans-Humke theorem)

 further to accomodate extremely small density derivatives. Possibly

 the correct version involves just the porosity Di ni derivatives.

 For continuous functions this was proved in Thomson [14], and for

 monotonie functions it was announced without proof in Thomson

 [15, p. 340]. Here we prove that this theorem is available for any

 class C(tļj) with an exceptional set that is a-(iļ<)-porous. Note

 that at the extreme end of the spectrum where t1¡(0) = 0,

 iKx) = (x > 0 ) the exceptional set that is o-(tļj)-porous is

 required merely to be first category as is the case in the original

 theorem of Young.

 (5.1) THEOREM. Let f belong to C(iļ<), that is to say f is

 a continuous function that satisfies an inequality of the form

 I f (x) - f(y)| Š 4>(|x - yt) (|x - y| š 1)

 where is a continuous increasing function on [0,+») for
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 which 4>(Ö) = O and iļf+'(0) = Then at every point x with

 the possible exception of a set that is o-(4»)-porous, and for every

 0 ś p < 1,

 PD +f(x) = PÜ ~f(x) = Df(x)
 r r

 and

 PDp+f(x) = PDp'f(x) = Df(x).

 PROOF. We shall show that for any fixed q < p < 1 and pair of

 rational numbers r,s the set of points

 Xrs = [x : F5q+f(x> < r < s < Ü~f(x)]

 is a-(i|i)-porous whenever f €C(tļ>). In view of the weaker

 version of this theorem given earlier (theorem (4.8)) this is

 enough to obtain a proof.

 At each point r x 6 define the set Sw as r rs x

 **•[*■■

 and note that the set Sx has right porosity at x no larger

 than q < p. Thus we may choose for each such point x a positive

 number 6(x) so that

 '(Sx,x,x+t) < pt

 whenever 0 < t < 6(x). The function Ô then induces, in a familiar

 way (cf. Bruckner, O'Malley and Thomson [2]) a partition of Xrs

 into a sequence of sets (Xrsnì so that each pair of points
 x,y sx
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 1 X - y I < min [ô(x),ô(y)].

 We show that each set Xrgn has positive (4*)-porosity at

 each of its points. Suppose, in order to obtain a contradiction,

 that this is not so. Then at some point xft in X this set 0 rsn

 has (ijj)-porosity zero at Xq. Thus we can find a positive number

 H so that

 ^(^rsn,x0 " t>x0)) < ut

 for 0 < t < n> where v is taken as follows: firstly we define

 numbers 8 and t from the interval (0,1) in such a way that

 X < (s - r)(l - 0)

 and

 0 > p(l + t).

 Since s > r and 0 < p < 1 these are simple linear inequalities

 that may be solved. Then we take

 •<rh •

 Take any point x^ in Xrgn with x^ < Xq, and x^ > Xg - q ;
 we claim that the inequality

 f(xn) - f(x,)
 xo - X1

 must hold at these points. As will be shown later this inequality

 will provide the (ijj)-porosity estimate on Xfsrļ. Most of the rest

 of the proof is devoted to proving the inequality.
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 To verify this inequality we define

 f(z) - fUp
 *2 = sup 2 € (XJ.X,,) : - z . Xļ S s

 and We orove that x2 = xQ. As f is continuous this forces the
 requi red i nequa 1 1 ty

 f(x0) - fix,)
 X Xq - X Xx

 and our claim is proved. We obtain this nov by a contradiction;

 if contrary to this h = Xg - x2 > 0, then we consider the interval

 (x2 - 1(xh),x2)

 where x is as chosen above and 4> ^ is the inverse function to

 4«. We will take it so that ^(th) < xh which requires that x

 has been chosen sufficiently small.

 Using the porosity condition on ^rsn ar>d the inequality

 * U'^th)] > (1+t)h xh > y h + (xq) (1+t)h

 we see that there must be points r of X_ in the interval r rsn

 (x2 - »I» *(xh),x2). Thus let x^ be any point from Xr$n in that
 interval .

 Again the set S satisfies a porosity requirement in the
 3

 interval (x^.Xq) : the interval (Xg - 0h,Xg) has relative
 length at least

 Oh 0 v ^

 h + iļ» (xh) 1 + x
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 so that there must be a point xA in S from the interval
 3

 (Xq - eh,xQ).

 We will obtain our contradiction by proving that

 f('.) - f(x-,)
 x4 " X1 "

 and since x4 is evidently greater than x2 this contradicts the

 definition of x2 anc' our desired inequality will have been proved.

 Putting our various computations together and using the

 Lipschitz condition, we obtain the inequalities

 f(x4) - f(x^) = [f(x4) - f(x3)] + [f(x3) - f(x2)] + [f(x2) - f(x1)]

 Ś r(xr - x3) + iļ>( I x3 - x2l ) + s(x2 - x1).

 This leads to the inequalities

 f(x4) - f(x1) < r(x4 - x3) + xh + s(x2 - xp

 Š r(x4 - x2) + xh + s(x2 - x1)

 Š r(x4 - x2) + (s - r)(l - 9)h + s(x2 - xp

 = r(x4 - x2) + (s - r)(x4 - x2) + s(x2 - x1)

 = s(x4 - x1)
 as required.

 Thus we may conclude that for x. in X x, < xn, and l rsn l u

 sufficiently close to Xq the inequality

 f(xn) - f(x,)
 - -

 Xq - Xj

 must hold. However we know that at Xq, S f(Xg) > s; thus by the

 porosity lemma (2.6) the set ^rsn must have (4>)_porosity positive
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 at the point Xg. As this contradicts our earlier assertion we

 have exhibited each set Xrsn as having positive (i(i)-porosity at

 each point and the theorem is now proved.

 As a corollary we may apply this theorem to certain density

 derivatives. We follow Zajicek [17] here in that we express the

 result as the existence of a type of path derivative along sets of

 upper density, but essentially this is nothing more than the obser-

 vation that sets having positive lower (inner) density must have

 porosity less than 1.

 (5.2) COROLLARY. Let f be a continuous function that satisfies

 an inequality of the form

 I f(x) - f (y ) I Ś i{j(|x - y| ) (|x - y| ś 1)

 where iļ< is as described in the theorem. Then at every point x

 with the possible exception of a a-(iļ>)-porous set there are measurable

 sets Ax and E$x each having upper density 1 at x and so that

 i™ yV.ye Ax f(yy - x(X) = Ü+f(x) = Üf(x) = Ūf(x)

 and

 11m yV,ye B f(yj - xW = fi+f(x) = 5"f(x) = Df(x) .

 PROOF. If at a point x such a set Ax could not be found, then
 we can show that the set of points

 "y : f(y) : f(x) < c < üf(x)j
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 must have some positive lower density, and so must have porosity

 p < 1. This would then give that

 PDpf(x) < c < Df(x)

 and we know from the theorem that the collection of such points

 has the asserted porosity requirement.

 Let us conclude with several further applications of theorem

 (5.1) to the study of the differentiability properties of continuous

 functions. The fact that the porosity derivatives of a continuous

 function are residually the same as the ordinary Di ni derivatives

 leads us to the following observations.

 (5.3) THEOREM. Let f be continuous and have residually one of

 the four porosity derivates PÏÏ +f(x), PŪ f(x), PD +f(x), or
 r r r

 PDp f(x) finite for some value of p < 1 (p may depend on x).
 Then there is a dense open set G so that f is a.e. differentiable

 on G.

 PROOF. By theorem (5.1) we know that residually the upper or lower

 bilateral derivates Df(x) or Df(x) must be finite. In fact then

 on a residual set one or other of the "sharp extreme derivates"
 -i $
 D f(x) or D f(x) must be finite where these derivates are

 defined as

 Õ$f(x) = infô>0 sup : y j 2 € (x-6,x+ô),y^zj

 D$f(x) = supô>0 inf I : y,z € (x-ô,x+6),y*zj
 (This is a result of Bruckner and Goffman; see Bruckner [l,p.68]).

 It is easy to check that if one of these derivates is finite at a
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 point, then f must be a. e. differentiable in some neighborhood

 of that point. Consequently f is a.e. differentiable on some

 dense open set as required.

 Similar arguments apply to prove the following theorem which

 is related to a theorem of Garg [7].

 (5.4) THEOREM. Let f be a continu us, strictly increasing,

 singular function (i.e. f(x) = 0 a.e.). Then there is a residual

 set at each point of which

 PD+pf(x) = PD"pf(x) = 0

 PD^pfix) = PÜ~pf(x) = -H»

 for every p less than 1.

 PROOF. For such a function f it is the case that at every point
 $

 X the lower sharp derivate D f(x) must vanish. For if not,

 then there would be an interval (c,d) in which the quotient

 f(y) - f(z)
 y - 2

 is bounded away from zero, and this cannot happen for this function

 f. In exactly the same way it follows that the uppper sharp derivate
 - $
 D f(x) must be at every point +<*>. The theorem then follows directly

 from theorem (5.1) since residually the porosity deri vates agree with

 the sharp deri vates.

 Another consequence of theorem (5.1) is that a continuous

 function which has at every point of an interval [a,b] a path

 derivative (finite or infinite)
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 fp '(x) = lim ç. G r Ex y^x.y ç. G Ex r y - x

 along a path Ex that is nonporous at x (has right and left

 porosity 0 at x) must be in fact differenti able (finitely or

 infinitely) at each point of an open dense subset of the interval.

 If the path derivatives are given to be finite on the interval [a,b]

 then there is a sequence of intervals {In) whose union is dense in

 [a , b] and such that f satisfies a Lipschitz condition,

 I f(x) - f(y)j ã Mn |x - y ļ ,

 on each interval In> For the special case of the sequential

 congruent derivatives this was first established by Laczkovich and

 Petruska [9].

 By way of contrast note that it is generally less informative

 to have such a path derivative along sets that satisfy some density

 property. Indeed a typical continuous function will permit at almost

 every point x the existence of a path Ex that has upper density
 1 at x and for which the derivative as above exists and is finite.

 But it follows from an observation of Jarník (see Bruckner [l,p.214])

 that such functions may be nowhere differenti able or even nowhere

 approximately di fferentiable.
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