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Cn Foran's Corditicns s(i), B{I) znd (i)

L

Two continuous Tuncliions Fl and F2 are con=-
structed, satisfying Lusin's conlition (W) and Foran's
conditicn B(2) on C (C = Cantor's ternary set), which
are A(¥) on no porticn of ¢, and f5r no natural number
N. Horeover, F! 1(x) = =F5(x) a.e. on [0,1], but F; and
~Fs do not differ by a constant. It is also shown that
G(x) = Fz(x)~(l/2)q3(x) ((P = Cantor's ternary func-

tion) fulfils Feran's condition (x), but dses not ful-
fil Iusin's condition (). Such a function was alreudy
obtained by Foran in [1], but in a more complicated
wWay .

Ve recall the definitions of A(F) and B(X) given
in [1, and that of (i) given in [2].

Definition l. Given a natural rnmbar N and a set

E, a function F is said to be B(XN) on W if thers is a
nunber M<K 2 guch that for any seguence Il,...,
I 500, of nonoverlapping intervals with ILNT £,

there exist intervals J ., , n=1,...,N, for which

N I
.,)/ "" x N ' \”' .
FEﬂUIk)C“n\—J:lL Jy, and %E‘J'ﬂ‘a

(Here B(¥;X) is the graph of I on ths set X

Definition 2, Given a ratural number I anid a set
E, a funstion T is said to be o(¥) cn T if Tor every
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€> 0 thers 1s a2 &> 0 muek that if Ty,...,T,
are nonoverlapping intervals with ZNI, £ ¢ a2l
ZiIk|< J, sn there exist intervalg Jkn , N
= l,.o.,'ﬂ ’ for wh

'.-Jo

Lo
Iy

B(MEN U IS U UI. %3, and 3 3 |g <8
? T k % nz1 k kn b n..-l er\

Definition %, & contiauous function F fulfils

Foran's condition (M) if it is absolubely ccocntinuous

on any sat T on vhich it is of hounded variation,
Lot F (respectively B ) be the class of all

contionous furctions ¥, definad on a ~lossd intarval

I, for which there exist s sequance ¢f cevs I and

n
natural numbers N , sach that T=U%x, , and ¥ is
A (I espectively B(K.)) on R

”<”‘n) (respect ly B( ‘n)) on H .

Thegrem 1. et ¥ be a rezl contimyons functicn

de]’:‘imd on a closed real get Z, Tha frngbion T

belonss bo T (resneciively to B on % i znd only

if every closed subset off T contains a portion con

which T is A(N) (respa2etivaly 3(X)), for gome naturs

nunber N.

.

Procf. The proof is similar to Thebt given in
[7], op.233-234

Let I = [0,1], and let C denote the Cantor
ternary set, i.e., C = {x HED zc,i/B with cji

takingz the values O and 2 only}. Tach point x€C is

-

uniquely represented by 3 ci(x)/,’; . L2
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. . . E ‘Q<+l
ternary function, i.e., q)(x) = 2 ¢.(x)/2 , Tor
each x€ C. Thea LP is cenbtinuous on C and, by ex-
tending q) lingarly on each inberval contigvnous to

C, ¢na2 has 4) dofined and continmuous on I. Lat

Fi(x) = Togy ()45 and Fy(x) = (1/2)F cy (x)/4F,

for each x€0C. Then F; anZ ¥, are continuous cn C

and, by extending F; and F, linearly on each interval
contizuous to C, one has Fq and F2 defined and coun-
timious on I. Clearly

(1) P(x) = Py(x) + Fo(x) on I

and

(L/2)F5(3x) , xe [o, 1/3]

x = (1/6) y € (1/3 , 2/3)
(1/2)+(1/2)F,(3x-2) , xe[2/3 ,1]

]

(2) Py

Theorem 2. 1) Fy and ¥, fulfil Iusin's condition

(F) on T .

2) ¥, and F2 are A(N) on no portion of G, and fo

H

|

ne

natural number N,

%) ¥y and F, are B(2) on C.

Proof. 1) Fl(C) can be covered with 2% intarvals
‘each of lenzth at most (1/3)(1/4%), and |#y(C)] = o.
F,(G) can be covered with 2" intervals, each of
length at most (2/3)(1/4™) and [F,(C)] = 0 .

2) e show that F, and F, do not belong to T on I,
hence by Theorem 1, Fy and T, are A(M) on no portion
of C, for no natural nuvuber K, Suppose on the con-

trary that F, belongs to J on I, By (2) it follows
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that also l"-‘l balsns to '}' cn I, hense Fl+'8‘2€ T .
This contradicts (1),

5) ILet [31,12] C I, a,p€C, Phen there is a larsect
interval (a:L,b];) (and only oune), ezciunded in the
Cantor Ternary process, such that :-zl,bljc [a,':i] .
Suppcse that (al,bl) is ercluded at the nth stz .
Then

oo
.E 01/5 21 n+1 s With ci:.O or cir.?i isro
= R

i< nani e -O. V/le have al-a 1/5 arg b—-bl 1/5n

If %€ E‘a,al']ﬂ C, then c; = c;(x), for each i =
= l,.oo,n - Hence

(3) Fg(al)-Fz(}:) 0 and Fl(‘“l)":ﬂl(:{) =0
{et Fg(:-:o) = inf{l?z(x) t X€ [3,al]ﬂ G}. Then

Fo([a,2;]0 ) C [F5(x,),75(a)] = 33 and by (3)

() ld |2 P - P .

If }:e[‘ol,ﬁ]ﬂc, then ¢y = ci(x) , for cach 1 =
= 1,s.0,n=1 and c,(x) = 2 . Hence
(5) FZ "J'Z(bl 0 and Fl(;{>'-}?l(-bl) = C.

Lat Fg(}:l) = sup{Fz(x) i € [‘ol,b]ﬂc‘} . Then
Fz( [blyb]ﬂ ¢)C [Fg(bl)aF?_(Xl)] = Jdy 2and Dby (53,

1

one nas
(6) L3, < P (o) = P oy

By (4) and (€), Fo([a, )N C)C 5,05, ana

lJl‘ + ‘Jp_‘:{*\p(b) - kp(a)
498



Remark 1. 1) Theoren 2 shows that the Zanach-
Zereckl thecren ([j],pp.227) iz not valid when AC
and V3 zre replaced by A(H) and B(E) respectively.
2) The class T is strictly containad in P N (H).
3) Fq and ~F, satisfy (N), bhave equal derivatives
a.e., and do not differ by a constvant,

Remark 2. Let (Jg) , L= l,...,2p“l be +the
oxcluded middle thirds in Cantor's terrary process,
from the pth step,numbared from left to zight. Ve

bave 2%l = 0f ,1=1,...,2°"" and

J‘p+1

i+2p,_1 = (2/3) + J}:{ 9 i = 1’ 000,2::)-1 .

Theorem 3. Tho functions ¥y and F, 202 not

primitives in ths Foran sensa,

Proof. Suppose on the contrary that there is a
conbtinuous function G on I, belongin:; to rf , such
that Gép(x) = Fé(x) a.e, on I. Than there is a con-
timious function h on I, with h(0) = O, which is
censtant on each interval contiguous to C, such that
(7) G(x) = Fo(x) + h(x) .

By (2) and (7), Fy(x) + (1/2)n(3x) belongs to F on
e, 1/3] . By (7), it follows that

() P+ (1/2)n0Gx) + b(x) = 0 on [0, 1/3 .
For let H(x) = G(x) + (1/2)6(3x) = P(x) +(1/2)n(3x)+
+ h(x) , x€[0, 1/3]. Then Hi, = O a.0. and GE F

jmplies HE ¥ and H = C. Since H(0)=0, (R) follows.
499



Since kp(x:) = (1/2)(P(5x) , (8) baconmes

9 P2+ nE) + (1/2)Ps0/2 + v0) =0,
for each z€ [0, 1/3]. 3ince

(10)  Fp(x) = Fy(x+ 2/3) , x€[o, 1/3] ,

we have h(x+ 2/3) ~ h(x) = a for all x¢[o, /7] .
For let R(x) = C(x+ 2/3) - G(x) = bx+ 2/3) - bix) ,
x€ [0, 1/3] . since G M= Fi(x) a.e., Rlp(x) = C a.e,
and RE€ T  implies R coustant. But h(1/3) = b(2/3)
and h(0+ 2/3) = h(0) = a gives h(2/3) = a. Also
b(1/3% + 2/3) = h(1/3) = a so b(l) = 2a., Thus h(x) =
= -(1/2)q)(x) on [1/5’, 2/5]. By Remszrk 2, (9) ari
(10), hix) = -(1/2)q)(x) on the closure of each
interval contigucus to ¢ aud, by the contimity of h,
we have that h(x) = -(1/2)4)cx) on I. Thus G(x) =

= Fo(x) - (1/2)\9 (z) on I, toreover, fcr each x€C,
G(x) = 1/6 = (1/2)(Z (epp 1 (%) + e, (x)/2 + 1)/45).

Hence G(C) = [-1/3 , 1/6], and so G does not sabisfy
Insin's condition (W). Contradiection,

Remark 3. The above fuoction G(x) = Fy(x) -
- (1/2)@ (x) on I is an example of a continuocus func-
tion which does not satisf{y Iusin's condition (X¥) but

satisfies Foran's condition (1),

We are indebted to Professor Solemon Marcus for
the hslp given in preparing this article and to the
anonyrous reviewer, for many remarks allowinzy to

improve the final version c¢f the Text.
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