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 On Typical Bounded Functions in the Zahorski Classes

 Each of Zahorski's classes [5] is closed under uniform

 convergence. Thus each class of bounded functions on the

 interval [0,1] is a complete metric space under the sup norm.

 We can then investigate the behavior of a typical function, that

 is, belonging to a residual subset. We let I=[0,1].

 Ceder and Pearson [3] show that the typical bounded Darboux

 Baire 1 function (that is, bounded function):

 1 has an infinite derived number on both sides at every point

 2 has both +» and -»as derived numbers át each point.

 We will show that:

 3 the typical bounded Darboux Baire 1 function has every

 real number as a derived number at every point

 4 the three results above have direct analogues in each of

 the other Zahorski classes.

 All functions will be real valued with domain contained in

 [0,1]. We use juxtaposition to indicate the intersection of two

 or more sets of functions. Thus, the bounded (b) Baire 1 functions

 are denoted by bB^ and the bounded Darboux Baire 1 functions by

 bDB^. C~(f,x) and C+(f,x) are the left and right cluster sets of

 f at X. For f in DB^, the left and right cluster sets are
 intervals with f(x) in C (f ,x)nC+(f ,x) for all x. The associated
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 Bets of f are sets of the form E (f)={x: f (x)>a} and E (f)=
 cł

 {x:f(x)<a} for a real. A function f is Baire 1 if each associated

 set is an F set (or f is a pointwise limit of continuous functions

 The. Lebesgue measure of A is denoted by A (A). Zahorski 's M

 classes (i=0,l,..,5) are defined as follows. A set E is in class

 M. if E is an F set and:
 i a

 i=0 every x in E is a bilateral accumulation point of E

 i=l every x in E is a bilateral condensation point of E

 i--2 for x in E and 6>0, A((x-<5,x)nE)>0 and X ( (x,x+6)nE)>0

 i=3 for x in E and any sequence (ln) intervals converging
 to x with A (I nE)=0 for all n, lira X(I )/dist(x,I )=0

 n n n
 n-x*>

 i=4 if there exist sets K and positive numbers r such that
 n n

 E=uK and for every x in K and c>0 there is an e(x,c)>0
 n n

 such that X(En(x+h,x+h+k))/ [ k ļ > r^ for all h and k satis-

 fying hk>0, h/k<c, and ļh+kļ<e(x,c)

 i=5 every x in E is a point of density of E (d(E,x)=l).

 A function f is in (1=0,1, ... ,5) if each associated set is in

 class M.. It has been shown that M =M=DB, and M=A the approxi- l 0 115

 mately continuous functions. ( Zahorski [5] rir see Bruckner [2])

 In the rest of this paper, the five classes will thus mean

 through M,.. We will make use of the fact that . .=M^. For

 x in E, (x)c^E (i^4) will mean E satisfies the ith Zahorski con-

 dition at x. That is, when considering {x}c^E means x is a
 bilateral condensation point of E. The context will make clear

 which classes are under consideration. For sets A and E, A«=^E

 will mean {x}c^E for all x in A. Thus if f is in class M,.,

 c,JE (f) simply states that d(Eg(f),x)=l for all x in E^(f).
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 Lemma 1 For each i, bM^ is a complete metric space under

 the sup norm.

 Proof: Consider i fixed. Suppose f -*-f where f is in bM.
 n n i

 for all n. Then f is in bDB^ and it suffices to show that each

 associated set is in Let E=Ea(f) and Ek=E(a+;1/k) * For
 each k, pick n, so that |f - f || <l/2k. Then E.cE, . .(f )cE.

 k. K ¿.icy r*k
 Thus ®=u®ļli=uE(a+]_/2k) ^ *S *n Mi* *s similar.

 The next lemma will be used in the proofs of later theorem.

 Lemma 2 For each i, the set of all f in bM^^ such that f
 is continuous on some subinterval is a first category F set in bM..

 o i

 Proof: Consider i fixed. Let

 of the rationals in I. For q <q_ define F to be the
 nn ui n,m

 set of all f in bM^ such that f restricted to Iq^q^] is continuous.
 Then A. is the countable union of all such sets F . It remains
 i n,m

 to show that each F is closed and nowhere dense in bM..
 n,m i

 Clearly ' each F is closed. Fix n and m. Suppose rr f€F and ' n,m rr n,m

 e>0. We can pick an h in bM^=bA so that

 1) 0¿h<e

 2) h=0 on

 3) h is not continuous on (q ,q ). nn nm

 (See Zahorski [5], Bruckner [2], or Agronsky II].)

 Then it is easy to see that g=f+h is in bM^, ļļf-g|ļ=e, and g is
 not in F . Thus the complement of F is dense and we are done.

 n,ra n,m

 We state two theorems of Ceder and Pearson mentioned in the

 introduction.

 Theorem A The class of all functions in bDB^ (bM^) having an

 infinite derived number on each side at every point is a residual G. set.
 <5
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 Theorem B The class of all functions in bDB^ (bM^) having

 both -H» and -® as derived numbers at each point is a residual G,
 o

 set.

 The proof of Theorem 1 below is a simplification of the proof

 of Theorem A, making it applicable to all five classes at once.

 We use much of the same notation as in [3].

 Theorem 1 For each i, the class of all functions in bM^ having

 mi infinite derived number on each side at every point is a residual

 0, set in bM . .
 o i .

 Proof: Throughout the proof, we consider i fixed. Let

 (respectively A^) be all f in bM^ for which there is an x in

 [0,1) (resp. (0,1]) such that f has no infinite derived number on

 the right (resp. left) at x. It suffices to show that Aj, is a

 first category F^ set. For n a natural number, 0 and 6 rational

 with Ô>0 and 0<0<ir/2, let A(0,6,n) consist of all f in bi'L for

 which there is an x in [0,1-1/nJ such that tan6> [ (f (z)-f (x)) / (z-x) ļ

 for all x<z<x+6. Then A^ is the countable union of all such

 A(0,5,n). It remains to show that" each A(8,<5,n) is a closed

 nowhere dense set.

 Fix 0, 5, and n. It is easy to see that A(0,6,n) is closed.

 We say that f has "property A at x" if there is a z in (x,x+6)

 such that tan0< 1<£(z)-f (x))/ (z-x) [ . If f has property A at every

 x in a set E, then we say f has "property A on E". Note, i£ f

 has property A on [0,1), then f is in the complement of A(0,6,n).

 Thus, it suffices to show that the functions with property A on

 [0,1) form a dense set. For any point (x,y), let

 K(x,y)={ (u,v) :x<u<x+6 and tan0<[ (v-y) / (u-x) [ } .
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 (The definitions and notation are from [3].)

 Let feA(6,6,n) and e>0. By Lemma 2 we can pick h in bJW^ so

 that h has a dense set of discontinuities and || f - h ļ ¡ <e.

 Let Z={z:K(z,h(z))nh-<ļ>}u{ (l,h(l)) }. It is easy to see that

 Z is closed and that hļz is continuous. By our choice of h,

 int(Z)=$. We then cover Z with finitely many intervals on which

 the oscillation of h is small and insert a steep saw-tooth

 function over each interval to obtain a g in bM. such that
 i

 II Vi- g I J <e and g has property A on [0,1). See the proof of Lemma 4

 in [3] for the insertion. Then jļ f-gļļ <2e and we are done.

 The simplification of the proof is in our choice of the function

 h, making int(Z )=<}>.

 Theorem A is then a special case of our Theorem 1. This is

 not the case for our next result. Our proof of the analogue of

 Theorem B for bM^ where iž2 does not give Theorem B as a special

 case. Although we again borrow notation and follow the outline

 of the proof of Theorem B in [3], our proof will not work for bM^.

 Theorem 2 For each i>2, the class of all functions in bM^

 having both +» and -» as derived numbers at each point is a

 residual set in bM^.
 Proof: We again consider i fixed. The proof is similar to

 that of Theorem 1. It suffices to show that, for 5>0, and O<0«it/2,

 the set of all f in bM^ for which there is an x in I such that

 tan0â(f (z)-f (x))/(z-x) for all Ck[z-x|<6 is a closed nowhere dense

 set. Let this set be A' (9,6). We say f has property A' on I if

 K' (x,f (x))nf^<|> for all x where

 K' (x,y)={ (u,v) : 0< |x-u I <5 and tan0<(v-y)/(u-x) } .
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 If f has property A' on I, then f is in the complement of A' (0,6).

 It is easy to see that each A' (0,6) is closed. We must show that

 the complement is dense. As before, fix 0 and 6, let f£A'(0,ó),

 and let e>0. Pick h in bM^ so that ļļ h-f |[ <e and h has a denne set

 of discontinuities. Let Z={z:Kf (z,h(z))nh=<1>}. It is easy to see

 that Z is closed and that hļz is continuous so int(Z)=<i>. Thus Z is

 nowhere dense. To avoid an easy added step, assume 1 is not isolated in

 Z. Let I~Z=u(a^,bj) where each (a^,b^) is a component of I-Z.
 Since hļz is continuous, we may cover Z with finitely many intervals

 [xk,ykJ, l<k<n, so that:

 (1) xļ<y1<x2<y2<...<xn<yn

 (2) yk-xk<5^=min(6/2,e/8tan0) for each k

 (3) if X and y are in [xj^y^lnZ, then |h(x)-h(y) ļ <c/4

 (4) x^eZ for each k, y^eZ if (Xj, »y^nZy^, and y^Z otherwise.

 Observe that if x is a right limit (left limit) of Z, then h is

 right (left) continuous at x. In fact, if x and y are in [x^y^lnZ

 for some k, then |h(r)-h(s) ¡¿c/4+26^tan0<e/4+e/4=e/2 for all r and s

 between x and y. This results from the fact that the graph of

 h|[x,y] is contained in the parallelogram P(x>y) formed by the

 vertical lines through (x,0) and (y,0) and the lines with slope tan8

 through (x,h(x) ) and (y,h(y)).

 For each k, at least one of the following occurs:

 C1 ^xk,yk-,nZs={xkJ

 C2 there is an isolated point, z^, of Z in
 C3 there is a component, (a. ,b. ), of I-Z in (x,,y,).

 3k 3k
 Note that C2 and C3 are not mutually exclusive. If C2 occurs,

 then there is a such that (zk-Yk,zk+Yk)nZ={zk} .
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 For l<k<n, we define in one of three possible ways. Let be

 Eh(x )-e/2^n^xk>yk^ C1 occurs» ^Zk,zk+Yk^ C2 occurs» and k

 (a. ,m.) where m,=(a. +b. )/2 if C3 occurs but C2 does not. Let
 k Jk 3k

 Aq=uA^. Then A^eM^. Since h is approximately continuous almost

 everywhere (Thm 5.2[2]), we can pick AcAq so that A(A)=à(Aq), h is

 approximately continuous at every x in A, and Ac^A.

 Let T be a countable dense subset of h. By repeated application

 the Luzin-Menchof f Theorem (Thm 6.4[2]), we can construct an Fq set

 W =uW cA-dom(T) so that W.c W and W.n(x, ,y, )^<1> for each k. Then,
 An ADA 1 K R

 by Zahorski [5] (or see Bruckner [2] or a special case of a

 construction of Agronsky [1]), we can construct an h^ in bM^ such

 that hj=0 on is use (h^ is continuous at every x

 in I-WA) , || hjl =e, and hj W^e .

 For lákán, let B^ be the empty set if CI occurs, if

 C2 occurs, and (m^.b. ) if C3 occurs and C2 does not. Let Bq=uB^.
 k

 As above, we can pick a set Bcß^ with the same properties as AcAq,

 and an F set W_=uW'cB-dom(T) so that W_c W and W'n(x, ,y, )¿é if o B m B 5 B 1 k k

 B, We then construct h0 in bM such that h =0 on I-W , hoS0, K L j Ł B L

 is lsc (1^2 is continuous at every x in I-Wg) , ļļl^l^e, and

 h2|W1=_£» Observe that W^nWg=<ļ».

 Let g=h+h^+h2« Then || f - g 1 1 <2e, and gebB^. Our next lemma

 will show that gebM^. Let (resp. A^) be the set of continuity
 (resp. approximate continuity) points of a function f.

 Lemma 3 Let FebM^. If GebA, G is use (resp. lsc), GäO

 (resp. G<0) , Cg={x| G(x)=0} , and I-ApCC^, then F+Gtb.M^.

 Proof: Fix i. We prove the result for G use. Let E=E (F+G) .
 a

 Then E=Ea(F)u(EnEQ(G)) 3 . It is easy to see that EdEq(G) is an 3 489



 set since Eq(G)cAj,. Thus E is the union of two sets and EťM^.
 Now let E=Ea(F+G) . For xeE, we can pick a rational r sc that

 F(x)<r<a and r-F(x)<a-(F+G) (x) . We use the upper semi-continuity

 oř G to pick an interval J with rational endpoints so that xćJ

 and Er(F)nJcE. Since E is the countable union of such sets, EeM..
 i

 The case of G lsc is similar. This completes the proof of the lemma.

 We now show that g has property A' on I by four cases.

 1 If xel-utxj^yjJ > then g(x)=h(x). Since K' (x,h(x))nh^0 and

 T is dense in h, K' (x,g(x) )ng^0 (g=h on dora(T)).

 2 Suppose x€[x^,y^] for some k and CI occurs. If x=x^, then

 by our construction g(x)=h(x) and K' (x,g(x) )ngr0. If xe (:<^,y^]nW^,

 then g(x)>h(x). Since T is dense in h, h(x) is a left cluster value

 of T. Thus K' (x,g(x) Jng^. If xe (x^,y^]-W^, then g(x)=h(x) and the

 argument of 1 above applies.

 3 Suppose xefx^jy^] and C?. occurs. If xeZn[x^,z^] , then g is

 above PCx^y^) on a subset of » so K' (x,g(x))ngr0. If

 xeZn [z^,y^], then g is below P(x^,y^) on a subset of so

 K' (x,g(x))ngļ{0. If xeWAn(xk,yk) , then, as in 2 above, K' (x,g(x))ng/0.

 A similar argument applies to xeW^n (x^,y^) . If xe [x^,y^]-(W^uWgUZ) ,

 then the argument in 1 above applies.

 4 If xefx^jy^] and C3 occurs but C2 does not, then an argument

 similar to that in 3 above applies.

 Thus g has property A' on I and this finishes the proof of the

 theorem.

 Note that the case of bM^ does not follow from the proof of

 Theorem 2 since it is possible that febM. , E (f)^0, but X(E (f))=0.
 J. či či

 We prove Theorem 3 for the case bM^ and then indicate how
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 simple modifications in the proof yield the analogues for bM^
 where iž2.

 Theorem 3 The class of all functions in bDB^ having every real

 number as a derived number at every point is a residual set.

 Proof: Let X be the class of all functions in bDB^ having both

 +« and -« as derived numbers at every point, a residual G. set
 o

 by Theorem B. Let N be the class of all functions in X having every

 real number as a derived number at every point. The proof will

 show that X-N is first category in X.

 We need some terminology to use later in the proof. For any

 point (x,y) let o(x,y) be the open half-ray {(x,v):v<y) and let

 0(x,y) be the open half-ray {(x,v):v>y). For 0, ß, and fi positive

 rationals with 0 and ß angle measures less than ir such that 0+ß>ir,

 let r(0,ß,S,x,y) be the open set of all (u,v) such that:

 1) (u,v) is in o(x,y) or

 2) x<u<x+6 and the angle between the line segment joining (x,y)

 to (u,v) and o(x,y) is less than 0 or

 3) x-Ô<u<x and the angle between the line segment joining (x,y)

 to (u,v) and o(x,y) is less than (?.

 R(0,B,5,x,y) is similarly defined using 0(x,y) instead of o(x,y).

 Let y(0,ß,6) be the set of all f in X with r(0,ß,ö,x,f (x))nf=<f>

 for some x in I, and Y(0,ß,6) the set of all f in X with

 R(0,ß,6,x,f (x))nf=ij> for some x in I. Then X-N is the countable

 union of all such y(0,ß,<5) and Y(0,ß,6).

 We define b^(x)=inf(C (f ,x)uC+(f ,x)) . Let z(0,ß,5) be the. set

 of all f in X with r(0,ß,6,x,b^(x))nf=<|» for some x in I. We call

 such an x a z-value of f. Z(0,ß,6) is similarly defined using
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 t^(x)=sup(C~(f ,x)uC+(f ,x)) and R(0,g,ô,x,t^(x)). In the rest of the

 proof 0, ß, and ó are fixed. It is easy to see that y(0,3»6) is a

 subset of z(6,6,S). It remains to show that z(0tß,6) is a closed

 nowhere dense subset of X. A similar argument will apply to

 Y(0,M)cZ(6,M).

 Lemma A z(0,ß,6) is closed in X.

 Proof: Suppose f -»-f uniformly and f ez(0,g,6) for all n» Let
 n n

 x^ be a z-value for fn» Since we can pick a convergent subsequence,

 let us assume that xn"*"x in I. It is easy to see that b^ (xn)-»-b^(x) .
 n

 The fact that each x is a z-value of f forces x to be a z-value
 n n

 of f. Thus fez(0,S,6) and the set is closed.

 Lemma 5 The complement of z(0,g,6) is dense in X.

 Before proving the lemma we make an observation. If f is in

 z (0,ß, 6) and x and y are z-values of f, then [x-y[žS. Thus the set

 of z-values of f is a finite set.

 Proof of Lemma 5: Suppose fcz^jgjô), e>0, and x is a z-value

 of f. We will construct a g in X such that || f-gļļ Se, x is not a

 z-value of g, and the set of z-values of g is contained in the set

 of z-values of f. Essentially, the construction of g eliminates one

 z-value of f.

 Since b^(x) is in C (f ,x)uC+(f ,x), we may assume that b^(x) is

 in C~(f,x). Let T be a countable dense subset of f. We can then

 pick a c-dense in itself F subset of f, say E, so that:

 1 EnT=<J>

 2 xecl (dom(E) )~dom(E)

 3 cl(dom(E))c(x-6>x]

 4 f(x )-+-b,(x) if x edom(E) and x ->x.
 n r n n
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 By Theorem 1 of [3] there is an h in bDB^ so that h=f on I-dom(E)

 and f>hžf-e on dom(E). By using the construction in the proof of

 that theorem we can easily pick h so that r(0,ß,6,x,b^(x))nh7ic1i and

 if y¿dom(E) and xn**y with x^edonKE), then f (xn)-h(xn)-M5. Observe

 that b. (x)=bc(x). Let Ł be the line through (x,b, (x)) such that the
 n r n

 angle between t and o(x,b^(x)) is (0+ir-0)/2. We define

 (f(z)(=h(z)) on I-(x-6,x)
 ß(z) = '

 (max(h(z) ,£(z)) on (x-6,x).

 Observe that g=f on I-dom(E). It is easy to see that g is in bDB^,

 b ß (x)=bf(x), and r(e,ß,ö,x,b S (x))ngîi<f.. ß S

 Claim 1 geX.

 Proof: If zedora(E), then g(z)<f(z). Since E misses T and T is

 dense in f, +» is a derived number on the right at z and -» on the

 left. If z*fdom(E), then g(z)=f(z) and g has the same derived numbers

 as f since g=f on dom(T) and T is dense in f. Thus geX.

 Claim 2 The z-values of g are also z-values of f and x is not

 a z- value of g.

 Proof: By our construction, x is not a z-value of g. Suppose

 y is not a z-value of f. We consider two cases.

 1 If yel-cl (dom(E)), then bg(y)-bf(y) and r(0,ß,6,y,bf (y))nfît<1>.

 Since gáf, r(9,ß,6,y,b (y))ngīi4>. Thus y is not a z-value of g.
 6

 2 If ye cl (dóm (E)), then by our construction ye(x-6,x) and

 b (y)ä£(y) so that (x,b (x)) is in r(6,ß,S,y,b (y)). Thus
 g g g

 r(0,ß,6,y,b (y))ng^<j> and y is not a z-value of g.
 S

 This verifies the claim.

 By making this modification near each z-value of f, we can

 construct geX-z(9,g,6) so that || f - g ļļ ¡Se. This completes the proof
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 of Lemma 5 and the theorem.

 Theorem 4 For each iä2, > the class of all functions in bW.

 having every real number as a derived number at every point is a

 residual set in b.M . .
 i

 Proof: The proof is very similar to that of Theorem 3. The

 analogue of the set E in the proof of Lemma 5 should be chosen as

 we picked Theorem 2, with EcE^X^+e^(f )n(x-6 ,x) . We then

 proceed to construct the function h as we did h^ or h^ in Theorem 2.

 The rest of the proof remains unaltered.

 An open question is whether oř not the set of typical functions

 of Theorem 3 or 4 is a G^ set. Other properties found to be typical

 of bDB^ functions could be candidates for the bM^ case. See Ceder

 and Pearson [4] for a survey of such properties and interesting

 candidates not decided at this time.
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