Josef Tkadlec, MFF UK, Sokolovská 83, 186 00 Praha 8, Czechoslovakia

Constructions of Some Non-6-porous Sets on the Real Line

The class of d-porous sets introduced by E.P.Dolzenko [1] often appears as a description of exceptional sets in case these are of measure zero and of the first category. The fact that the class of d-porous sets is strictly contained in the class \mathcal{A} of sets which are of measure zero and of the first category was demonstrated by L.Zajíček [4]. Since the class \mathcal{A} has the properties

- (i) if a Borel set A does not belong to a, then A+A contains an interval, and
- (ii) each disjoint family of Borel sets not belonging to a is countable,

it is natural to ask if these properties also hold with \mathcal{A} replaced by the class of d-porous sets. These problems were posed by P.D.Humke [3] and W.Wilczynski at the symposium "Real Analysis" held in August 1982 in Esztergom, Hungary. J.Foran and P.D.Humke [2] showed some "enveloping" properties of d-porous sets and posed a problem whether there exists a porous set contained in no d-porous G_d set.

Here we give positive answer to the last question

and prove that the class of é-porous sets has neither of the properties (i) or (ii) even for perfect sets. To construct the corresponding examples we give a general method of the construction of perfect non-é-porous sets, a special case of which has already been used by L.Zajíček [4] in his construction of perfect non-éporous set of measure zero.

For a subset S of the real line we define the set $P(S) = \left\{ x \in S; \text{ limsup } l(S, x, \delta) / \delta > 0 \right\},$ $\delta \to 0_{+}$

where l(S,x, J) is the length of the longest subinterval of (x-J,x+J) disjoint from S. The set S is said to be porous if P(S)=S and is said to be G-porous if it can be written as a countable union of porous sets. The Lebesgue measure of the set S will be denoted by |S|. By an open (closed) interval we mean any nonempty open (closed) connected subset of the real line. If x is a positive real number and I an open (closed) interval, then x*I is the open (closed) interval with the same centre as I and with length $|x*I|=x\cdot|I|$. Through the paper we will distinguish the set of positive integers and the set of natural numbers (containing the number zero).

A general method of construction of perfect non- σ -porous sets. Assume that

- (a) $(k_n)_{n=1}^{\infty}$ is an arbitrary nondecreasing sequence of natural numbers such that $\lim_{n \to \infty} k_n = \infty$, and
- (b) for every closed interval R and every positive integer n, a finite system D_n(R) of closed subintervals of R is given.

For every closed interval R and every positive integer n we define the system $\mathscr{R}_n(R)$ of closed, nonoverlapping subintervals of R as follows: The set E of all those endpoints of the intervals $2^{k} \times D$, $k=0,\ldots,k_n$, $D \in \mathscr{D}_n(R)$, which belong to Int R decompose R into 1+card E closed, non-overlapping (necessarily nondegenerated) subintervals of R. The system $\mathscr{R}_n(R)$ is the system of all such subintervals of R which are not subsets of any element of $\mathscr{D}_n(R)$.

Let a < b be real numbers. By induction we define systems \mathcal{R}_n of closed, non-overlapping intervals such that $\mathcal{R}_o = \{[a,b]\}$ and $\mathcal{R}_n = \cup \{\mathcal{R}_n(R); R \in \mathcal{R}_{n-1}\}$ for every positive integer n.

<u>Proposition.</u> Suppose for every positive integer n and every closed interval R the following conditions hold:

(C1) Whenever $D \in \mathcal{D}_n(\mathbb{R})$, then $2^{k_n+1} \star D \subset \mathbb{R}$.

(C2) Whenever $k \in \{0, \dots, k_n\}$ and $D_1, D_2 \in \mathcal{D}_n(\mathbb{R})$ are such that $2^k * D_1 \cap 2^k * D_2 \neq \emptyset$, then there is $D \in \mathcal{D}_n(\mathbb{R})$ such that $(2^k * D_1) \cup (2^k * D_2) < (2^k * D)$.

Then the set $S = \bigcap_{n=0}^{\infty} U\{R; R \in \mathcal{R}_n\}$ is perfect and non-

d-porous.

Moreover, if the set S is nowhere dense and $G \supset P(S)$ is a G_{Σ} set, then G is non- \mathcal{C} -porous.

<u>Proof.</u> It is easy to see that S is nonempty and perfect. Hence we need only to prove the second part of the proposition. Denote

$$\mathcal{D} = \bigcup_{n=0}^{\infty} \{ \text{Int D}; D \in \mathcal{D}_{n+1}(R) \text{ and } R \in \mathcal{R}_n \} \setminus \{ \emptyset \} ,$$

$$G = \bigcap_{m=1}^{\infty} G_m,$$

where G_m (m=1,2,...) are open sets.

Assume that G is δ -porous. Then there exists a sequence $(P_m)_{m=1}^{\infty}$ of porous sets such that

$$G = \bigcup_{m=1}^{\infty} P_m$$
 (1)

and such that for every positive integer m, for every $x \in P_m$ and every $\delta > 0$, there exists an open interval $I \subset (x - \delta, x + \delta) \setminus P_m$ with $x \in 2*I$ (this immediately follows from [4], Theorem 4.5). We will construct a sequence $(F_m)_{m=0}^{\infty}$ of nonempty, perfect sets such that for every positive integer m, $F_m \cap P_m = \emptyset$ and $F_m \subset F_{m-1} \cap G_m$, which obviously contradicts(1). The sets F_m will be given by

 $F_{m} = R_{m} \setminus U\{2^{m}*D; D \subset R_{m} \text{ and } D \in \mathcal{Q}\}, \qquad (2)$ where $R_{m} \subset G_{m}$ belongs to some $\mathcal{R}_{r_{m}}$ with

$$k_{r_{m}} \ge m+1$$
 (3)

From (2), (3) and the conditions (C1) and (C2) it is clear that the sets F_m will be nonempty and perfect.

Let r_0 be a positive integer such that $k_{r_0} \ge 1$ and let $R_0 \in \mathcal{R}_r$. We put

 $F_0 = R_0 \setminus U\{D; D \subset R_0 \text{ and } D \in \emptyset\} = R_0 \cap S$. Suppose now that m is a positive integer and that F_{m-1} has been already defined. The set S is nowhere dense, hence $P(S) \cap Int R_{m-1} \cap F_{m-1} \neq \emptyset$ and we can find a positive integer $r_m^* \ge r_{m-1}$ and an $R_m^* \in \mathcal{R}_{r_m^*}$ such that $R_m^* \subset R_{m-1} \cap G_m$ and such that the set

 $F_{m}^{*} = R_{m}^{*} \setminus \bigcup \{2^{m-1}*D; D \subset R_{m}^{*} \text{ and } D \in \mathcal{D}\} \subset F_{m-1}$ is nonempty and perfect. We distinguish two cases: 1) $\overline{P}_{m} \neq F_{m}^{*}$. Then there exist a positive integer r_{m} and an $R_{m} \in \mathcal{R}_{r_{m}}$ such that (3) holds, $R_{m} \subset R_{m}^{*} \setminus \overline{P}_{m}$ and $R_{m} \cap F_{m}^{*}$ is infinite. We define F_{m} by (2). 2) $\overline{P}_{m} \supset F_{m}^{*}$. Because

 $P_m \cap Int R_m^* \subset U\{2*I; I \subset R_m^* \setminus P_m \text{ is an open interval}\}$ and the components of $R_m^* \setminus F_m^*$ are $2^{m-1}*D$, where $D \subset R_m^*$ and $D \in \mathcal{Q}$, it follows that

 $P_m \land Int R_m^{i} \subset \bigcup \{2^m * D; D \subset R_m^{i} \text{ and } D \in \mathcal{D} \}$ The set

 $F_m^{\prime\prime} = R_m^{\prime} \setminus \bigcup \{2^m \star D; D \subset R_m^{\prime} \text{ and } D \in \mathcal{D} \}$ is disjoint from $P_m \cap \operatorname{Int} R_m^{\prime}$, nonempty and perfect. There exist a positive integer r_m and an $R_m \in \mathcal{Q}_{r_m}$ such that (3) holds, $R_m \subset Int R_m^*$ and $R_m \cap F_m^*$ is infinite. We define F_m by (2).

<u>Corollary 1.</u> There exists a porous set contained in no \mathcal{C} -porous $\mathcal{G}_{\mathcal{T}}$ set.

<u>Theorem 1.</u> There exists a perfect non-6-porous set S such that for every finite sequence (c_1, \ldots, c_i) the set $\sum_{j=1}^{i} c_j S$ is of measure zero; hence for every countable set C the set

$$\left\{\sum_{j=1}^{i} c_{j} s_{j}; i \text{ is a natural number, } c_{j} \in \mathbb{C} \text{ and } s_{j} \in S\right\}$$

does not contain any interval.

<u>Proof.</u> First we associate with every positive integer n, every closed interval R=[c,d] and every positive integer N a system $\mathcal{D}_n(R,N)$ of closed subintervals of R and polynomial (not depending on R,N) P_n of one variable such that $|R \setminus \cup \mathcal{D}_n(R,N)| \leq n.3^{-N} |R|$ as follows.

Define the points d_m , m=0,±1,...,±N,N+1, by $\begin{bmatrix} d_0, d_1 \end{bmatrix} = \frac{1}{2} * \begin{bmatrix} c, d \end{bmatrix}$

$$d_{-m} - c = \frac{1}{3}(d_{-m+1} - c)$$
, m=1,...,N
 $d - d_{m} = \frac{1}{3}(d - d_{m-1})$, m=2,...,N+1

It follows that

 $|(c,d_{-N})| = |(d_{N+1},d)| = \frac{1}{4} \cdot 3^{-N} |R| .$ Hence it is possible to find in each interval (d_m,d_{m+1}) , m=0,±1,...,±N , a closed subinterval such that the system $\mathcal{D}_1(R,N)$ of all these intervals fulfils

 $|R \setminus \bigcup \mathcal{D}_1(R,N)| \leq 3^{-N}|R|$. The number of intervals in $\mathcal{D}_1(R,N)$ is $P_1(N)=2N+1$.

If n>1 is a positive integer and for every closed interval R' and every positive integer N the system $\mathfrak{D}_{n-1}(R',N)$ has been defined, then we define $\mathfrak{D}_n(R,N)$ as follows: For every D from $\mathfrak{D}_1(R,N)$ the endpoints of the intervals $2^{-k}D$, $k=0,\ldots,n-1$, decompose D into 2n-1 non-overlapping closed subintervals. For each such subinterval I we constructed the system $\mathfrak{D}_{n-1}(I,N)$. The system $\mathfrak{D}_n(R,N)$ is the union of all such systems $\mathfrak{D}_{n-1}(I,N)$ and of the set $\{2^{-n-1}D; D\in \mathfrak{D}_1(R,N)\}$. Then card $\mathfrak{D}_n(R,N) = (2N+1)(1+(2n-1)P_{n-1}(N)) = P_n(N)$ $|R > \cup \mathfrak{D}_n(R,N)| \leq (3^{-N}+(n-1)3^{-N})|R| \leq n.3^{-N}|R|$

We select real numbers a < b, put $k_n = n-1$ for every positive integer n and construct the set S by our construction, where we put $\mathcal{D}_n(R) = \mathcal{D}_n(R,N_n)$ for suitable N_n such that

 $(\operatorname{card} \mathcal{R}_n)^n \cdot ||\mathcal{R}_n| \leq \frac{1}{n}$ (4) for every positive integer n. This is possible, because

$$(\operatorname{card} \mathcal{R}_n)^n \cdot ||\mathcal{Q}_n| \leq ((2nP_n(N_n)+1)\operatorname{card} \mathcal{R}_{n-1})^n \cdot n \cdot 3^{-N_n} ||\mathcal{Q}_{n-1}||$$

According to Proposition the set S is non-6-porous. From (4) it follows that for every positive integer n

$$\begin{split} |\sum_{j=1}^{i} c_{j} S| &\leq \left| \sum_{j=1}^{i} c_{j} (U \mathcal{R}_{n}) \right| = \left| \bigcup_{\substack{R_{1} \in \mathcal{R}_{n} \\ R_{1} \in \mathcal{R}_{n}} \cdots \bigcup_{\substack{r_{i} \in \mathcal{R}_{n} \\ j=1}} \sum_{\substack{j=1 \\ j=1}}^{i} c_{j} R_{j} \right| \\ &\leq \sum_{\substack{R_{1} \in \mathcal{R}_{n} \\ R_{1} \in \mathcal{R}_{n}} \sum_{\substack{j=1 \\ r_{i} \in \mathcal{R}_{n}} \sum_{\substack{j=1 \\ j=1}}^{i} |c_{j}| \cdot |R_{j}| \\ &\leq i.\max\{|c_{j}|; |j=1,\ldots,i\}(\operatorname{card} \mathcal{R}_{n})^{i} |U \mathcal{R}_{n}| \\ &\leq \frac{i}{n}.\max\{|c_{j}|; |j=1,\ldots,i\}(\operatorname{card} \mathcal{R}_{n})^{i-n} \\ & \text{hence } \left| \sum_{\substack{j=1 \\ j=1}}^{i} c_{j} S \right| = 0. \end{split}$$

Theorem 2. Let K be of the first category. Then there exists a perfect, non- σ -porous set S of measure zero disjoint from K.

<u>Proof.</u> We need only to prove that for every F_{G} set K of the first category and of full measure there exists a perfect, non-6-porous set S disjoint from K. Denote $K = \bigcup_{m=1}^{\infty} F_m$, where F_m (m=1,2,...) are closed and nowhere dense. First we associate with every positive integer n, every closed interval R such that KAbdry R=Ø and with every positive integer m a finite system $\mathcal{D}_n(R,m)$ of closed subintervals of R such that

 $(F_{m} \land R) \subset \bigcup \{ Int D; D \in \mathcal{D}_{n}(R,m) \}$ (5)as follows.

Because $F_m \cap bdry R=\emptyset$ and because F_m is closed and nowhere dense, there exists a finite disjoint system - $\mathcal{D}_1(\mathbf{R},\mathbf{m})$ of closed non-degenerated subintervals of R such 480

that (5) holds and that $2*D \subset \mathbb{R}$ whenever $D \in \mathcal{D}_1(\mathbb{R}, \mathbb{m})$. Because the set K is of the first category it is possible to choose the system $\mathcal{D}_1(\mathbb{R}, \mathbb{m})$ such that $K \cap U\{$ bdry 2^k*D ; k is an integer and $D \in \mathcal{D}_1(\mathbb{R}, \mathbb{m})\} = \emptyset$.

If n > 1 is a positive integer and for every closed interval R' with K \land bdry R'=Ø and for every positive integer m the system $\mathcal{D}_{n-1}(R',m)$ has been defined, then we define $\mathcal{D}_n(R,m)$ as follows: For every D from $\mathcal{D}_1(R,m)$ the endpoints of the intervals $2^{-k}*D$, $k=0,\ldots,n-1$, decompose D into 2n-1 non-overlapping closed subintervals $I_j(D)$, $j=0,\ldots,2n-2$, $I_0(D)=2^{-n+1}*D$. We define

$$\mathcal{D}_{n}(\mathbb{R}, \mathbb{m}) = \bigcup \left\{ \mathcal{D}_{n-1}(\mathbb{I}_{j}(\mathbb{D}), \mathbb{m}); j=1, \dots, 2n-2 \text{ and } \mathbb{D} \in \mathcal{D}_{1}(\mathbb{R}, \mathbb{m}) \right\} \cup \left\{ 2^{-n+1} \neq \mathbb{D}; \ \mathbb{D} \in \mathcal{D}_{1}(\mathbb{R}, \mathbb{m}) \right\} .$$

We select real numbers a < b not belonging to K and put $k_n = n-1$ for every positive integer n, $\partial_n(R) =$ $= \partial_n(R,n)$ for every closed interval R with K \wedge bdry R=Ø and for every positive integer n. We construct the set S by our construction. It is easy to see that the conditions (C1) and (C2) hold and that for every positive integer n, $(U\mathcal{R}_{n+1}) \cap F_n = \emptyset$. Therefore S $\wedge K = \emptyset$ and, according to Proposition, the set S is non- δ -porous.

<u>Corollary 2.</u> There exists an uncountable family of disjoint non-6-porous perfect subsets of the real line.

<u>Remark.</u> By combining the constructions of $\mathcal{D}_n(\mathbf{R})$

from proofs of Theorems 1 and 2 it is possible to construct the set S from Theorem 1 disjoint from a given set K of the first category.

References

- 1. E.P.Dolzenko: Boundary properties of arbitrary functions, Izv. Akad. Nauk SSSR Ser.Mat.31(1967), 3-14
- 2. J.Foran, P.D.Humke: Some set theoretic properties of G-porous sets, Real Anal. Exchange, Vol.6, No.1(1980), 114-119
- 3. P.D.Humke: Some problems in need solution, Real Anal. Exchange, Vol.7, No.1(1981), 31-41
- 4. L.Zajíček: Sets of & -porosity and sets of & -porosity(q),Čas. pro pěst. mat. 101(1976),350-359

Received May 5, 1983.