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Constructions of Some Non-& -porous Sets on the Real

Line

The class of ¢ -porous sets introduced by
E.P.Dolzenko [1] often appears as a description of
exceptional sets in case these are of measure zero and
of the first category. The fact that the class cf
d-porous sets is strictly contained in the class @
of sets which are of measure zero and of the first
category was demonstrated by L.Zajiek [4]. Since the
class & has the properties
(i) if a Borel set A does not belong to L, then A+A
contains an interval, and
(ii) each disjoint family of Borel sets not belonging
to A is countable,
it is natural to ask if these properties also honld with
A replaced by the class of d-porous sets. These problems
were posed by P.D.Humke [3] and W.wilczynski at the
symposium "Real Analysis" held in August 1982 in Esztergom,
Hungary. J.Foran and P.D.Humke [2]} showed some "enveloping"
properties of & -porous sets and posed a problem whether
there exists a porous set contained in no ¢ -porous
G5~ set.

Here we give positive answer to the last questioh
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and prove that the class of & -porous sets has neither
of the properties (i) or (il) even tor perfsct sets. To
congtruct the corresponding examples we give a general
method of the construction of perfect non-dJd -porous
sets, a special case of which has already been used By
L.Zajisek [4] in his construction of perfect non- g -
porous set of measure zero.

For a subset S of the real line we define the set

P(s) = {x€S; limsup 1(3,x, )/ >0} ,
§>0

+
where 1(S,x,J ) is the length of the longest subinterval
of (x=& ,x+d ) disjoint from S. The set S is said to be
porous if P(S)=S and is said to be G -porous if it can
be written as a countable union of norous sets. The
Lebesgue measure of the set S will be denoted by |5|.

By an open (closed) inter#al we mean any nonempty open
(closed) connected subset of the real line. If x is a
positive real number and I an open (closed) interval,
then x*I is the open (closed) interval with the same
centre as I and with length fx»I}=x-[I|. Through the
paper we will distinguish the set of positive integers

and the set of natural numbers (containing the number

Zero).

A general method of construction of perfect non-

G -porous sets.
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Assume that
(a) (kr)§21 is an arbitrary nondecreasing sequence of

natural numbers such that %iﬂn kn=00 » and

(b) for every closed interval R and every positive
integer n, a finite system :bn(a) of closed sub-
intervals of R is given.

For every closed interval R and every positive
integer n we define the systenr aLn(R) of closed, non-
overlapping subintervals of R as follows: The set E of
all those endpoints of the intervals Zk*D, k=0,...,kn,
D€ Qn(R), which belong to Int R decompose R intc
t4+card E c¢losed, non-overlapping (necessarily non-
degenerated) subintervals of R. The systeﬁ a}n(R) is
the system of all such subintervals of R which are not
subsets of any element of aDn(R).

Let a<b be real numbers. By induction we define
systens dln of Qlosed, non-overlapping irtervals such
that 02/0={[a,'b]} and fR,n=U{0-ln(R); Ré&n_1} for
every positive integer n.

Proposition. Suppose for every positive integer n

and every closed interval R the following conditions
hold:

kn+1
(C1) Whenever D€ a'Z)n(R), then 2 *DCR.,

(c2) Whenever k€ {0,...,k } and D,,D, €D _(R) are such

k*Dp 2]‘*1)2 # @, then there is D€ 2 _(R)

such that (2%D,)U (2%D,) < (2%D).
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[ o)
Then the set S=() U{R; R€ &’n‘ is perfect aad non-
n=0

& -porous.
Moreover, if the set S is nowhere cense and G DP(S) is
a GS set, then G is non-d -porous.

Proof., It is easy to see that S is nonempty ard
perfect. Hence we need only to prove the second part of

the proposition. Denote

[e e
2 = U {int D; DED ., (R) and Reaz,n} \(g} ,
n=0 '
%
G = G,
m=1 0

where G (m=1,2,...) are open sets.
Assume that G is & -porous. Then there exists a
sequence (Pm)$-1 of porous sets such that
oo
¢= UP (1)
m=1
and such that for every positive integer m, for every
x € Pm and every 5>0, there exists an open interval
IC(x-G ,x+J)\P_ with x€2xI (this immediately
follows from [4], Theorem 4.5). We will construct a
sequence (Fm)n;“;o of nonempty, perfect sets such that
for every positive integer m, F N P.= 2 and
F,CF _4NG,, which obviously contradicts(1). The sets
Fm will be given by
F, = R\ U{Zm*D;DCRm and DEJ} (2)

m

where R_CG_ belongs to some R_ with
m o m 4 T,
476



k. = m+l ., (3)
T

From (2), (3) and the conditions (C1) and (C2) it is
clear that the sets Fm will be nonempty and perfect.
Let r, be a positive integer such that k 21 and

)
let R, eﬂro. We put

F, = R,NU{D; DcR and ped} =R, NS .
Suppose now that m is a positive integer and that Fm—1
has been alreadj defined. The set S is nowhere dense,
hence P(S)AInt R _,NF _, # & and we can find a positive
>
integer rrzx"rm-‘l‘
and such that the set
= n-1,n. ’ :
B2 = R2 N U{2" %D; DcR?! anda D€} € F__,
is nonempty and perfect.We distinguish two cases:

and an R} € &r,. such that KfCR__

NG
n m

1

1) 5m#> Bl Then there exiet a positive integer r and

an RmGCQrm such that (3) holds, R CR’NP and R NF?

is infinite. We define F_ by (2).
2) P, F). Because

P NnInt R} C U{2#1; ICR!\P_ is an open interval}
and the components of R’\F' are 2m'1*D, where D cR’
and DD , it follows that

P 0 Int R*C U {2"xD; DCR! and Ded} .
The set

-— m .

P!’ = R’ N\ U{2"#D; DCR’ and D€}

is disjoint from Pmn Int Rr;n’ nonempty and perfect. There
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exist a positive integer r, and an R € O?.r such that
m

(3) holds, R CInt R} and R _NF!’ is infinite. We define
F, by (2).

Corollaxy 1. There exists a porous set contained in

no & -porous Gy set.

Theorem 1. There exists a perfect non- 6 -porous

set S such that for every finite sequence (01,...,01)

i
the set > ch is of measure zero; hence for every
3=1

countable set C the set

&C;mdSJGS}

i
{Z c 4845 i is a natural number, ¢
j:

does not contain any interval.
Proof. First we associate with every positive
integer n, every closed interval R—‘-fc,d] and every
positive integer N a systen iZ)n(R,N) of closed subintervals
of R and polynomial (not depending on R,N) Pn of one
variable such that |R \UD_(R, )£ a.5 VIRl as follows.
Define the points dm’ n=0,+1,...,+N,8+1, by
[do,d."] = %*[c,d]

-C) ) m=1,¢oo’1\'

~m+1

= 4

d-dy, =3@-d_)) , m=2,...,N
It follows that

He,a )l = Hag,,,)l = 137MRy .

Hence it is possible to find in each interval (dm,d
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m=0,+1,...,2N , a closed subinterval such that the
system a2)1(R,N) of all these intervals fulfils

IR N U, (RN £ 37N Ry,
The number of intervals in @,‘(R,N) is P, (N)=2N+1,

If n>1 is a positive integer and for every closed
interval R’ and every positive integer N the systen
2 ,_4(R?,N) has been defined, then we define D (R,N)
as follows: For every D from a’b1(R,N) the endpoints of

kﬁrD, kK+O,44.yn=-1 , decompose D into

the intervals 2~

2n-% non-overlapping closed subintervals. For each such

subinterval I we constructed the system vﬁn_q(I,N).

The system efl)n(R,N) is the unionvof all such systems

D__,(I,N) and of the set {27""*D; De D, (R,1)} .Then
card oZ)n(R,N = ’2n+1)(1+(2n-1)1>n_1(u)) =P ()

IRNUD (R, % 37Fa(n-1)3")IR1 £ n.37MR)

We select real numbers a<b, put kn=n-1 for every
positive integer n and construct the set S by our
construction, where we put aZ)n(R)= Q)n(R,I\Tn) for suitable
Nn such that

(cara ® ) Ue | £ 1 (4)
for every positive integer n. This is possible, because

(cara @ )" W@ | & ((2nP (N )+1)card & _ )" .

-N
n
-n3 *lue .| .
According to Proposition the set S is non-6é -porous.

From (4) it follows that for every positive integer n
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i.max{lcji; .j=1....,i}(card &'n)‘!uw’n;
i . . . j -
é‘g.max{lcjt; 3=1,...,1}(caru abn)l n

h }i s}=0
ence j=1cj =V

Theorem 2. Let K be of the first category. Then

there exists a perfect, non-G -porous set S of measure
zero disjoint from K.

Proof. We need only to prove that for every Fg
set K of the first category and of full measure there

exists a perfect, non-G@ -porous set S disjoint from X

-—

(@)

Denote K=\UP_, where »_ (m=1,2,...) are closed and
m=1 ® n

nowhere dense. First we associate with every positive
integer n, every closed interval R auch that KNbdry R=g
and with every positive integer m a finite system
o‘Dn(R,m) of closed subintervals of R such that

(FynR) € U{Int D3 D€ D (R,m)} (5)
as follows.

Because F N bdry R=g and because F . is closed and
nowhere dense, there exists a finite disjoint system .

@1(R,m) of closed non-degenerated subintervals of R such
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that (5) holds and that 24D cCR whenever D 6@1(R,m).

Because the set K is of the first category it is

possible to choose the system o, (R,m) suck that

xn U{vdry Zk*D; k ie an integer and D €e2>1(R,rn)} =g,
If n>1 is a positive integer and for every closecd

interval R’ with KNnbdry R’=Z and for every positive

integer m the system & _,(R’,n) has been defined,

then we define n(R,rn) as follows: For every D from

2, (R,m) the endpoints of the intervals 2~kxp,

k=0,...,n-1,decompose D into 2n-1 non-overlapping closed

subintervals 1,(D), §=0,...,2n-2, I,(D)=2""*"xD. we

define

D _(R,m)= U{abn_1(lj(D),m);j=1,.. .,2n=2 and D € & R,m)} v

uf2™*%p; peR, ®,m)} .

We select real numbers a<bd not belonging to K
and put k =n-1 for every positive integer n, o n(R) =
=€Dn(R,n) for every closed interval R with Kntdry R=¢f
and for every positive integer n., We construct the set
S by our construction. It is easy to see that the
conditions (C1) and (C2) hold and that for every positive
integer n, (UR__,)\P = 2. Therefore SNK = @ and,
according to Proposition, the set S is non- & ~porous.

Corollary 2. There exists an uncountable family of
disjoint non- & -porous perfect subsets of the real line.

Pemark. By combining the constructions of an(R)
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from proofs of Theorems 1 and 2 it is possible to
conatruct the set S from Theorem 1 disjoint from

a given set K of the first category.
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