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 Selective differentiation of typical continuous functions

 The notion of selective derivative was introduced by

 R.J. O'Malley [5] who presented some interesting theorems and

 problems on selective derivatives.

 R.J. O'Malley has proved that for every continuous function

 there exists a selection S and a point xQ such that f has
 a selective derivative at x . His question was: If f is a

 O

 continuous function, for how large a set A does there have to

 exist a selection S with respect to which f has a selective

 derivative at every point of A.

 In this paper we shall show that the set A has Lebesgue

 measure zero and is of the first category.

 To simplify the later computation we shall use [a,b] to

 denote the closed interval having endpoints a and b regard-

 less of whether a>b or a <b. By a selection we mean an

 interval function s([a,b]) for which a<s([a,b]) <b holds

 fox* every 0<£a<b<^l. We define the lower selective deriva-

 tive f'(x) of the function f (x) by
 S

 .f-(x) = lim inf *(8(ix.x+hl)) - f(x) .
 3 h-»0 s([x, x+h]) - x

 It should be clear from the above definition how we would define

 the upper selective derivative, sf'(x), selective derivative

 sf'(x) and one-sided selective derivatives.
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 Let C[0,1] denote the class of continuous functions on

 [0,1] furnished with the "sup" norm īļfļj = max ļ f (t) ļ .
 0£t<a

 By "typical" continuous functions we mean those which form

 a residual subset in the complete metric space C[0,1]. Now we

 shall give several basic theorems and refer the reader to [5]

 and [4] as important sources.

 Theorem A: (See [5], Lemma 1.)

 Let f : [0,1] ■+ R and S be a fixed selection.

 Let P = {x : f (s (f'x*x+h !) ) - f M > o for all h
 n s ([x,x+h]) - x

 with ļhļ <"•) •

 If x<y and both belong to P and if y - x < ~, then
 n n

 f (x) < f (y) . Hence f is of bounded variation on P .
 n

 Theorem B: (See [5], Lemma 2.)

 Let f : [0,1] -» R and let S be a fixed selection. Let

 P be defined as above and let C>1 P be its closure. Let
 n n

 x<y be any two points such that

 (i) the distance between x and y is less than -

 (ii) there is a decreasing sequence {xv K ] of points of P K n

 converging to x

 (iii) there is an increasing sequence {y^} of points of

 P^ converging to y

 (iv) Min [gf'(x), ef'(y)] > - 09 .
 Then f (x) < f (y) .
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 Theorem C: (See [4].)

 If f : [0,1] -» R has a selective derivative sf'(x) for

 a given selection S, then the set of points of continuity of

 sf'(x) is everywhere dense in [0,1].

 Theorem D: (See [2].)

 Let f be defined on a perfect set P. Suppose f satisfies

 condition (i) or condition (ii) below.

 (i) f has the property of Baire on P.

 (ii) f is measurable with respect to some non-atomic measure

 for which Lusin's theorem holds and such that

 H(P) >0.

 Then there exists a non-empty perfect set Q c P such that fļ^
 is differentiable at all x c Q (infinite derivatives allowed) .

 Theorem E: (See [1], page 60.)

 Let f be a continuous function defined on R and let

 -® < a < 80 . If the set fx : D+f (x) > a] is dense in R and

 if there exists an xq € R such that D+f (xQ) < a, then the
 set (x : D+f (x) = a] has cardinality c, the cardinality of
 R.

 Theorem 1.

 Let f : [0,1] ■+ R be a Lebesgue measurable function. Then

 there is a selection S and a set P of cardinality c such

 that f has a selective derivative (possibly infinite) at all

 x € P.
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 Proof.

 By Theorem D we have that there is a perfect set Q c [0,1]

 such that fļg is dif ferentiable at all x € Q. Let
 [a,b] c [0,1].

 If (a,b) 0 Q 4 ÇÍ, then let s([a,bj) be any point

 xQ Ç Q O (a,b) . If (a,b) H Q = then let s([a,b]) = .
 We denote the set of bilateral limit points of Q by P.

 Then Q = P U C where C is at most countable. Let x Ç P
 O

 and hn •* 0+. Then (x,x+hn) 0 Q 4 for every n and
 x. = s([x,x+h ]) 6 (x, x+h } 0 Q c Q and x, -» x+ . h nJ/ n h o
 n n

 Hence

 f (s ([x 2 ,x Q +h ]} ) - f (x ) f^XhJ Q ~ f^X°^
 lim

 n-»« s([x ,x +h ]) - x n- x - x
 n

 -

 Analogously, if h -» O , then

 f(s([x -h ,x ])) - f(x )
 lim

 n-»- s([xo-hn,xo]) - xo

 Since the sequences were arbitrary,

 sf"(xo) = sf'(xo) = f 1q(x0) •

 This completes the proof of Theorem 1.

 The next example shows that the set P of cardinality c

 cannot be arbitrary even if we assume that f is an absolutely

 continuous function.
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 Example 1.

 Let A be a subset of [0,1] such that for each interval

 [a,b] c [0,1] H([a,b] HA) >0 and u([a,b] 0 ([0,1] ' A)) > 0.

 Let f(x) = J xA(t)dt. A o A

 Then f'(x) = (x) almost everywhere.

 Let B = {x € [0,1] f ' (x) = xA(x)] and P = [0,1] ' B.
 Then u(P) = 0. Let a € (0,1) . Then {x : D^f (x) J> a] ^

 [x : f'(x) = 1} is dense on [0,1] and there exists an

 x^ € [0,1] such that D+ f (x ) = f ' (x ) = O < a. Hence o o o

 -f"

 [x : D f (x) = a] has cardinality c. Then P 3 fx : D f (x) = a]

 has cardinality c. We suppose that there exists a selection S

 such that f has a selective derivative at all points x € P.

 Then the function f has a selective derivative at all points

 x € [0,1] and sf'(x) = ' (x) almost everywhere. Let
 A

 [a,b] c [0,1]. Then ose sf'(x) = 1 and consequently sf'
 [a,b]

 is an everywhere discontinuous function which contradicts

 Theorem C.

 Theorem 2.

 There exists a continuous function f : [0,1] -♦ R such that

 for every selection S the set of points at which the selective

 derivative (possibly infinite) of the function f exists with

 respect to S is of measure zero and of first category. In

 fact the set of such functions is a residual subset of C[0,1].

 Proof.

 Let f be a continuous, nowhere approximately differentiable
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 function on [0,1] (See [3].) Let S be a fixed selection.

 Let P be the set of those points in which a selective derivative

 exists (possibly infinite) with respect to S. Let

 = {x € [0,1] : gf'(x) > - ») and p2 ~ ^'x ç f0»1] : Sf'(x) < 00 1 -

 Then P C Pl U P2. Let pj = (x € [0,1] : f ^fc^ļ1)' "x f (X> >

 -n for all h with ļhļ < - } . Then P^ c (J p" c |J Cl P^ where
 n n

 di P^ denotes closure of P^. Suppose that there is nQ such
 n

 that M- (<3-j£ Pļ°) > 0. Let g (x) = f (x) + n x. Then the set
 n

 P^° will be precisely the set Ci P^ of Theorem A for the
 function g (x) . Let Q denote the set of bilateral limit points

 n . -

 of Ci Pj° and = Q n , -^] for i = l,2,...2n. Then
 by Theorem A and Theorem B g is increasing on Qi for each
 i and therefore g is measurable and of generalized bounded

 n

 variation on Ci Pļ°* Hence the function g is approximately
 n

 derivable at almost all points of Ci P^° which contradicts

 the assumption of the function f (x) - g (x) - nQx. Therefore

 for every n 's(Ci P^) = O and C-i P^ is nowhere dense set.

 Hence the set P^ is of measure zero and of first category.
 Let h (x) = -fix). Then h (x) - -sf (x) and

 S

 P2 = {x Ç [0,1] Sf'(x) < »} = {x € [0,1] gh ' x) > - »} .
 Hence = ® an(^ a set first category and

 also P c P^ U ?2'
 Because the set of nowhere approximately dif ferentiable

 functions is a residual subset of C[0,1] ([3]), the theorem

 is proved.
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 Theorem 3 .

 Let f : [0,1 J -♦ R and K c [0,1] satisfy the following

 conditions :

 (i) if X € K and f'(x) exists, then ļf'(x) | < «

 (ii) for every x € K D^f (x) 0 D^f(x) ^ ÇÍ where
 Dj^f (x) (DRf(x)) denotes the set of left-sided
 (right-sided) derived numbers at x.

 (n>
 (iii) There exists a number n such that KOK = 0

 o

 (no)
 where K denotes the set of limit points of

 (n -1)
 K ° and K° = K.

 Let g : K -+ R bè a function such that for every x Ç K

 g (x) € D^f (x) n DRf (x) and ]g(x) ļ < ». Then there is a
 selection S such that at all x Ç K sf'(x) = g (x) .

 The assumptions (i) , (ii) , (iii) are necessary -

 (i) For every set K such that yi (K) =0 there exists

 the continuous function f such that f'(x) = «

 at all x € K. (See [1], page 229.)

 (ii) By [5], sDj^f (x) c Dj^f (x) and sDRf (x) cr DRf (x)
 where sDT f (x) (sDnf(x)) denotes the set of left- Jj K

 sided (right-sided) selective derived numbers of x.

 If DT f (x) n D_f(x) = ÇÍ, then sDT f (x) n sD_.f(x) = ÇÍ.
 i-j K Li K

 (iii) Let P denote the set of bilateral limit points of-

 the Cantor set C. The set C is of measure zero

 and of the first category. We define

 fx if x e [o,i] ' p
 fix) =<

 [0 if X € P
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 For every natural n C n c ^ = C. If x € [0,1] ' C, then

 f'(x) =1. If x € C ' P, then D^f (x) 0 DRf (x) = {1} and if
 x Ç P, then DLf (x) 0 DRf (x) = {0}. If there exists the
 selection S such that the function f is selectively

 differentiable with respect to S at all x € C, then

 sf'(x) =1 at x € C ' P and sf'(x) =0 at x 6 P. Of

 course sf'(x) = 1 at x € [0,1] ' C and the selective derivative

 exists and it is finite at all points of [0,1]. This is impossible

 because f is not a Darboux function nor is it Baire 1. (See [5],

 Theorem 11.)

 Proof of Theorem 3 .

 Let x € K. Then g (x Ì € D_f(x ) H D^fíx ) and there are
 O O i-j O K O

 two sequences such that xn -» xq and for every n

 xn > xo and yn xQ , yn > yQ and

 f(xn> " f(xo> f(yn) " f(xo}
 lim

 n- n * xo n- yn " xo °

 Since for every k ^ 2 c k , k d K n K ' K" n K 3 ...
 (n-D (n )

 . .. 3 K n K 3 K n K = 0' Let [a,b] <= [0,1].

 f (a ) - f (a)
 s([a,b])€{a >a:a„-»a lim

 n n ^ _ a - a ^ n-*» _ n

 if and only if

 1) a € K and b i K

 or

 2) a € K fi K' and b i K 0 K'

 or

 (p)
 3) there is a natural number p such that a € K fi K
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 a 4 K OK and there is a natural number s < p
 such that b € K n k and b i K D K ^s+1^ .

 f (b ) - f (b)

 s ([a,b]) € {bn < b : bn b lim
 n-»® n

 if and only if

 4) b 6 K and a Ć K

 or

 5) b e K n K and a i K n K'

 or

 6) there is a natural number p such that b € K o K ^ ,
 b i K fi K and there is a natural number s < p

 such that a € K n K ís* and a ¿ K n K (s+1* .

 If (1) - (6) aren't satisfied, then let s([a,b]) = Let

 xo £ K and K = K°. Then there is a number p 6 {O, 1, 2, . . . nQ-l}
 such that X € K n K ^ and x ^ K (1 K . Therefore, there

 o o

 is a & > O such that (x - 6, x + ô) ' n K n K ^ = {x ) . o o ' o

 Let ļhļ < 6. If O < h < Ô , then [ xQ , xQ + h ] a [ xQ , xq + 6)
 fsi v

 and x + h 6 K OK where s<p ^ or x + h jt K if p c' = 0, O ^ O c'

 and x + h K 0 K ^ . Therefore, s ([xQ , xQ + h]) €
 on ^ (x°) - f (x )

 {xn on > xq : xn -» xQ lim

 n-*® xn - xQ
 then [ x - h , x^ ] cr (xä - 6 , x ] , x - h € K H K v ' where

 o o o o o

 jí < p or x-h^K if Z = O, and x - h Ć K H K ^ .
 o o

 Therefore

 O O £ " f 'Xn'
 s([x -h,x0]) € (xn O < x0 : xn O x0. lim x _ x

 n-»® n o
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 Hence

 f (s([x , X +h])) - f(x )
 s f ' (x) = lim

 h -»O s ( [xQ , xQ + h ]) - xQ °
 and the theorem is proved.
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