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The theory of functional complexity deals with the relative structure
characteristics of functions, and one of its aims is to develcp criteria
which will make it possible to assign numerical measures to the compiexity
of given classes of functions. The general notion of functional complexity
can be traced to nomography, but the present day interest in the subject
and the direction its research has taken grew cut of Hilbert's Problem 13
of his famous Paris lecture of 1900 {11]. Here we are interested in functional
complexity as it applies to continuous functions of two or more variables.
Their relative complexity will be decided according to their representability
in terms of superpositions, using as a measure of comparison that two
functions have the same complexity if they can be composed in a finite
number of steps from functions bg]onging to the same class or classes. We
see at once that the answers we can expect will depend con the checices of
superpositions and on the conditions imposed on the classes of functions
allowed in these superpositions: for example, these may be required to be
of a certain form, or to satisfy algebraic or differentiability conditions.
The purpose of this talk is toc introduce this general circle of ideas through
a discussion of selected results in this area. A comprehensive introduction
to the subject from a variety of perspectives can be found in |1, 5, 16, 23,
and 30].

We begin with an example: The elementary functions
Xy + Xz + yz
; 1

sinxy 2xY

can be represented in terms of a finite superposition of continuous functions of
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one variable and the binary operation of addition. This fcllows from trivial
identities and the observation that
Xy = %(x + y)° —%(x - y?
= u(a(x) + bly)) + v(c(x) + d(y)),
where
v(t) = 142

4
b(t) = c(t) = -d(t) = t .

u(t)

it

a(t)
Hence, the above functions can be said to have the same functional complexity
if our measure is representability with continuous functions of one variable.
If instead we impose the condition that the superposition functions must be
algebraic, then these particuiar functions will no longer share the same
complexity.

In its most general form, the problem under consideration can be
conveniently described by means of a conmuting diagram: Consider metric
spaces X, Y, and T , and a given mapping f : X~—>Y. We are interested
in finding mappings H : X—=T and G : T—=Y , such that f can be re-

placed with the superposition G ¢H :

(1) f =g oH .
/ﬂT ’
W G
Diagram 1 - R
g Y
X S S W
f

Representations such as (1) are of particular interest when the mapping
H dis a fixed embedding of X into T , and when (1) is valid for a

sufficiently large class of functions f. We will retain this particular
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aspect of generality in our discussicri, but the setting will be restricted

to the Banach spaces C(En)

cartesian product EXE X... xE

having range on the real line R.

n- d1mens1ona1 Euclidean space will be designated by R"

of continuous functions defined on the n-fold

En

of unit intervals E ={1, 2] and
The norm will be the uniform norm, and

. With this restriction,

we rep1ace the above commuting d1agram with the following:

//4
R/
,4/
Diagram 2 4
"
f
Beginning with a class FnCZC(En

f:
we wish to determine an integer

H:
for which the following is true:
continuous mapping

G
such that (1) holds. The classes

such as the entire space C(E"),

or its p-times continuously differentiable functions.

that H be independent of the class Fn

on the cheoices available for the

the following is true:

o
=
v
=3

iV
o

\Eg
> R

of mappings

~N
g'—R

N and a continuous embedding
En-qa-RN

For each function f eAFn there is a

N

: R"—=R

Fn are assumed to be sufficiently large,
all its polynomials or analytic functions,
This and the requirément
impose an important restriction

mappings H, since for any such class Fn
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Given arbitrary points x # y in " , then there exists a function

fe F, such that f(x) # f(y).
This means that the class Fn separates the points of E" , in the sense that
any two distinct points have distinct imagés for some function fe‘Fn . Since
GeH(x) = goH(y) whenever H(x) = H(y) , it is necessary for the fixed mapping
H to also separate the points of E" . This implies that the embedding H
is a homeomorphism of E" into RN . This ijmportant aspect of the problem
will be touched on only peripherally here, and for a fuller discussion we
refer to [ 22,23,26,27.

What we are leading up to is the remarkable theorem of Kolmogorov
which states that for each natural number n = 2 the functions of C(En)
are finite superpositicns of functians of C(E) , but to better understand
the implications of this result and how it relates to the question of functional
complexity, we shall look briefly at the genesis of the general problem.

Nomography, you may recall, deals with the problem of finding graphical
solutions to functional equations through suitable parametrizations. Interest
in this area of mathematics peaked in the late 1800's, when d'Ocagne published
a definitive treatise on the subject L17}. For nomographic constructions,
however, it is generally necessary that no more than two parameters be used
at any given stage of the process. This tells us, for example, that the
roots of polynomial equations of degrees 1,2,3, and 4 -- when regarded as
functions of the coefficients -- can be obtained through nomographic con-
structions, because the method of radicals reduces the solutions into steps
which require at most two parameters at a time. In fact, consider the general
polynomial equation

£+ xlf"°1 A L

2 n-1

where we have already eliminated the leading coefficient using division.
420
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1 can be eliminated with the transfofmation

The term containing f'
f=gqg- xl/n ;

the constant term X, can be replaced by 1 again using division. Less
known today is the fact that aiso the terms involving 2 apg £1°3
can be eliminated with the help of the so-called Tschirnhaus transformations
which generalize the method of radicals. Thus, the general polynomial equation
of degree 6 can be reduced to the form

O e yfr1=0
by using only algebraic operations, and the roots are therefore obtainable
through nomographic constructions (as are the roots of the general polynomial
equation of degree 5). I mention in passing that the above identity for the
product xy can be used repeatedly to express the roots of pclynomial equations
of deqrees n < 4 in terms of finite superpositions of algebraic functions
of one variable and addition. Now, using algebraic reductions, the general
polynomial equation of degree 7 can be reduced to the equivalent form
(2) £ x4 yf2 +zf+1=0.
But in this form, the roots are still functions of three variables, so
that nomographic construction is not possible.

Hilbert has realized that for the purposes of nomography it was not
necessary to restrict the reductions to alebraic operations, and that any
continuous transformations would do. He thus attacked the seventh degree
polynomial equation with more general tools. Convincing himself that it
was not possible to eliminate one of the three remaining coefficients in
equation (2), he conjectured in the above mentioned Problem 13 that "the

</ 2

equation of the seventh degree f° + xf? + yfo + zf + 1 = 0 1is not sclvable

with the help of any continuous functions of only two arguments." It is
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interesting to note that Hilbert's formulation of the problem is in two
parts, one purely algebraic and one purely analytic, and that he included
the problem in the algebra section of his lecture -- a choice which affirms
the crigin of the problem and also indicates his own outlock. He returned to
the 13th problem in 1927 with the surprising result that the gereral poly-
nomial equation of 9th degree can be reduced to the equivalent form
£ xft ey P i tfa1=0.

He also discussed more extblicitly the notion of functional complexity in
this paper, but it is important to note that his method for cbtaining the
above reduction was algebraic[12].

For those not familiar with this literature, it may be of interest
te mention that in the formulation of Problem 13 Hiibert made the incorrect
statement "I have satisfied myself by a rigorous process that there exist
aﬁa]ytical functions of three arguments x, y, z which cannot be obtained
by a finite chain of functions of only two arguments." It is clear, however,
that this was only a slip on Hilbert's part, and that he meant analytic
functions; it was well known to him that every function of three variables
is a finite superposition of functions of two variables.

Bieberbach attributed this slip to the fact that 13 was an unlucky
number, and this was somewhat prophetic on his part: In 1930 he published
what he thought to be a solution to Hilbert's conjecture by showing that
there are polynomials of three variables which are not the uniform limit
of superpositions of polynomials of two variables. His argument rested on
the following observation: A general polynomial of degree n 1in three
variables has n3 arbitrary coefficients, whereas k superpositions of
polynomials of degree n 1in two variables have kn2 arbitrary coefficients.

2

Hence, if we fix k , then n can be taken to be so large that n3:> kn-,

implying that the coefficients must satisfy certain algebraic conditions.
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It can be shown, however, that there exist coefficients which do not satisfy
any such relationships. Bieberbach made a curious mistake in this paper [3]:
he applied the Weierstrass approximation thgorem to a compact domain while
letting the boundaries tend to infinity. This error was discovered by Kamke
and acknowledged by Bieberbach in a note published in 1934 [4]. In this note
Bieberbach proposed a new lemma which would have established the correctness
of his result, but the proof cof the lemma eluded him. This was just as well,
because eventually it also turned out to be incorrect.

Now, we know that smoothness conditions provide a usefu] measure of
functional complexity, and it was Hilbert's notion that the number of vari-
ables of a function is also a useful measure in the following sense: Consider
a continuous function f of n variables, and & class Sm of continuous
functions of m< n variables. If the function f can be represented as
a finite superposition of functions of Sm , and if m 1is the least natural
number for which thié is true, then we can use m as a measure of the func-
tional complexity of f relative to the class Sm. We can expect more
interesting answers when the classes Sa have suitable restrictions, and
imposing smoothness conditions is clearly in tenor with Hilbert's Problem 13.
The earliest significant result along these lines was obtained by Ostrowski
in 1920 [ 20]. He proved that the analytic function

tix.y) = ¥ x"n¥
0=1

cannot be obtained as a finite superposition of infinitely differentiable
functions of one variable and algebraic functions of any number of variables.
The most profound result in this direction was proved by VituSkin in 1954
{30]: let q=p+a,where p is a non-negative integer , and 0 < a< 1;

let wg be the class of p times continuousiy differentiable functions of
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n variables defined on a closed and bounced region of R" , and whose

pth partial derivatives belong to the class Lip(a). If we use

|=

(a=1)

as the measure of functional complexity of the class wg , then not all

functions with complexity can be represented with superpositions of

n
q
n' n
._'.\< .q_ .

The above theorem of Vitugkin shows that the number of variables in

functions with complexity

£

combination with a differentiabiiity condition can serve as a useful measure
of functional complexity. It also establishes an inevitable descent in the
smoothness of the functions used in superpositions, in the sense that a
decrease in the number of variables forces a decrease in smoothness. Thus,
for example, not all functions of three variables with p > 1 continuous
pariial derivatives can be represented with superpositions of functions of
two variables having p continuous partial derivatives. A number of other
important results in this general direction have been obtained by VituSkin
and Henkin (see, for example, | 31] and [ 32]); some still open questions can
be found in | 24].

We now turn our attention to Koimogorov's theorem L14}. In its simplest
form it can be stated as follows:

Theorem 1.

For each natural number n = 2 there exist monotonic increasing functions

in each variable n

= - h =1,2, ..., 2n + 1

(3) Hola) = 2 hpglry) ,

hpq ¢ C(E), with the property that for each function fe C(E") there are

continuous functions g_¢ C(E) such that
2n+1

(4) flx) = 2 9° Ho(x) -
q=1

q
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We observe at once that this theorem refutes Hilbert's conjecture, since
it demonstrates that all classes of functions C(En) for n=2 2 have the
same functional complexity as the class C(E). It also tells us something
very important about uniform continuity. Namely, that the increase in degrees
of fréedom with increasing n does not increase the functional complexity,
implying fhat the 'worst' functions of C(E) are as ‘bad' as the ‘worst’
functions of C(E"). Whether a similar statement can be made about continuous
functions which are not necessarily uniformly continucus remains an open
question. Doss L8] has obtained a result in this direction:‘Using Ostrand's
theorem [ 19] which states that Kolmogorev's theorem is true for compact metric
spaces of finite covering dimensiorn, he was able to show that continuous functions
defined on an open cube or open ball or all of R" can be represented with
4n superpositions of the form (4), except that the fixed functions Hq are
functions of n variables not expressible in terms of continuous functions
of fewer variables. This theorem thus lacks the most important property of
the Kolmogorov type superpositions, and it would be interesting to determine if
KoTmogorov's theorem can be established without compactness.

An important improvement in Kolmogorov's construction was obtained by
Fridman [9] who showed that the fixed functions hpq in (3) can be con-
structed to belong to the class Lip(1). It was observed by Lorentz [15] that

the 2n + 1 continuous functions in Theorem 1 can be replaced by a

g
q
single continuous function g; the author has shown that instead of (3)

we can use functions

n.
(5) H) = 2 Ah(x) q=1,2,...,20+1,
e R

where the functions hq C(E) are monotonic increasing and belong to the

class Lip(1) and A{ se-+» A are rationally independent constants[?Z,ZS].
425



I mention in passing that the 2n + 1 functions hq can be replaced by
linear translations of a single continuous function with the same properties
[25]. As far as the number of summands 2n + 1 in formula (4) is concerned,
it turned out to be the best possible: Using Kolmogorov's construction, Doss
17] was able to show that this is the case when n = 2. In a more general
setting, Sternfeld has obtained very interesting results which provide great
insight into Kolmogorov's theorem, and among the results he obtained was
a theorem stating that the smallest number of summands in formula (4) is
2n + 1 forall nx=2 [28].

Let us now set
’ H2n+1)'
With this notation, we see that formula (4) is of the general form f = Go H,

so that Theorem 1 can be interpreted by means of the commuting diagram 2

with N =2n + 1. Consider the subspace L(Ezn+1)c: C(E2n+1) of linear
functions o+l
(6) F(X) = L___S f (X )

q = 1 q q

and the system of parametric equations

Xl = X(X 9--~,xn)
(7) Xz = XZ(XI,...,Xn)
Kone1 = Xoner (¥o-e 0%y

or, more specifically,

(8) ; h (x.) q=1,2, ... ,2n+ 1.
S, PaPp

Either one of these systems of equations determines an embedding of N
426



Z2n+1

into R » and we also note that a substitution of (7) or {8) intc

equation (6) gives rise to functions of C(E"). Thus, the systems of
equations (7) or (8) establish a mapping of a subset of C(E") into
L(E2"+1). For the sake of definiteness, we shall restrict our discussion
to (8).

In view of the above observations, we consider the functional

(9) k(F) = inflff(x) - FOOI

fqu(E)

where f is a given function of C(En), F e»L(E2n+1)

is specified by

6), and X = (X1 5 eees X2n+1) js determined by (8). We note that this

is the setting of a standard problem in approximation theory, and irn general
we expect the functionral u(f) to vanish only on a small subset of C(En),
assuming, of course, that best approximations exist. This can be gquaranteed,
however, for the functions which we are interested in. To summarize this
line of reasoning, we observe that we seek approximations to the functions

of C(En) with the restrictions of linear functions of L(E2n+1)

2n+1

to certain
homeomorphic images of " in R . Kolmogorov's theorem tells us that
u(f) will vanish identically on C(En) if we make the right choice of

embeddings (8) of E" into RZM!

, and it is thus of interest to study
the properties of these embeddings and to characterize those which give the
desired result. We have already noted that continuity by itself is too

weak a condition when we study functional complexity, and it turns out that
perhaps not much in terms of structure theorems of these embeddings can be
expected. We mentioned their basic smoothness properties, and Kolmogorov's
construction scheme and its various variants give us insight into the nature
of these fixed functions. That not much more may be hoped for follows from

theorems of Hedberg {(10] and Kahane [ 13] which state, roughly speaking, that
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almost any choice will do. In these papers the authors use category arguments,
and they do not attempt to construct the functions involved. The functicnal

(9) can be approached with a modification of the procedures developed by
Diliberto and Straus in [6] (see also [ 5}), and it is possible that this

couid lead to an alternative constructive proof of Theorem 1 and its various
refinements.

In concluding this talk, I would 1ike to say a few words about con-
vergence problems associated with representations with superpositions. We
note that, as the many theorems of approximation theory demonstrate, it is
very difficult to meaningfully relate functional complexity and uniform
approximability since the uniform closure of even very restricted classes
of functions is often too large to be useful. Also,even if we have a sequence

ua(£) =1 £(x) - F 0
such that

Timu (f) =0
roo T

we are not guaranteed that the 1imit of the sequence {Fr} will be of the
desired form. This can be illustrated with a simple example:
Consider the product xy defined on E2. This product can be obtained

as the uniform limit

xy = lim exp{]n(x + %) + In(y +'lﬂ
o L r
= 1im gfa _(x) + b_(y)}] .
[aptx) + byiy)]

The functions g, a, and b are continuous and strictly monotonic increasing.
The function f(x,y) = xy is strictly monotonic in each variable, except on
the coordinate axes. Yet, the 1imit of the sequence ig{ar(x) + br(y)]ﬂ is

not of the form g[g(x) + b(y)] (see |21] and [29]).
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