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 The theory of functional complexity deals with the relative structure

 characteristics of functions, and one of its aims is to develop criteria

 which will make it possible to assign numerical measures to the complexity

 of given classes of functions. The general notion of functional complexity

 can be traced to nomography, but the present day interest in the subject

 and the direction its research has taken grew out of Hilbert' s Problem 13

 of his famous Paris lecture of 1900 Here we are interested in functional

 complexity as it applies to continuous functions of two or more variables.

 Their relative complexity will be decided according to their representability

 in terms of superpositions, using as a measure of comparison that two

 functions have the same complexity if they can be composed in a finite

 number of steps from functions belonging to the same class or classes. We

 see at once that the answers we can expect will depend on the choices of

 superpositions and on the conditions imposed on the classes of functions

 allowed in these superpositions: for example, these may be required to be

 of a certain form, or to satisfy algebraic or differentiability conditions.

 The purpose of this talk is to introduce this general circle of ideas through

 a discussion of selected results in this area. A comprehensive introduction

 to the subject from a variety of perspectives can be found in £1, 5, 16, 23,

 and 30j.

 We begin with an example: The elementary functions

 sinxv y zxy + xz + y2
 y zxy (x¿ ♦ / *

 can be represented in terms of a finite superposition of continuous functions of
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 one variable and the binary operation of addition. This follows from trivial

 identities and the observation that

 xy = }(x + y)2 - ļ(x - y}2
 = u(a(x) + b(y ) ) + v(c(x) + d(y) ) ,

 where

 u(t) = -v(t) s ļ t2
 a(t) = b(t) - c(t) = -d(t) = t .

 Hence, the above functions can be said to have the same functional complexity

 if our measure is representability with continuous functions of one variable.

 If instead we impose the condition that the superposition functions must be

 algebraic, then these particular functions will no longer share the same

 complexity.

 In its most general form, the problem under consideration can be

 conveniently described by means of a conmuting diagram: Consider metric

 spaces X, Y, and T , and a given mapping f : X~*Y. We are interested

 in finding mappings H : X-*T and G : T-*Y , such that f can be re-

 placed with the superposition G °H :

 (1) f =G °H .

 Diagram 1

 /

 H / ' G
 '

 X

 f

 Representations such as (1) are of particular interest when the mapping

 H is a fixed embedding of X into T , and when (1) is valid for a

 sufficiently large class of functions f. We will retain this particular
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 aspect of generality in our discussion, but the setting will be restricted

 to the Banach spaces C(En) of continuous functions defined on the n-fold

 cartesian product E X E X. . . x E = En of unit intervals E = il 1 , 2] and

 having range on the real line R. The norm will be the uniform norm, and

 n-dimensional Euclidean space will be designated by Rn . With this restriction,

 we replace the above commuting diagram with the following:

 Diagram 2

 rn

 H / 6
 /

 En

 f

 (N > n H 2)

 Beginning with a class FnCC(En) of mappings
 f : En- **R

 we wish to determine an integer N and a continuous embedding

 H : En-*RN

 for which the following is true: For each function f 6- Fn there is a

 continuous mapping

 6 : RN->R

 such that (1) holds. The classes Fn are assumed to be sufficiently large,
 such as the entire space C(E ), all its polynomials or analytic functions,

 or its p-times continuously differenti able functions. This and the requirement

 that H be independent of the class Fn impose an important restriction

 on the choices available for the mappings H, since for any such class Fn

 the following is true:
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 Given arbitrary points x f £ in En , then there exists a function

 f ç F„ such that f(x) - f f (y). n -

 This means that the class F separates the points of En , in the sense that
 n

 any two distinct points have distinct images for some function f£ Fn . Since

 G¿H(x) = g^H^) whenever H(x) = H(^) , it is necessary for the fixed mapping

 H to also separate the points of En . This implies that the embedding H
 n N

 is a homeomorphism of E into R . This important aspect of the problem

 will be touched on only peripherally here, and for a fuller discussion we

 refer to [ 22, 23,26, 27j.

 What we are leading up to is the remarkable theorem of Kolmogorov

 which states that for each natural number n£ 2 the functions of C(En)

 are finite superpositions of functions of C(E) , but to better understand

 the implications of this result and how it relates to the question of functional

 complexity, we shall look briefly at the genesis of the general problem.

 Nomography, you may recall, deals with the problem of finding graphical

 solutions to functional equations through suitable parametri zations. Interest

 in this area of mathematics peaked in the late 1800's, when d'Ocagne published

 a definitive treatise on the subject [l?J • For nomographic constructions,

 however, it is generally necessary that no more than two parameters be used

 at any given stage of the process. This tells us, for example, that the

 roots of polynomial equations of degrees 1,2,3, and 4 -- when regarded as

 functions of the coefficients -- can be obtained through nomographic con-

 structions, because the method of radicals reduces the solutions into steps

 which require at most two parameters at a time. In fact, consider the general

 polynomial equation

 fn + xjf"1 + x2fn"2 + ... + xn_1f + xn = 0 (n> 2)
 where we have already eliminated the leading coefficient using division.
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 *1 1
 The term containing f' *1 can be eliminated with the transformation

 f = g - Xj/n ;

 the constant term xn can be replaced by 1 again using division. Less

 known today is the fact that also the terms involving fn~^ and fn~3

 can be eliminated with the help of the so-called Tschirnhaus transformations

 which generalize the method of radicals. Thus, the general polynomial equation

 of degree 6 can be reduced to the form

 f^ + xf2 + yf + 1 = 0

 by using only algebraic operations, and the roots are therefore obtainable

 through nomographic constructions (as are the roots of the general polynomial

 equation of degree 5). I mention in passing that the above identity for the

 product xy can be used repeatedly to express the roots of polynomial equations

 of degrees n < 4 in terms of finite superpositions of algebraic functions

 of one variable and addition. Now, using algebraic reductions, the general

 polynomial equation of degree 7 can be reduced to the equivalent form

 (2) f7 + xf3 + yf2 + zf + 1 = 0.
 But in this form, the roots are still functions of three variables, so

 that nomographic construction is not possible.

 Hilbert has realized that for the purposes of nomography it was not

 necessary to restrict the reductions to alebraic operations, and that any

 continuous transformations would do. He thus attacked the seventh degree

 polynomial equation with more general tools. Convincing himself that it

 was not possible to eliminate one of the three remaining coefficients in

 equation (2), he conjectured in the above mentioned Problem 13 that "the
 7 3 2

 equation of the seventh degree f + xfv + yf + zf +1=0 is not solvable

 with the help of any continuous functions of only two arguments." It is
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 interesting to note that Hilbert 's formu! sti on of the problem is in two

 parts, one purely algebraic and one purely analytic, and that he included

 the problem in the algebra section of his lecture -- a choice which affirms

 the origin of the problem and also indicates his own outlook. He returned to

 the 13th problem in 1927 with the surprising result that the general poly-

 nomial equation of 9th degree can be reduced to the equivalent form

 f9 + xf4 + yf3 + zf2 + tf + 1 = 0 .

 He also discussed more explicitly the notion of functional complexity in

 this paper, but it is important to note that his method for obtaining the

 above reduction was algebraic [l2j.

 For those not familiar with this literature, it may be of interest

 to mention that in the formulation of Problem 13 Hilbert made the incorrect

 statement "I have satisfied myself by a rigorous process that there exist

 analytical functions of three arguments x, y, z which cannot be obtained

 by a finite chain of functions of only two arguments." It is clear, however,

 that this was only a slip on Hilbert's P3rt, and that he meant analytic

 functions; it was well known to him that every function of three variables

 is a finite superposition of functions of two variables-

 Bieberbach attributed this slip to the fact that 13 was an unlucky

 number, and this was somewhat prophetic on his part: In 1930 he published

 what he thought to be a solution to Hilbert's conjecture by showing that

 there are polynomials of three variables which are not the uniform limit

 of superpositions of polynomials of two variables. His argument rested on

 the following observation: A general polynomial of degree n in three
 3

 variables has n arbitrary coefficients, whereas k superpositions of
 2

 polynomials of degree n in two variables have kn arbitrary coefficients.
 3 2

 Hence, if we fix k , then n can be taken to be so large that n > kn ,

 implying that the coefficients must satisfy certain algebraic conditions.
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 It can be shown, however, that there exist coefficients which do not satisfy

 any such relationships. Bieberbach made a curious mistake in this paper [3]:

 he applied the Weierstrass approximation theorem to a compact domain while

 letting the boundaries tend to infinity. This error was discovered by Kamke

 and acknowledged by Bieberbach in a note published in 1934 Í4.1. In this note

 Bieberbach proposed a new lemma which would have established the correctness

 of his result, but the proof of the lenwa eluded him. This was just as well,

 because eventually it also turned out to be incorrect.

 Now, we know that smoothness conditions provide a useful measure of

 functional complexity, and it was Hilbert' s notion that the number of vari-

 ables of a function is also a useful measure in the following sense: Consider

 a continuous function f of n variables, and a class S of continuous
 m

 functions of min variables. If the function f can be represented as

 a finite superposition of functions of S , and if m is the least natural
 m

 number for which this is true, then we can use m as a measure of the func-

 tional complexity of f relative to the class Sm- We can expect more

 interesting answers when the classes Sm have suitable restrictions, and

 imposing smoothness conditions is clearly in tenor with Hilbert's Problem 13.

 The earliest significant result along these lines was obtained by Ostrowski

 in 1920 [_ 20] . He proved that the analytic function

 c(x,y) » Ï xn/ny
 0=1

 cannot be obtained as a finite superposition of infinitely differentiate

 functions of one variable and algebraic functions of any number of variables.

 The most profound result in this direction was proved by Vituškin in 1954

 1j30]: Let q - p + a » where p is a non-negative integer , and 0< 1;

 let w" be the class of p times continuously differenti able functions of
 423



 n variables defined on a closed and bounded region of Rn , and whose
 XL p
 p partial derivatives belong to the class Lip(a). If we use - p (q > 1)

 H

 as the measure of functional complexity of the class wjj , then not all

 functions with complexity ^ can be represented with superpositions of

 functions with complexity ¿ļ-r< ~ .  M M

 The above theorem of Vituskin shows that the number of variables in

 combination with a differentiability condition can serve as a useful measure

 of functional complexity. It also establishes an inevitable descent in the

 smoothness of the functions used in superpositions, in the sense that a

 decrease in the number of variables forces a decrease in smoothness. Thus,

 for example, not all functions of three variables with p ■> 1 continuous

 partial derivatives can be represented with superpositions of functions of

 two variables having p continuous partial derivatives. A number of other

 important results in this general direction have been obtained by Vituškin

 and Henkin (see, for example, (, 31] and [32]); some still open questions can

 be found in |_ 24j .

 We now turn our attention to Kolmogorov's theorem ļ 14 ] . In its simplest

 form it can be stated as follows:

 Theorem 1.

 For each natural number n > 2 there exist monotonie increasing functions

 in each variable

 (3) H " (x) » Z - hnn(xn) P" P q = 1, 2, 2n + 1 " q = 1 P" P '

 hpq e C(E), with the property that for each function f 6 C(En) there are

 continuous functions g^fc- C(E) such that
 2n+l

 (4) f(x) = Z_. g o H (x) .
 q = 1 q q
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 We observe at once that this theorem refutes Hilbert' s conjecture, since

 it demonstrates that all classes of functions C(En) for n? 2 have the

 same functional complexity as the class C(E). It also tells us something

 very important about uniform continuity. Namely, that the increase in degrees

 of freedom with increasing n does not increase the functional complexity,

 implying that the 'worst' functions of C(E) are as 'bad' as the 'worst'

 functions of C(En). Whether a similar statement can be made about continuous

 functions which are not necessarily uniformly continuous remains an open

 question. Doss [ 8j has obtained a result in this direction: Using Ostrand's

 theorem £.19j which states that Kolmogorov's theorem is true for compact metric

 spaces of finite covering dimension, he was able to show that continuous functions

 defined on an open cube or open ball or all of Rn can be represented with

 4n superpositions of the form (4), except that the fixed functions Hq are
 functions of n variables not expressible in terms of continuous functions

 of fewer variables. This theorem thus lacks the most important property of

 the Kolmogorov type superpositions, and it would be interesting to determine if

 Kolmogorov's theorem can be established without compactness.

 An important improvement in Kolmogorov's construction was obtained by

 Fridman ^9] who showed that the fixed functions hp^ in (3) can be con-
 structed to belong to the class Lip(l). It was observed by Lorentz £15 ļ that

 the 2n + 1 continuous functions g^ in Theorem 1 can be replaced by a
 single continuous function g; the author has shown that instead of (3)

 we can use functions
 n .

 (5) H*(x) = ZL . X h (x ) q = 1, 2, ..., 2n + 1,
 " q = 1 " ^

 where the functions h^ C(E) are monotonie increasing and belong to the

 class Lip(l) and Xj Ap are rationally independent constants [22, 25j .
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 I mention in passing that the 2n + 1 functions h^ can be replaced by
 linear translations of a single continuous function with the same properties

 [_25j . As far as the number of summands 2n + 1 in formula (4) is concerned,

 it turned out to be the best possible: Using Kolmogorov's construction, Doss

 [7] was able to show that this is the case when n = 2. In a more general

 setting, Sternfeld has obtained very interesting results which provide great

 insight into Kolmogorov's theorem, and among the results he obtained was

 a theorem stating that the smallest number of summands in formula (4) is

 2n + 1 forali n > 2 [2¿J .
 Let us now set

 H » (Hj H2n+1).
 With this notation, we see that formula (4) is of the general form f = G® H,

 so that Theorem 1 can be interpreted by means of the commuting diagram 2

 with N = 2n + 1. Consider the subspace L(E2n+1)C C(E2n+*) of linear

 functions 2n+j
 (6) F(X) = ZZ f (X )

 q = 1 M M

 and the system of parametric equations

 Xj - Xļ(Xj,. . . ,xn)

 (7) X2 = VX1

 X2n+i = X2n+l^xl

 or, more specifically,
 n

 (8) X = y q = 1» 2, ... , 2n + 1 .
 q p = 1 pm p

 Either one of these systems of equations determines an embedding of En
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 into R^n+*, and we also note that a substitution of (7) or (8) into

 equation (6) gives rise to functions of C(En). Thus, the systems of

 equations (7) or (8) establish a mapping of a subset of C(En) into
 ?n+1

 L(E ). For the sake of definiteness , we. shall restrict our discussion

 to (8).

 In view of the above observations, we consider the functional

 (9) u(f) » inf ||f(x> - F(X)!|

 vc(e)
 where f is a given function of C(En), I - £ l.(E^n+*) is specified by

 6), and X = (X^ , is determined by (8). We note that this
 is the setting of a standard problem in approximation theory, and in general

 we expect the functional y(f) to vanish only on a small subset of C(En),

 assuming, of course, that best approximations exist. This can be guaranteed,

 however, for the functions which we are interested in. To summarize this

 line of reasoning, we observe that we seek approximations to the functions

 of C(En) with the restrictions of linear functions of L(E^n+*) to certain

 homeomorphic images of En in R^n+* . Kolmogorov's theorem tells us that

 y(f) will vanish identically on C(En) if we make the right choice of

 embeddings (8) of En into R^n+1 , and it is thus of interest to study

 the properties of these embeddings and to characterize those which give the

 desired result. We have already noted that continuity by itself is too

 weak a condition when we study functional complexity, and it turns out that

 perhaps not much in terms of structure theorems of these embeddings can be

 expected. We mentioned their basic smoothness properties, and Kolmogorov's

 construction scheme and its various variants give us insight into the nature

 of these fixed functions. That not much more may be hoped for follows from

 theorems of Hedberg (_10j and Kahane [13] which state, roughly speaking, that
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 almost any choice will do. In these papers the authors use category arguments,

 and they do not attempt to construct the functions involved. The functional

 (9) can be approached with a modification of the procedures developed by

 Diliberto and Straus in [.6J (see also L5J), and it is possible that this

 could lead to an alternative constructive proof of Theorem 1 and its various

 refinements.

 In concluding this talk, I would like to say a few words about con-

 vergence problems associated with representations with superpositions. We

 note that, as the many theorems of approximation theory demonstrate, it is

 very difficult to meaningfully relate functional complexity and uniform

 approximability since the uniform closure of even very restricted classes

 of functions is often too large to be useful. Also, even if we have a sequence

 Ur(f) = II f(x) - Fr(x)||

 such that

 lim u (f) = 0
 Yy-*co

 we are not guaranteed that the limit of the sequence |F ļ will be of the

 desired form. This can be illustrated with a simple example:
 2

 Consider the product xy defined on E . This product can be obtained

 as the uniform limit

 xy = lim expfln(x + 7) r + ln(y + r-Ko L r rJ

 = lim g[a(x) + br(y)] .
 y*-*oo

 The functions g, a, and b are continuous and strictly monotonie increasing.

 The function f(x,y) = xy is strictly monotonie in each variable, except on

 the coordinate axes. Yet, the limit of the sequence ^g(ar(x) + b (y)]ļ is

 not of the form gļa(x) + b(y)] (see [21] and [29]).
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