REMARKS ON AGRONSKY S THEOREM ON STRONG

CONTAIMMENT AND CONTINUITY ROADS

by

Togo Nishiura

In his paper Associated Sets and Continuvity Roads {1}, S. Aaoroncky

gives an abstract analysis of a characterization of those functicons in a
class which remain in the class when composed with continuous functions.
The <ciasses he considers are defined by assouiated sets and the
characterization is by means of continuity roads, where the aszsociated sets
and roads are determined by his concept of strong containment relations.
ir hiz paper, Agroﬁsky gives sufficient conditions on 2 strong containment
reiation to yield his characterization thesorem. At the 1563 UWaterloo
Symposium on Real Anslysis, the aquestion cof the neceszity of these
conditions was raised. The present nute jnvestigates this aguestion., It is
shown that only a few of the conditions are necessary, though all of the
conditions are npatural in some senze when applied to the study of
derivatives as Agronsky has shawn in {11,

For ease of exposition we set forth some notation. The Lebesgue
measure of a set A will be dencted by p{A) . The cet of functiong of

Baire Claszs one will be denoted by 31 . Far esach real-valued function f

and rea! number & , we have the two acssociated sets



and

B3 = { x | £0x0 <2} .

For a set X , the power set is PO = {'A 1 AC X} and the set of all

functions f : X —m R is Rx .
Let « be a relation on P(R) , that is o« C P(R) x P(RY . For
X €R, T&[x] is the set of functions § : R — R which have the property

that there is a set E such that x ¢ E , E« E and f|E is continuous

at x . The set of functions +§ ¢ mm for which Ea(f) I Ea(f) and

E3¢+) « E3f) for all a ¢ R will be denoted by T& . 0f course, Ta[xl
and T& can be suitably modified to use functions whose domains are sets

X contained in R . We remark that Agronsky’s concept of a strong
containment relation is a relation on PR satisfring certain

conditions.

For any T C RX , we define a new class of functions comp T to be the

set

comp T = { f ¢ NXI gof ¢ T for each continuous g : R — R } .

Clearly, comp TC T .

For later reference, we next state the thecrem of S. Agronsky [1],

Theorem. Let a be a relation on PI(R) which satisfies the following
seven conditions.
Al: EaF and FCG #* Ea G .

A2: ECF and FuaG 3 Eax G .
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[}
A3 En o Fn n = 1,2,...3 3 rgl

En x U F_ .,
A4: For each open set G , G« G .
A3: E o E and G open 33 ENG a« ENG .

ARé: Ea F & for each x ¢ E ;, {(x)Y «a F ,

[
A7: En+1 C En and  E_ « En (n = §,2,.,.) and nQI En = {x} =%

there is a sequence 6n decreasing to J such that

{z € E. v jx-z) oD én}) .

Then, for e'Bl y the foilowing statements are equivalent.

(1) € ¢ T&Kx] for all x ¢ R .

2> 1161 « #7161 +#or each open s2t 6 .

(3) gef ¢ T, for each continyous function g : R — K : that is
f ¢ comp T& .

In [1], Agronsky uses a different condition A7, It is eavily shown
that Al-Aé together with Agronsky’'s wversion of A7 are equivalent to the
conditions Al-A7 qiver zbove., In passing, we remarX that Aoronsky’s strong
containment relationz are those which satisfy the conditicns Al, A2 and A3
above.

In Section 1, we <chow that the equivalence of (23 and (3) of
Agronsky’s Theorem s true in g¢eneral. Section 2 is devoted to the
implication (1) 2 (2), The implication (2) & (1) is discusced in Section
3. Finally, Section 4 is an investigation of the necezsity of the

conditions A1-A7 of Agronsky’cs Thearem.

1. The Eguivalence of (2} and (2).
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We will show that none of the ccnditionz AI-A? are needed to prove

this equivalence. First, we give the definitions of twn operations.

For each M C P{X) and each T mX we define the operations C and

A as follows:

cony = { £ ¢ BX 1 E 06 ¢ B oand E¥N#) ¢ W for every a ¢ R .

AT = {AePOO | 3a ¢ R, IF €T3A=EH orA=END ).

We list some easily proved claims.

1.1, Claim. ACY) CR . I+ 0,X ¢ W then 0,X ¢ A(CIR}

1.2, Claim. T C CA(T).

1.3. Claim. HI Cliy, s Cdtyy C CMyD.
t,4. Claim. T, C 72 3 A(Tl) C A(TZ).

i.5. laim. CCA(CLRI)Y = C). T.2., CoAsC =C .
1.6, Llaim. AT = aiT). Tl.e., Alrp = A,

We now prove our general proposttion.

1.7, Proposition. Let n C PiXy . The following are eguivalent
statements.

(i) ¢ ¢ comp C(W,
¢iiv €161 €m for each open set G .

(iiiy 1061 ¢ AsC(R) for each open set G .

Proof. That (ii) implies (iii) is an immediate consequence of Claim 1.1

above. We prove (iii> implies ¢i?. Let o : R — K& be continuous ang

a¢ k. Then E_(gof) = ¢ 1LE (3] ¢ M and EY(gof) =

¥_1[Ea(g)l ¢, since Ea(g) and Ea(g) are open sets, e finally prove
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(i) implies (ii). Let G be an open set. There is a continuous function

9t R— R such that E£5¢g) =6 . Since Eygof) = § '[61 and

comp C(W) = comp ConeCCM> by Claim 1.5, we have f~![GJ € AoCIM) .

We remark that though R cculd be large, it is  AC(R)Y which is
important for the determination of § ¢ comp C(Wy .

By assuming more about N , we are able to reduce the test to open
intervals (a,b) of R . let B C PCO . We say W satisfiez the
condition go‘ if

&
U0 : En ¢l (n=1,2,...) 3 g E_ ¢l .

a=t "

1.8, Proposition. Let B C PO . If N satisfies the condition U0

then the following are equivalent,

(i f ¢ comp C(W) .

(i) f-lt(a,b)] € R +for each open interval (a,b’,
Progf. Each open set 6 of R is a countable unicn of open intervals,

Hence Proposition 1.7 yields Proposition 1.8,

1.9. Corollary., Let o be a relation on P(E) . Then f € comp T& if and

only if 7161 « ¢lre) for each open set G . Moreover, if «

satisfies the condition A3, then f ¢ comp T& if and only if

f-I[(a,b)] « f-ii(a,b}J for each open interval (a,b)
Proof., Let N = { A ¢ PRI Aa A } « Then C{W) = T“ and & <saticzfies

condition U0 when o <catisfies condition A3 .

Clearly, the abowe Corocllary itz the equivalience of (Z) and (2) in

Agronsky’s Thecrem.
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2. The Implication (1) 3 (2) of Agronsky’s Theorem.

In the proof of the above stated implication, we will show that all of

the conditions A1-A7 are not used. Agroneky has already observed that A7

is not used,

Let o be a relation on P(R) . We cay « satisfies the conditien

U if

U : For any index set A , El x F for all

A €A implies U EA x F .
AEA

2.1, Claim. Llet &« be a relation on P(RY . 1f o catisfies the

condition Aé then « satisfies the corndition U .

2,2, Theorem. Let « be a relation on TF(R) <catisfring the conditions

Al, AS and U . Then 4 ¢ T [x] for 31l x ¢ implies e o e

for each open set G .

Procf. Suppose G is an open set and f ¢ T&[x] for each x ¢ R . Let
x ¢ 71161 . There are sets E_ and H_ such that x ¢ E N H

E, « E , H_ iz open and E N H C (8] . Conditions Al and A5 yield

E,NH « +71¢6) . Finally, condition U agives
461 = U E NH s ter
xéf 1163
The following theorem of Agronsky ncw follcws from Claim 2.1,

2.3, Theorem. Let o« be =z relation on P{R» <catisfving the
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conditions Al, AS and Aé. Then, f ¢ Ta[xl for all X € R implies

#7161 « #71(6)  for each open set G .
2.4, Example. Let &« be defined by E « ? if and only if E is an open
set and E C F . Clearly « satisfies the condition U but not the

condition R4.

We now continue to investigate some relationships between the eight

conditions Al-A7 and U.

2.5, Claim. Al + U 3 A3, Consequently,; Al + Aé 3 A3,

Proof. Suppose En o Fn (n=1,2,...) . Then condition Al gives
E a U Fn for each n . Condition U completes the proof.
2.4. Claim. Aé I A2,

3. The Impliication €2) 2 (i) of Agronsky’s Theorem.

We first prove the following theorem.

3.1. Theorem. Let « be a relation on P(R) satisfying the conditions

A3, AS and A7. Suppose x € R and § satisfy f_IIG] x +71061  for each

open set G containing f(x) . Then £ ¢ T&[x] .

Proof. Let 6, ={y I Iy=fGO1 Cisn } . Then 7't 0« #7061 for

n=1,2,... . By using condition A5, we can find E_C 4“1[Gn} such that
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-]
{x} = nlsn and En+1 C En s En o En (n=1,2,.,.) . From condition A7,
n=

there is a sequence Jn decreasing to 0 such that the set

E = ({x} U

n<se

{zeg, 1 1x-21 > 6 })

n=1{

has {x} « E . From condition A5, we have

{ z ¢ En | Ix=z}) > Jn } o { z ¢ En | Ix-zl > én }

for each n = {,2,... . Hence, condition A2 implins E a E . Let ¢ > 0
-1

and choose ng > ¢  I¥ z ek and 0 < Ix-z] < Jn then, for
Q

n § ng + 2 ¢ { 2 € En bolx-z1 > én } . It now follows that z ¢ E and
Ix-z1 « 6& imply |$(x)~f{2)} { ¢ ancd thereby £ ¢ T&[x] .
0

We combine the theorems of Sectionz 1 and Z with the above theorem to

derive the next two.

3.2, Theorem. Let « be a relation on P(R) =satisfring the conditions
A1, A5, A7 and U. Then the fclleowing statements are equivalent.

{1 € ¢ Ta[xl for all x € R .

¢2> £1161 « ¢71t6) for each apen set G .

(3} f ¢ comp Ta .

3.3, Theorem. Let « be a relation on P(R>» =<satisfying the conditions
Al, AS, A6 and A7, Then the following statemente are equivalent,

(1> 'f 4 Tu[x] for all x ¢ | .

(> £ 461 « £76] for each open set G .
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(3> f ¢ comp T_ .

e remark that the conditions A2 and A4 were never used. In

Agronesky ‘s Theorem, + € Bl . This condition docee not appear in the abcve
theorems. GSee 4.4 below for mor2 on the condition f ¢ Bl

There are several examplec related to derivativez gqiven in [1] by
Agronsky. We conclude this secticn with an example generated by topologies
cn [ . In particular, we consider topologies T on R which contain the
usual topology on R .

1. The usual tbpology € of R .

2, The density topologr 4 on ® [2] .

3. The continuity-from-the-right tepologyr ® generated by the half-open
intervals [a,b). 0f course, continuity—-from-the-left will work just ac
well,

4.7 The topologr GF generated by the approximately continuous, almost

everywhere continuous functions [31, [4], [5].

3.4, Examole. Suppose T is a topology on [ listed above. Let o be

defined by E x F if and only if there iz W ¢ 7 such that ECV CF .,
For these examples we have E o E if and conly if E ¢ T . Clearly, «

satisfies the conditions Al, AS and U. Only the condition &7 reguires

verification. We verify each case.

@
1. The wzuzl tococlogr £. Let E C En’ E ¢ & and nNE = xr .

n+i n

There will be no lose in generality by assuming E_  is an open interval

N ' =% = mi F — .= .
(dn,bn) . Let Zé = min ¢ X 3410 bn+1 3 } . Then 6n decreases to O

and
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0
Gy U U {zoera b | Ix-2l > 6 )

o (ai'bl)'

2. The density topologr 4. Let £,y CE

Then X is a point of d2nsity one +or each E_ . Herz: there i3z a

sequence 6n decreazing to zero such that for any interval [ with x € 1

and @I’ < 5n we have (I-Z'n)p(I} ¢ u(En NIy, Let
bn € (x+én+1,x+6nl . 0One easily calculates that
€1-2"Mp(lxeé

P L -n
neprbpd) §RCEL N Lxwd B 1) 4 270 L,

Thus, if Ix,pb] and Jj are such that b ¢ (z+£j+1.x+6J] , we have bv
repeated use of the:above ipequality,
(1-279 pilx,bl) {
i+

, e . . -1+l .
£ N\EJ N Ix+d;,4,b1) + k%j WEE, N Ddy g oxd 1)+ 207 b)),

From this ineguality we infer that is a peint of density one of the

measurable set

[x4 .
- (o { -z
e={eou v {zeE 1 121 8,4}

It iz now eazily shown that ezch point of E iz a point of density one.

"

Hence E ¢ A . We have shown that (<3 « £ .
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3. The continuity-from-the-right tcooiogr R. Let En+1 CE, . E, ¢«T® and

NE = (x . There will be no loss in gen2rality b» assuming

En = [x,bn) . The remainder of the proof iz similar to that of | above.

4. The topology AP. We remark that £ ¢ AF i+ and only if E ¢ 4 and

E=UU2Z where U ¢ £ and p{Z) =0 . Let En+1 < En ' En ¢ a

®

and N E = {x} ., MWe may assume without loss of generaiity that
n=1

E, = U, U & with E  €¢d and U, ¢ £ . Since E 4 CTE , either

X € Un for all n or x & Un for all but a finite set of indices n .

The first case follows from | above. The second case follows from

[V

above.

4. The necessity of A1-A7 in “greonskv’'s Theorem.

We investigate the necessity of the conditicnz Al-A7 in Agronsky”’

yi

Theorem. It should be said at the outset that these conditions are naturxl
in the studr of derivatives az shown by AgronskKr. We show that some of
these conditions are redundant and tha® zome are not necessary conditions.
Only the conditions A4 and A7 appear to be necessary.

4.1, Condition Af. Let oy be the relation an PR given by E &, F

i
if and only if ECF and F is open., Clearly condition Al fails and the

conditions A2-8¢ are 2asily veritied. MNote that E oy E if and oniy if. E

is open. The corndition A7 is wverified by vsing the 2xamples of Secticn 3
above,
Ohuicusly, f € T. [x] for all x € F if and only if f s
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continucus. Finally, T is the set of comtinucus furcticnz.

o Thus we

have shown that the condition Al i3 not necsszarv for Agronzkv’s Theerem,

4.2, Condition A2. We have =zzen that condition AZ is redundant among the

conditions Al-A7. (Claim 2.&.)

4.3. Conditionr A3. We have seen that condition A3 is redundant amorg the

conditions A1-A7. <(Claim 2.5.)

4.4, Condition A4. We prove the following claim.

Claim. Suppose o« i3 a relation on P{R} =aticfring the conditicne A1, AS

and Aé and either T o 2 0 er T@{xl ¢ 0 Sfor all x € R . Then «

satisfies the conditinn A4,

Progf, ¥ &« R thep corditicn AS impliee conditicn A4, Bupuose K& s
not w-reiated te itself. Than condition AS gives the exiztence of x, ¢ R
such that (x4} iz not «-related to ® . If x, ¢ F then conditions Al
and A&é imply F iz not x-related to itzels, We now infer that Ty = 0
and T&[AGI =03 .

Thus wa find that if all! o+ the conditions Al through A7 except
possibly A4 are satisfied and the concluzion of Agronsky’'s Theorem is true

for come F then the condition @4 is necessary.

o

4.5. Condition AS. Let &g be the relation on F{R> defined br E A F
if and only ¥ for each x € E there iz an aooen set U, such that either
X

« ¢U CF or x £ Uw T F , where & i3 the 33t of ~ational numbers,

One eazily wverifies that E Ve, E i+ and anly if E itz am cosn set or E



is an open set union @ . Consequently. & Gz @ . Thus, the condition AS
does not hold., It is also eazy to verify that the conditicns A1, AZ, AS,
A4, A4 and A7 hcold true for e

We show that £ ¢ TA {x} +For ail x ¢ R implies { 1s continuousz,
e

Let x be fixed. Then there iz a

0

et E such that x ¢ E |, E g E and

fIE is continuous at x . I1f x ¢ & then x ie an interior point of E

and hence <+ s continuous at x , 1f x ¢ & then <fj@ iz continuouz

at X . It is now an easy exercise to show thatb a functien f is

continuous if it is continuous at each x ¢ & and if fl& is continuous,
We Finally show that T&q iz the set of continuous functions., First

observe that @ \NE 20 and E ¥ E imply E is opesn. Let $ € 7T .

Suppose 949, € @ and f(qi) { i(qz) . Then, for f(qli £ a { flgy) we

have E_(f) is oren. Similarly, for fig* < a { flgy? we have EX¢40

Lo

is open. Moreover, if a £ fi3) for all qQ ¢ @ then ¢y =

*

Simitarly, i+ =& 3} fig) 4for ail g ¢ @ then E_{($) = 0 ., UWe now infer
that Ea(+> and E®(+) are open for all s € R . This implies f is

continuous, Conversely, that each contipgouss function is a member of T

is eacily seen.

The example Ue shows that condition AS is pot a necessary on® in

Aaronsky’s Theorem.

4.6, Condition Aé&. Lat «, be the retaticn on TF(F> devined by E u,  F

S
it and oniv if there g a c-perfeoct st I zuch that EC W CF
Clearly, E oy E it and only if E iz o-perfect, Sinze the =zt of
irrational numbers F N @ iz not c-verfect, we have RN Q iz not
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«6-related to itself. But, for each x ¢ B\ § we have {x} ty, R N Do

Hence condition Aé fails for wyoe One eazily verifies that the conditions

A1-AS and A7 hold true.

From Theorem 3.1, we infer that + L) o, ¥_1[G} for each open set
L=

G implies § ¢ T&é[x] for each x ¢ R . e prove the converse implication

.

under the added hypothesis that + ¢ n§ . Suppose f ¢ B, , f ¢ T, ix]

»

for all x € R and G is zn open set., Then 1['31 iz an F_ set,

Consequently, 4_1[61 is the union of & g-perfect set @£ and a countable

set B . For each x € B there is a set Ex and an open set U% such

that E &, E  and x ¢E NV _C e . Conseguentiy,

e = (v g 0y, ) UA . Since E NV, is c-perfact, we have

x¢B
+7lter o, #7Me

We remark that there is a 2aire ciass 2 function + <cuch that

f ¢ 7&6 and f ¢ 7“6[K3 for all x ¢ R .

The example L9 shows that condition Aé of AaronsKy’s Thuorem is not

a n2cessary one.

4.7. Condition A7, The condition A7 is usezd in a wery important way in

the proof of Thecrem 3.1 above., It is much sironger than necessary in view
of Theaorem 2.3. The cquestion of the neceszity of tnis condition for

AgronsKy’s Theorem iz still open,

o~
st
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