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 Togo Ni sh iura

 In his paper Assoc i a teci Sets and Gont i nu i ty Roads iî3, S. Aąronsky

 gives an abstract analysis of a characterization of those functions in a

 class which remain in the class when composed with continuous -functions.

 The ciasses he considers are defined by associated sets and the

 characterisation is by means of continuity roads, where the associated sets

 and roads are determined by his concept of strong containment relations.

 Ip his paper, Agronsky gives sufficient conditions on a strong containment

 relation to yield his character i sat i on theorem. At the Î963 Waterloo

 Symposium on Real Analysis, the question of the necessity of these

 conditions was raised. The present note investigates this question. It is

 shown that only a few of the conditions are necessary, though all of the

 conditions are natural in some sense when applied to the study of

 derivatives as Agronsky has shown in CI 3.

 For ease of exposition we set forth some notation. The Lebesgue

 measure of & set A will be denoted by jiCA) . The set of functions of

 Bai re Class one will be denoted by Bj . For each real -valued function f

 and real number a , we have the two associated sets

 Ea<f) --- { X I f < ;< > > a } ,
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 and

 Ea<f) = { X I fix) < a } .

 For a set X , the power set is PCX) = { A I A C X } and the set of ai)

 functions f : X - » R is R* .

 Let a be a relation on ?<R) , that is a C P(R> x ?<R) . For

 X € R i T^tx] is the set of functions f : R - » R which have the property

 that there is a set E such that x i E , E a E and f I E is continuous

 at x . The set of functions f ( ^ for which E <f> a E <f) and
 O Ä

 Eâ(f> a Ea<f) for all a ( R will be denoted by T . Of course, T,[xJ OC oc

 and can be suitably modified to use functions whose domains are sets

 X contained in R . We remark that Agronsky's concept of a strong

 containment relation is a relation on ?(|R) satisfying certain

 condi tions.

 For any T C R* , we define a new class of functions comp T to be the

 set

 comp T = { f £ R^| gof í T for each continuous g : R - » R } .

 Clearly, comp T C T .

 For later reference, we next state the theorem of S. Agronsky til.

 Theorem . Let a be a relation on P<|R) which satisfies the following

 seven conditions.

 Al : E a F and F C 6 4 E oc G .

 A2 : E C F and F cc G 4 E et G .
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 A3: E n « Fr n <n = 1 ,2, . . .) 4 5 E n * U F„ n . n n n=l n n=l n

 A4: For each open set 6 , 6 u 6 .

 A3: E a E and 6 open =* EH G oc E fi G ,

 Aó: E a F -for each x £ E , (x) oc F .

 «>

 A? '• E_., n+l C E_ and E,. a E„ (ri = 1,2,...) ' ' and fi E„ = ix> =? n+l n n n ' ' n
 n-l

 there is a sequence ¿n decreasing to 0 such that

 <x> ct fix) U U {2 i E_ n : ¡x-r| > á_l) . * n-1 n

 Then, -for f i Bj , the -following statements are equivalent.

 <1> f i Tvt*} *or x í (R .
 Ct

 < 2) -ř"1 CG3 et f-1C(33 for each oper. s?t G .

 <3) g«f i T for each continuous -function o î (R - > R ? that is,

 f í comp Ta .

 In CU, Agronsky uses a different condition A7. It is easily shown

 that A1-A6 together with Agronsky's version of A7 are equivalent to the

 conditions AÍ-A7 given above, In passino, we remark that Agronsky's streng

 containment relations are those which satisfy the conditions A! , A2 and A3

 above .

 In Section 1, we show that the eguiM-alencł of <2) and (3) of

 Agronsky's Theorem is true in general. Section 2 is devoted to the

 implication (i) # (2). The implication (2) =* (1) is discussed in Section

 3. Finally, Section 4 is an investigation of the necessity of the

 conditions A1-A7 of Aoronsky's Theorem.

 1 . The. Egu i vai enee of ( 2> and < 3) .
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 Ws will show that none of the conditions A1-A7 sre needed to prove

 this equivalence. First; we give the definitions of two operations.

 y
 For each 1 C P<X) and each T C R we de-fine the operations C and

 A as -fol 1 ows :

 C<M> = { f ť R* ! Ea(f> í íí and Ea(f) í % -for ever y a £ IR } .

 A<T) = { A i PCX) I 3» ť R, 3f ( T 3 A « E <f) or A = Ea(f) } .

 We list some easily proved claims.

 1.1. Claim. A(C(B> ) C 1 . It 0,X í II then 0,X * A(CÍD) .

 1.2. Claim. T C C(A(T) > .

 1.3. Claim. Uj C 12 4 C<lj ) C C<H2> .

 1.4. Claim. Tj C T2 ^ A(Tj> C A<T2>.

 1.5. Claim. C(A<Cai))> = C<H). I.«., CoA*C = C .

 1.6. Claim. A(C(A(T))> = A'T). I.e., A«C»A = A.

 We now prove our general proposition.

 1.7. Propos i t i on . Let H C P'X) . The -following are equivalent

 statements .

 < i ) i i comp C<»> .

 < i i > -f~^[Gl ( 15 -for each open set G .

 (iii) -f~*tG3 ( A«C(Tï) fer each open set G .

 Proof. That <ii) implies (iii) is an immediate consequence of Claim 1.1

 above. We prove (iii) implies (i). Let ç : !R - ♦ ¡R be continuous and

 a <■ (R: . Then E (gof) = -f *[E <g)3 <■ Ił and E^íg^f) "= à ot

 f~*[c5<g)) í II , since E <g) and Ea(g) are open sets. We -finally prove
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 (i) implies < i i > . Let G be an open set. There is a continuous function

 9 s R - *■ iR such that = G « Since = f *[61 and

 comp C<Tí) = comp C»A«Ci>T4) by Claim 1.5, we have f ~ C G 3 í AoC(!ï) .

 We remark that though BI could be łaroe, it is A»C(il> which is

 important -for the determination of f í comp C'< TI > .

 By assuming more about II , we are able to reduce the test to open

 intervals <a,b) of (R . Let a C P(X) . We say 1 satisfies the

 condition Ug i f

 Un u : E_ n íW <n = 1,2,...) ^ U En í II . u n n=l

 1/8. Proposi ti on. Let Ä C ?(X) . If II satisfies the condition UQ

 then the following are equivalent.

 < i ) f * comp C < IB ) .

 <ii) f *[<a,b)J ť 1 for each open interval (a,b).

 Proof . Each open set G of IF: is a countable union of open intervals.

 Hence Proposition 1.7 yields Proposition 1.8.

 1.9. Corol 1 ary . Let a be a relation on ?(|R) . Then f ç comp Ta if and

 only if f~*CG3 « f~'cG'] for each open set G . Moreover, if a

 satisfies the condition A3, then f ( comp Ta if and only if

 f~*[(a,b)] a f~*£<a,b>] for each open interval <a,b)

 Proof . Let SI = { A ( P(|R)¡ A a A } . Then C'ÍSl) - Ta and lä satisfies

 condition Ug when a satisfies condition A3 .

 Clearly, the above Corollary is the equivalence of <2> and (3> in

 Agronsky's Theorem.
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 2. The Imp ! i cat i on ( 1 ) 4 C2) of Apr on sk y' s Theorem .

 In the proof of the above stated implication, we will show that all of

 the conditions A1-A7 are not used. Agronsky has already observed that A?

 is not used.

 Let « be a relation on ?<R) . We say a satisfies the condi t i on

 U if

 U : For any index set A , E^ or F for all

 > € A imp] i es II E, a F ,
 *ŚA A

 2.1. Cl aim. Let a be a relation on "PCR) . If ec satisfies the

 condition A6 then a satisfies the condition U .

 2.2. Theorem. Let a be a relation on satisfying the conditions

 Al, A5 and U . Then f € T^txJ for all x * R implies f_1£G] et f _i CG3

 for each open set G .

 Proof . Suppose G is an open set and f f. *or eac'1 x € IR • Let

 x < f~*[G] . There are sets E%. and H„ such that >; ( E H H ,
 A A X A

 E čí Ev , H is open and E X H H C f~*[6J . Conditions Al and A5 yield XXX X a

 Ex n Hx a f~*£63 . Finally, condition U gives

 f_1[G] - 'J Ex H Hx a f_1CG] .
 x í f ~ 1 [ 6 3

 The following theorem of Agronsky nc^ -follows from Claim 2.1.

 2.3. Theorem . Let a be a relation on P<fR> satisfying the
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 conditions Al, A5 and A 6. Then, f ( ^or a' ' * € R implies

 f~*[G3 a f_1[G3 -for each open set G .

 2.4. Examp 1 e . Let ot be de-fined by E a F if and only if E is an open

 set and E C F . Clearly a satisfies the condition U but not the

 condi t i on AÓ.

 We now continue to investigate some relationships between the eight

 conditions A1-A7 and U.

 2.5. Claim. Al + U ¿ A3. Consequently, Al + Aá 4 A3.

 Proof . Suppose ER a Fn (n = 1,2,...) . Then condition Al gives

 «

 Er a U Fn for each n , Condition U completes the proof.

 2.6. Claim. A 6 A2.

 3. The Impl i cat Ì on (2? ± < 1 ) of Aoronsk'/'s Theorem .

 We first prove the following theorem.

 3.1. Theorem. Let a be a relation on "P(IR) satisfying the conditions

 A3, A5 and A7. Suppose x ( |R and f satisfy f~^[G3 ct f~*CG3 for each

 open set G containing f<x) . Then f ( T^Cx] .

 Proof. Let Gn » { y I |y-f<x)| < 1/n } , Then -f-1 C Gn 3 a *or

 n = 1,2,... . By using condition A5, we can find En C f~*[G 3 such that
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 <x> = fi En and ^n+j C ER , E « E (n s 1,2,...) . From condition A 7, n-1

 there is a sequence ¿n decreasing to 0 such that the set

 E » (ix? v U U { z ś E I lx-zí > <$ n }) v n=ł n '

 has <x> a E . From condition A5, we have

 { z i En I |x-z| > in } a { z i En I Ix-zl > ¿n }

 ■for each n = 1,2,... , Hence, condition A3 implies E a E . Let € > 0

 and choose nn > . H z ť E and 0 < |x-z| < then, -for
 u n0

 n ^ np , z < { z f En { |x-z! > ¿n } . It now -follows that z i E and

 I x-z I < imply | -f < x ) - f(z)| < i and thereby f ( T C x 3 .
 "0 a

 We combine the theorems of Sections- 1 and 2 with the above theorem to

 derive the next two.

 3.2. Theorem. Let cc be a relation on P((R) satisfying the conditions

 Al, A5, A7 and U. Then the -following statements are equivalent.

 <1> 4 i *or a' ' x í (R .

 <2) f~*[G] ct f~*EG3 for each open set G .

 <3) f € comp Ta .

 3.3. Theorem. Let « be a relation on ?(¡R> satisfying the conditions

 Al, A5, A 6 and A7. Then the following statements are equivalent.

 (1) fí ^CxJ +or a11 x i IR ,

 <2) f"*(G) « f~*[GJ for each open set G .
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 <3> f £ comp Ta .

 We remark that the conditions A2 and A4 were never used. In

 Agronsky's Theorem, f £ Bj . This condition does not appear in the above

 theorems. See 4.6 below for more on the condition f í Bj .

 There are several examples related to derivatives given in CI] by

 Agronsky. We conclude this section with an example generated by topologies

 on |R , In particular, we consider topologies 1 on |¡? which contain the

 usual topology on R .

 1. The usual topology £ of (R .

 2. The density topology Ü on |p C 23 .

 3. The cont i nu i ty- from-the-r i ght topology fi generated by the half-open

 intervals Ca,b). Of course, continui ty-from-the-l eft will work; just as

 wel 1 .

 4/ The topology QT generated by the approximately continuous, almost

 everywhere continuous functions [3], [4], C5J.

 3.4. Examo 1 e . Suppose 7 is a topology on IF: listed above. Let oc be

 defined by E a F if and only if there is V ( "7 such that E C V C F .

 For these examples we have E a E if and only if E <■ T . Clearly, ec

 satisfies the conditions Al, A5 and U. Only the condition A? requires

 verification. We verify each case.

 «

 1. The usual toool ooy S. Let + j * £ and ^ ^n = '
 n=l

 There will be no loss in generality by assuming Eft is an open interval

 (a„,b.,> . Let 2á„ = min 4 v x-a + 1 ' b„.,-x + ! } J . Then á decreases- to 0 n'n . n v n + 1 ' n + ! J . n

 and
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 (X) U U { 2 í í*n , bf) I I X ~ 2 ļ > án } = <ÄJ ,bj > .

 «X»

 2. The density toDoloay ü. Let E. . . C E. . E. ( Û and A E_ = <>;> .

 Then x is a point of density one for each E^ . Hencř there is- a

 sequence decreasing to z&ro such that -for an/ internal I with y, i I

 and n(I) < <$n we have <l-2~n)(i<I ) (. fi<E A I). Let

 bn í <x + á +j ,x + á J . One easily calculates that

 <l-2-n)PCtx*¿ntpbft3) 4 n<En ft Ex*Äft + llbnJ> 4 2-nén+j .

 Thus, if fx.b] and j are such thst b i <x*á j + j ,x + é j 3 , we hays by

 repeated use of the above inequality,

 (1-2'J) ti < C x , b 3 > .<

 ,< n<Ej ft Cx + áj + 1,b3) + 2 u<Ek ft Cx + ák + 1,x + áKJ> + ?"J + 1|i< Ex ,b3 > .
 K 'y j

 From this inequality we in-fer that x is a point o-f density one o-f the

 measurable set

 E = fix > U U {z ( E„ I IX-JI > antļ}).
 n= 1

 It is now easily shown that e se h point of E is a point of density one.

 Hence EH- We haue shewn that <:<) c< £ .

 409



 3 . The con t i nu i ty- fr oni-the-r i qht topol ooy 5- Let En+j C En , En í Ti and

 co

 n = <x) . There will be no los» in annerali ty by assuming
 n=i

 En = tx,b ) . The remainder of the proof is similar to that of 1 above.

 4, The topol opy Q? . We remark that E ( Û? if and only if E ( Q and

 E = U U 2 where ü « [ and n<2) » 0 . Let En+J C En , En i ū

 «

 and il E = ix) . We may assume without loss of generality that
 n=l

 = U. U <:<) with E„ í Ü and U ( £ . Since E„., +■ C E„ . ' either n n n n n +■ ¿ n '

 X í Un for all n or x < U for all but a finite set of indices n .

 The first case follows from 1 above. The second case follows from 2

 above ,

 4 . The necessi tv of Al -A7 i n Apr on sky1' s Theorem .

 We investigate the necessity of the conditions Al-A? in Agronsky's

 Theorem. It should be said at the outset that these conditions are natural

 in the study of derivatives as shown by Agrcnsky • We show that some of

 these conditions are redundant and that some are not necessary conditions.

 Only the conditions A4 and A 7 appear to be necessary.

 4.1. Cori d i t i on Al . Let oc j be the relation on ?ifR) given by E cc^ F

 if and only if E C F and F is open. Clearly condition Al fails and the

 conditions A2-A6 are easily verified. Note that E ctj E if and only if. E

 is open. The condition A? is verified by usino the examples of Section 3

 above .

 Obviously, f i T CxJ for all x ^ [R if and only if f is
 1
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 continuous. Finally, 7 is the set ot contiguous ťunc t i on = - Thu ? we
 c<i

 haue shoun that the condition Al is not necessari +'or Aaron *.k v' <> Theorem.

 4.2. Cori d i t i on A2. We have «sen that condition A2 is redundant «ro on g the

 condi tions A1-A7. (Claim 2.6.)

 4.3. Condi ti ori A3. We have seen that condition A3 is redundant amono the

 condi t ions A1-A7. (Claim 2.5,)

 4.4. Cond i t i on A4 . We prove the -foil ow i n ct claim.

 Claim. Suppose <x is a relation on P(R> satisfying the condi t ions Al, A5

 and AÓ and either T „ * 0 or T,ixJ *■ 0 for- all x t IR . Then a „ CX O'

 satisfies the condition A4.

 Proof. If ¡R a ¡R then condition A5 implies condition A4. Sup tose !R is

 not a-related to itself. Then condition A6 ai^es the existence of xr ļ !R

 such that ' - n°t ce-related to R . If ť F trien conditions Al

 and A¿ imply F i? not oc-rel ated to itself. We now infer that T.. ~ 0
 G.

 and T tsn] = 0 . ot u

 Thus we find that if al ! of the conditions Al through A7 except

 possibly A4 are satisfied and the conclusion of Agronsky's Theorem is true

 for some f then the condition A4 is necessary.

 4.5. Condi t i ori A5. Let c<= be the relation on ?(ļļ?) defined by E a- F

 if and only if for- each x S E there is an open set U such that either

 X f Ux C F or x t 'J <£• C F f where & t ī the set of rational numbers.

 One easily vs-rifies that E s, E if and only if E is an ooen set or E
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 is an open set union 0 . Consequently, <ß t£e ft • Thus, the condition A5

 does not hold. It is also easy to verify that the conditions AJ , A2, A3,

 A4, A6 and A7 hold true for .

 We show that f f T fx) tor ail x í IP imo! ies f is continuou;.
 5

 Let x be fixed. Then there is a set E such that x ( E , E «g E and

 -f ! E is continuous at x . If x 4 ß then x is an interior point of £

 and hence f is continuous at x . If x * & then ft© is continuous

 at x . It is now an easy exercise to show thi^t a function f is

 continuous if it is continuous at each x < ® and if f|<& is continuous.

 We finally show that T is the set of continuous functions. First
 5

 observe that 0 ' E * 0 and E «5 E imply E is open. Let f í
 N-»

 Suppose q . , q2 £ 0 and f<qj> < t<q9) . Then, for f<q,> v< a < we

 haw* EÄ<*0 is op*n . Similarly, for -f <' q j > < a *' f(q0> we have EÄ<f >

 is open. Moreover, if a < f<q) for all q t Ci then Ea<f) = 0 .

 Similarly, if a <) f<a) for all q t >0 then E.(f) = 0 . We now infer

 that Ea<f> and Ea<f> are open for all a f |R . This implies f is

 continuous. Conversely, that each contiguous function i ■= a member of T
 5

 i s easi 1 y seen .

 The example c£e¡ shows that condition A5 is not a necessary one in

 Agronsky's Theorem.

 4.4. Condi ti on A 6. Let be the relation on ?f ī) defined b/ E cc ^ F

 if and oniv if there is a c-perfect set W such that E C W C F .

 Clearly, E E if and only if E is ff-perfect. Since the set of

 irrational numbers IF: ' C> is not c-perfect, we have ¡R ' © is not
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 a¿-related to itself. But, for each x £ !R ' © we have (x> o:¿ ¡R ' >ß .

 Hence condition Aó -fails -for . One easily verifies that the conditions

 A1-A5 and A 7 hold true.

 From Theorem 3.1, we infer that ť~*E6J a, * ~ ^ C G 2 t'or each open set
 6

 G implies f £ Cx] for each x í 5? . i-Je prove the converse implication
 ó

 under the added hypothesis that H B¡ . Suppose f <; Sj , f ( 7^ ix]
 ó

 for all X € |R and G is an open set. Then is an Fp set.

 Consequently, f '[6] is the union of a a-perfect set A and a countable

 set B . For each x ( B there is a set and an open set V>; such

 that Ev a, Ew and x ( E„ fi U C f~*(Gl . Consequently,
 X O X XX

 f-1CG] = f U E fi x) ' U A . Since Eu 1 1 V. is c-perfect, we have
 v xiB * * } '< x

 f'^GJ tt¿ -ř-1 CG3 .
 ò

 We remark that there is a Baire ciass 2 -function f such that

 f 4 T and f f T [xl -for ali x * IR .
 *6 x6

 The example «, shews that condition A<S of Aqronsky's Theorem is not
 Ö

 a necessary one»

 4.7. Condi t i on A7. The condition A7 is used in a '.'ery important way in

 the proof o-f Theorem 3.1 above. It is much stronger than necessary in view

 o-f Theorem 2.3. The question o-f the necessity of tni s condition for

 Agronsky's Theorem is still open.
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