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Baire Classification of Generalized Extreme Derivatives

Let Ba' respectively L, denote the family of all real Borel functions
of a real variable of the class a, respectively the class of all real lebesque
measurable functions of a real variable.

W. Sierpinski in [7] showed that the Dini derivatives of a function of
Ba are in Ba+3. S. Banach in [2] proved that the Dini derivatives of a
bounded function of Ba dre in Bu+2. L. Misik in [4] showed that the upper,
respectively lower Dini derivatives of a function of class Ba are upper,
respectively lower semi Borel function of the class Ba+1. He proved in
[5] that the upper unilateral essential derivaties of a continuous function
is the limit of a nondecreasing sequence of upper semi Borel functions of
the class one and therefore is a lower semi Borel function of the class two.
He generalized his result in [6] for o > O.

Theorem (Sierpinski): If F 1is continuous on [a,b], then each of the

Dini derivatives 1s in Baire class 2.

Proof: We prove the theorem for D+F, a similar proof holds for DF.

For each positive integer n let

F(t) - F(x 1 1
F (x) = Sup { - :x+——-—gt_s_x+_}
n t€ [a,b] t~-x n+1 n
Since F is continuous, each function Fn is also continuous. It is
easy to verify that D F(x) = 11@ F (X But an upper limit of a sequence
of continuous functions is in Baire Class 2.
A.M. Bruckner, R. 0'Malley and B.S. Thomson in [3] introduced the notion

of path derivatives. Path derivative is a good setting for exact generalized
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derivatives, but it is not a good setting for extreme generalized derivatives.

B.S. Thomson's simple system is a better setting for extreme generalized

derivatives.

Definition: Let x € R, a path leading to x 1is a set Exc: R such that
X € Ex and x is a point of accumulation of Ex‘ A system of paths is

a collection E = {Ex : x € R} such that Ex is a path leading to x.

Definition: Let F : R~ R, E={E_ : x € R} be a system of paths

X
then Fé(x) = ;ig Esx%—;f£S§l when the 1imit exist.

yEE,

i - T F - F X
oo = g B
yeE,

In the case of extreme path derivatives we would 1ike to imitate Sierpinski's

proof, so we face two problems. The first problem is that if we define

Fn(x) = sup § Ei!%.;féﬁ) T YE EX;W [x + 1 X + % 1} then

n+1°
1
n+1°
we define for Fn(x)? The second problem is that Ex and Ey might

Ex{) [x + X + %] might be empty, so in that case what should
behave totally different when x and y are very close, so even for
a continuous function it is possible to find a system of paths such that

y . .
FE is not in L.

Definition : let E = {Ex : x ¢ [0,1]} be a system of paths, each of Ex
is compact. If the function E : x » Ex is a continucus function we say
E 1is a continuous system of paths. (E with Hausdorff's metric forms a

metric space).

Lemma: Let E = {Ex : x € [0,1]1 be a continuous system of paths then
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. ® X
there exist a sequence {an}n=1 such that a, > ¢ for all n. a,

decreasingly tends to zero, and E, N [x + a i, X ¥ a,.1) £ 9 forall x.

Theorem 1: let F : [0,1] » R be continuous, E = {Ex : x € [0,1]} be
a continuous system of paths, then

1) If F 1is E-differentiable Fé € Bl'

2) F

i
£ € BZ.

Proof: Let {an}:=1 be the sequence as in lemma, then we define

SUD{M)ZY€EXQ[X*3

n Yy - X

sup {ng%_g_iiél iy €E N (x+a

-

~
x

Nt
1]

RS T

-
~
>
-t
]

ntl 0 X7 an-1)§

then ?n(x) is an upper semicontinuous function, and Fn(x) is a lower

. . . . . . R X + a
semicontinuous function. Since Ex n (x a4 0 X an-l) n (x 342 n)

# @, then the points lost by Fn(x) are picked by Fn+1(x).

Let g (x) = min(F (x), F_,;(x}, F _4(x))

hy () = max (F (), Fr (), Fy(3D)
gn(x) and hn(x) are upper semicontinuous and lower semicontinuous
respectively, and gn(x) < hn(x), So there is a continuous function
Pn(x) such that gn(x) s Pn(x) b3 hn(x)

1) when F 1is E-differentiable Fé(x) = Ai@ gn(x) = Aim hn(x) = &i& pn(x)

)
SO FE € Bl’

2) Fé(x) = Ai& gn(x) = Al@ hn(x) = Aig pn(x) S0 FE € BZ'

Similar results hold under certain uniform nonporosity assumptions,
but fail to hold without uniform nonporosity.

Example: There is a continuous function F : [0,1] » R and a nonporous
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system of paths E = {Ex : x € [0,1]} such that Fé exist everywhere
(possibly infinite) but Fé(x) is not Borel.
Theorem 2: Let F: [0,1] >R be in B, and E={E : x€ (0,11}
a continuous system of paths.
1) If Fé exist, then Fé is 1in Ba+
2) ?E is in L.
For a detailed proof see [1].
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