Aliasghar Alijani, Department of Mathematics, University of California, Santa Barbara, CA 93106

Baire Classification of Generalized Extreme Derivatives

Let B_{q} , respectively L, denote the family of all real Borel functions of a real variable of the class α , respectively the class of all real lebesque measurable functions of a real variable.

W. Sierpiński in [7] showed that the Dini derivatives of a function of B_{α} are in $B_{\alpha+3}$. S. Banach in [2] proved that the Dini derivatives of a bounded function of B_{α} are in $B_{\alpha+2}$. L. Misik in [4] showed that the upper, respectively lower Dini derivatives of a function of class B_{α} are upper, respectively lower semi Borel function of the class $B_{\alpha+1}$. He proved in [5] that the upper unilateral essential derivaties of a continuous function is the limit of a nondecreasing sequence of upper semi Borel functions of the class one and therefore is a lower semi Borei function of the class two. He generalized his result in [6] for $\alpha > 0$.

 Theorem (Sierpiński): If F is continuous on [a,b], then each of the Dini derivatives is in Baire class 2.

Proof: We prove the theorem for D^+F , a similar proof holds for D^F . For each positive integer n let

$$
F_n(x) = \sup_{t \in [a,b]} \left\{ \frac{F(t) - F(x)}{t - x} : x + \frac{1}{n+1} \le t \le x + \frac{1}{n} \right\}
$$

Since F is continuous, each function $\bm{{\mathsf{F}}}_{{\mathsf{n}}}$ is also continuous. It is easy to verify that $D^+F(x) = \prod_{n=0}^{\infty} F_n(x)$. But an upper limit of a sequence of continuous functions is in Baire Class 2.

 A.M. Bruckner, R. O'Malley and B.S. Thomson in [3] introduced the notion of path derivatives. Path derivative is a good setting for exact generalized derivatives, but it is not a good setting for extreme generalized derivatives. B.S. Thomson's simple system is a better setting for extreme generalized derivatives.

Definition: Let $x \in R$, a path leading to x is a set $E_x \subset R$ such that $x \in E$ _x and x is a point of accumulation of E _x. A system of paths is a collection $E = \{E_x : x \in R\}$ such that E_x is a path leading to x.

Definition: Let $F : R \rightarrow R$, $E = {E_x : x \in R}$ be a system of paths then $F_E^1(x) = \lim_{y \to \infty} \frac{F(y) - F(x)}{y - x}$ when the limit exist. $y \in E_{\chi}$

$$
\overline{F}_{E}^{1}(x) = \overline{\lim_{y \to \infty}} \frac{F(y) - F(x)}{y - x}
$$

$$
y \in E_{x}
$$

 In the case of extreme path derivatives we would like to imitate Sierpiński' s proof, so we face two problems. The first problem is that if we define $F_n(x) = \sup \{ \frac{F(y) - F(x)}{y - x} : y \in E_x \cap [x + \frac{1}{n+1}, x + \frac{1}{n}] \}$ then $E_x \cap [x + \frac{1}{n+1}, x + \frac{1}{n}]$ might be empty, so in that case what should we define for $F_R(x)$? The second problem is that E_{x} and E_{y} might behave totally different when x and y are very close, so even for a continuous function it is possible to find a system of paths such that F_F^1 is not in L. In the case of extreme path derivatives we would like to imitate Sierpinski's

proof, so we face two problems. The first problem is that if we define
 $F_n(x) = \sup \{ \frac{F(y) - F(x)}{y - x} : y \in E_x \}$ [$x + \frac{1}{n+1}$, $x + \frac{1}{n}$] then
 x and y are very close, so even for
ssible to find a system of paths such that
 $x : x \in [0,1]$ } be a system of paths, each of E_x
 $E : x \rightarrow E_x$ is a continuous function we say

<u>Definition</u> : Let E = {E_x : x \in [0,1]} be a system of paths, each of E E is a continuous system of paths. (E with Hausdorff 's metric forms a metric space).

Lemma: Let $E = {E_x : x \in [0,1]}$ be a continuous system of paths then

there exist a sequence $\{a_n\}_{n=1}^{\infty}$ such that $a_n > 0$ for all n. a_n decreasingly tends to zero, and $E_x \cap [x + a_{n+1}, x + a_{n-1}] \neq \emptyset$ for all x.

Theorem 1: Let $F : [0,1] \rightarrow R$ be continuous, $E = \{E_x : x \in [0,1]\}$ be a continuous system of paths, then

- 1) If F is E-differentiable $F'_E \in B_1$.
- 2) $\bar{F}_{F}^{1} \in B_{2}$.

Proof: Let $\{a_n\}_{n=1}^{\infty}$ be the sequence as in lemma, then we define $F_n(x) = \sup \{\frac{F(y) - F(x)}{y - x}: y \in E_x \cap [x + a_{n+1}, x + a_{n-1}]\}$ $F_n(x) = \sup \{\frac{F(y) - F(x)}{y - x} : y \in E_x \cap (x + a_{n+1}, x + a_{n-1})\}$

then $\overline{F}_n(x)$ is an upper semicontinuous function, and $F_n(x)$ is a lower semicontinuous function. Since $E_x \cap (x + a_{n+1}, x + a_{n-1}) \cap (x + a_{n+2}, x + a_n)$ \neq Ø, then the points lost by $F_n(x)$ are picked by $F_{n+1}(x)$. Let $g_n(x) = min(\bar{F}_n(x), \bar{F}_{n+1}(x), \bar{F}_{n-1}(x))$

 $h_n(x) = max (\underline{F}_n(x), \underline{F}_{n+1}(x), \underline{F}_{n-1}(x))$ $g_n(x)$ and $h_n(x)$ are upper semicontinuous and lower semicontinuous respectively, and $g_n(x) \le h_n(x)$. So there is a continuous function $P_n(x)$ such that $g_n(x) \le P_n(x) \le h_n(x)$

- 1) when F is E-differentiable $F_E^1(x) = \lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} h_n(x) = \lim_{n \to \infty} p_n(x)$ so $F_F' \in B_1$.
- 2) $\bar{F}_{F}^{i}(x) = \overline{\lim}_{n \to \infty} g_{n}(x) = \overline{\lim}_{n \to \infty} h_{n}(x) = \overline{\lim}_{n \to \infty} p_{n}(x)$ so $\bar{F}_{F}^{i} \in B_{2}$.

Similar results hold under certain uniform nonporosity assumptions, but fail to hold without uniform nonporosity.

Example: There is a continuous function $F : [0,1] \rightarrow R$ and a nonporous

system of paths $E = \{E_x : x \in [0,1]\}$ such that F_E^{\dagger} exist everywhere (possibly infinite) but $F_f^k(x)$ is not Borel.

Theorem 2: Let F : $[0,1] \rightarrow R$ be in B_{α} and $E = \{E_{\chi} : x \in [0,1]\}$ be a continuous system of paths. system of paths $E = \{E_x : x \in [0,1]\}$ such that F_E^{\perp} exist everywhere
(possibly infinite) but $F_E^{\perp}(x)$ is not Borel.
Theorem 2: Let $F : [0,1] \rightarrow R$ be in B_α and $E = \{E_x : x \in [0,1]\}$ be
a continuous system of paths.
1) m of paths $E = \{E_x : x \in [0,1]\}$ such that F_E^1 exist everywhere

ibly infinite) but $F_E^1(x)$ is not Borel.

<u>Theorem 2</u>: Let $F : [0,1] \rightarrow R$ be in B_α and $E = \{E_x : x \in [0,1]\}$ be

tinuous system of paths.

1) If F_E^1 exist,

-
- 2) $\overline{F_F}$ is in L .

For a detailed proof see [1].

- [1] Alijani-Koopaei, A., Doctoral Research, Department of Mathematics, U. C.S.B. , in preparation.
- [2] Banach, S. Sur les fonctions dérivees des fonctions measurable, Fund. Math, 3, 1921, 128-132.
- [3] A.M. Bruckner, R. O'Malley, B.S. Thomson, Path Derivatives : A Unified View of Certain Generalized Derivatives, to appear in Transactions of the A. M.S.
- [4] L. Misik, L. :Halbborelsche Funktionen Und extreme Ableitungen, Math. Slov. 27, 1977, 409-421.
- [5] Misik, L. : Extreme essential Unilateral derivatives of continuous functions, Commen. Math. 21, 1978, 235-238.
- [6] Misik, L. , Extreme Essential Deriviatives of Borei and Lebesque Measurable Functions, Math. Slov. 29, 1979, No. 1, 25-38.
- [7] Sierpiński, W. } Surles Fonctions Derivees des Fonctions Discontinues, Fund. Math, 3, 1921, 123-127.