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 A GENERAL NONSEPARABLE THEORY OF

 FUNCTIONS AND MULTI FUNCTIONS

 Introduction. We present here a new general theory of multifunctions

 (i.e. set -valued functions) which deals simultaneously with continuity,

 measurabiiity and the Baire classes of multifunctions. The results on

 functions will be found to follow directly from the results on multifunctions.

 Such a general theory was first developed by Hausdorff, in the case

 of functions, in his well known monograph "Set Theory" [9] . More recently,

 in 1972, Kuratowski [15] presented some such results on multifunctions.

 Both of these works deal, however, only with the case when the range space is

 separable. Extension of the results to nonseparable range has been an open

 problem for quite sometime (see e.g. Kuratowski [11]).

 Our general theory applies to nonseparable range as well. The first

 successful attempt in this direction was made by Montgomery [20] in 1935.

 Using an operation which is known today as "Montgomery operation", he

 obtained extensions of the results on Baire classes of functions dealing with

 graph and several variables [13, pp. 378,384]. More recently, in 1971,

 R. Hansell - a student of A.H. Stone - developed a new interesting tool to

 tackle this problem. Using his concept of 0-discrete decompositions [7,8], he

 extended the results on cartesian products of functions in Baire classes and

 on the continuity of functions in Baire class 1.

 The present approach will be found to be considerably simpler, and it

 applies to practically all the known results in the theory of functions.

 Besides the extension of known results to nonseparable range, we present

 several new results on multifunctions like representation, interposition and

 extension theorems. Two problems of Kuratowski [12] and A.H. Stone [22]

 regarding the invariance of separability and absolutely Borei sets are also
 resolved.
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 The present theory was developed in connection with a new notion of

 derivaitve [5] which is set-valued; see further [6] for an earlier
 announcement.

 1 . Baire systems

 Given an arbitrary space X, let P(X) denote the power set of X.

 We need here two primitive terms to define the necessary structure on X.

 A family L c P(X) is called a lattice of sets in X, or simply a

 lattice in P(X), if it is closed under the operations u and n and if
 X, <ķ € L.

 Given any lattice L in P(X), it is easy to see that the family L

 of all countable unions of sets in L is also a lattice in P(X). When

 L = L , the lattice L is called a o -lattice.
 CT

 Given any family of sets A c P(X), suppose a family B c P(X) is in

 1-1 correspondance with A, say 8 = (B^: A e A}. Then 8 will be called
 an expansion or a contraction of A if A c B^ or A d B^ respectively
 for each A e A. Further, if {A^ : i e 1} is any partition of the family
 A, then the family { u A : i e 1} will be called a coalition of A.

 AeA.
 i

 Next, a class A of nonempty families of sets in X will be called

 a dispersion on X if for every family A e A all the nonempty subfamilies,
 contractions and coalitions of A are also in A .

 Given any dispersion A on X, it is clear that the class A of

 all countable unions of families in A is also a dispersion on X. When

 A = A , A will be called a o-dispevsion on X, and when every family A 'e A
 is disjoint, A will be called disjoint.

 Let us consider some examples of dispersions before coming to the main
 structure. We define

 A = {A c P(x) : card A = 1},
 0

 Ac = {A c PCX) : 0 < card A and
 A^ = (A c P(X) : A ¿ $} .

 It is clear that A is a dispersion r on X, A„ = A and that A„ and A, o r c oa c 1
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 are a -dispersions on X. Further, Aq and A^ are in a sense the minimal
 and maximal dispersions on X.

 Now suppose X is a topological space. Let a family A c p(X) be

 called fully discrete or spc&se if it has a discrete or a locally finite

 open expansion respectively. We will use a^, ^fd anc* &s t0
 denote the classes of all nonempty families of sets in X which are discrete,

 locally finite, fully discrete or sparse respectively. Each of these

 classes is a dispersion on X, where

 Ao c Afd c ¿d[As3 c 'f c A1 '

 Further, aq, A^ and a^ are disjoint.
 Next, suppose L is a a-lattice in P(X) and A is any o-dispersion

 on X. The pair S - iL, A) will be called a Baire system on X provided
 the following two conditions hold:

 (Bl) L is A -additive , viz. if A e A and Act, then

 u(A • A £ A} € L>

 (B2) a is L-expansive , viz. every family A e A has an expansion
 E e A such that Eoi.

 Further, given a Baire system S = (L, A) on X, if there exists an

 algebra i ^ in P(X) and a dispersion A^ on X such that L = ,
 A = and is A^-additive, then S will be called a regular Baire
 system on X and Sj, = ^k'Ak^ will be called the kernel of S,

 Clearly, a Baxre system S = (L,A) is regular whenever L is a

 a-algebra, for then S itself is a kernel of S .

 We now present a few important examples of Baire systems on X.

 (1) If L is any a-lattice in P(X) , then (L>AC) is a Baire
 svstem on X, and if L is an algebra in P(X) , then (L ,A„) is a

 0 c

 regular Baire system with kernel (L,AQ).
 (2) If X is any topological space with topology T, then (T,Aj)

 and (T,a ) are two Baire systems on X which are usually not regular.
 SO

 However, if X is a O-dimensional metrizable space, then (T, A ) is
 so

 regular.
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 (3) Suppose X is a perfect space , viz. a topological space in

 which every open set is an F^-set. Given any countable ordinal a, let
 E (X) and n (X) denote the families of sets in X which are of additive
 a a

 or multiplicative class a respectively. We use further 8(X) and 8r(X)
 to denote the families of sets in X which have the Baire or restricted

 Baire property [13] respectively. The last two families are known to be

 a-algebras in P(X) .

 The following results are not known under the present hypothesis,

 but when X is metrizable they can be deduced from a theorem of Montgomery

 [13, p. 358].

 1.1. Theorem . Suppose X is a perfect space and 0 < a < ft. Then

 (Ia(X),Ada), (Ea(X)>Aso), (B(X),A£fo) and (8r(X),Adcy) are regular Baire
 systems on X.

 2. L-measurability and A- and S-continuities

 Let S = (Í.,A) be any Baire system on X. We call a topology T on X

 (i) a A -topology if it has an open base 8 c A,
 (ii) an S-topology if it has an open base 8 e A such that 8c L.

 Thus T is an S-topology iff it is a A- topology which is contained in L .

 The following theorem plays a fundamental role in the extension of

 results to nonseparable spaces.

 2.1. Theorem. If a sequence of A- or S-topologies on X , then

 so is the topology generated by u T .
 n n

 Next, let (Y,(/) be any topological space. Define, for each V c

 V* = (E c Y : E c V), V* = iE c Y : E n V t <ļ>}.

 The topology I/ generated by {V* : V e t/} u {V* : V e I/} on P(Y) is called
 the Vietoris topology on P(Y).

 We will use M = M(X,Y) to denote the space of all multifunctions <ļ>

 which map X into P(Y) . Further, M*, M , M. and M will denote the CK S

 sets of multifunctions in M whose values are nonempty, closed, compact or
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 separable respectively. In case Y is metrizable, M is used to denote

 the set of multi functions in M whose values are metrically complete, and
 when Y is a topological vector space, and M will denote the sets

 of multifunction in M whose values are weakly compact or convex respect-
 ively. Further, we set M* =M* n M, , M, = M, n M , etc.

 k k , k,cv k. cv
 Now, given a Baire system S = (I, a) on X, a multifunction <j> e M

 will be called

 (i) L-M (L -measurable) if <1>~*(V) e L for each V$
 (ii) L-LM (L -lower measurable) if *(V*) e. L for each Vel/,
 (iii) L-UM (L -upper measurable) if $ ^(V4) e L for each V e f ,
 (iv) A-C (a -continuous) , A-LC (à -lower continuous) or A -UC

 ( L-upper continuous) if it is T-M, T-LM or T-UM respectively for some
 A -topology T on X,

 (v) S-C (S -continuous) f S-LC (S -lower cœxtinuous) or S-UC (S -upper
 continuous) if it is T-M, T-LM or T-um respectively for some 5 -topology
 T on X .

 Thus 4> is indeed A-C, A-LC or A-UC [S-C, S-LC or S-UC] iff it

 is continuous, LSC (lower semicontinuous) or USC (upper semi continuous)

 relative to some A -topology [S-topology] on X (see [13, p. 173] for
 definitions) .

 When X is a topological space, <J> is thus continuous, LSC or

 USC iff it is £Q(X)-M, Eq(X)-LM or ^q(X)-UM respectively, and $ is in
 ( Baire class a ) , LB^ ( lower Baire class a ) or UB^ (upper Baire

 class a) iff it is Za(X)-M, Ea(X)-LM or Ea(X)-l<M respectively. Further,
 <ji will be said to have BP (Baire property), LBP ( lower Baire property)

 or UBP (upper Baire property) if it is B(X)-M, B(X)-LM or B(X)-UM
 respectively. The restricted Baire properties RBP, LRBP and URBP of <J>

 are defined similarly by replacing B(X) by Sr(x)-
 Let us now define the L-measurability and A- and S-continuities of

 a function. A function f : X Y will be called

 (i) L-M if f~*(V) e L for each V e V,
 (ii) A-C or S-C if it is T-M for some A- or S-topology. T

 respectively on X.
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 When X is a topological space, f is thus continuous or in Ba iff
 it is £q(X)-M or Ea(X)-M respectively. Further, f has BP or RBP
 [13] iff it is B(X)-M or 8r(X)-M respectively.

 Next, let R = (-»,») and R = [-<*>,<»] have their usual topologies.
 A function f : X -*■ R will be called, further,

 (i) L-LM if {x e X : f(x) > c} e L for each c e R,

 (ii) A-LC or S-LC if it is T-LM for some a- or S-topology T
 respectively on X,

 (iii) L-UM, A-UC or S-UC if -f is L-LM, A-LC or S-LC

 respectively.

 When X is a topological space, f is thus LSC (in Baire's sense) or

 in LB^ iff it is ro(X)-LM or £ (X)-LM respectively. Also, f has
 LBP or LRBP iff it is 8(X)-LM or 8r(X)-LM respectively. The upper
 properties of f are defined analogously.

 3. Relations between the properties of functions and multifunctions

 In this section we show how the results on functions and closed-valued

 multifunctions follow from the present theory.

 Given any function f : X + Y, let $£ denote the multifunction in M
 defined by <ř^(x) = {f(x)}, x e X. The results on f, and their extensions
 to nonseparable Y, follow from the corresponding results on multifunctions

 due to the following equivalences:

 3.1. Theorem. If f : X -* Y, then

 (a) f is L-M <=> is L-LM <=> is L-UM <==> is L-M,

 (b) f is A-C <*==> <ļ>£ is A-LC <=^> $£ is A-UC <=> <J>£ is A-C
 and

 (c) f is S-C <^> <¡>f is S-LC <=> <pf is S-UC <=^ $f is S-C.

 Now, suppose f : X ■* Y where Y = R or R . Let iļi^ denote the.
 multifunction in M defined by ^(x) = {ye Y : y <_ f(x)}, x e X. The
 following theorem indicates how the results on L-LM and L-UM of f
 follow from the corresponding results on multifunctions:

 3.2. Theorem. Suppose f : X -> Y where Y = R or R. Then
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 (a) f is JL-LM <=* iļ>£ is L-LM <=> ^ is S-LC and
 (b) f is L-UM <=* f is L- UM <=-t> >¡jf is S- VC.

 Next, given | £ H, let <(> e M be defined by <f>(x) = <i>Cx), x € X. In

 the present theory we do not assume the values of <ļ> to be closed in general

 (see e.g. [3]). The results on closed-valued <j>, as considered in [14] and

 [15], follow however from the general case due to the following theorem.

 3.3. Theorem. (a) $ € M is L-LM, A-LC or S-LC iff "<jT is so.

 (b) If <t> e and Y is either regular or a Hausdorff space, then

 ♦ is L-UM, A-UC, S-UC, A-C or S-C iff <jT is so.

 4 . Relations between L-measurability and A- and S- continui ti es

 We assume from now on that S = (L,¿) is s Baire system on X, Y is

 some topological space and that <j> e M(X,Y).
 If <}> is L-M, then it is clearly L-LM and L-UM. The converse,

 however, does not hold in general. But, due to Theorem 2.1,

 4.1. Theorem, (a) <ļ> is A-C iff it is A-LC and A-UC.

 (b) <ļ> is S-C iff it is S-LC and S UC.

 4.2. Theorem. If Y is metrizable and <j> e is A-LC, then <j> is A-C.

 Next, if $ is S-C, then it is clearly L-M and A-C. Similar
 statements hold for S-LC and S-UC, but the converse of any of these

 statements does not hold in general . However,

 4.3. Theorem. Suppose Y is metrizable and that <j, is A-LC.

 (a) If <f> e is L-LM, then it is S-LC.

 (b) If <f> e Mk is L-IJM, then it is S-X.
 (c) If <ļ) e is L-LM and L-UM, then it is S-C.

 Thus A-LC turns out to be a regularity condition under which all the

 results on S-LC, S-UC and S-C mul ti functions will hold also for L-LM,

 L-UM and L-M multifunction respectively. The next two theorems deal with

 hypotheses under which this regularity condition holds.
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 4.4. Theorem. If Y is second countable, then $ is always ¿c~LC, and
 in case <j> e M,, then it is A,-C.

 K C

 A metric space X is called absolutely Borei or absolutely analytic
 if it is a Borei or analytic set respectively in the completion of X. Thus
 every absolutely Borei set is absolutely analytic. Let A(X) denote the

 family of all analytic sets in X. With the help of a theorem of Kaniewski
 and Pol [10], based on a fundamental leinma of Hansell [7], we obtain

 4.5. Theorem. Suppose X is absolutely analytic and that Y is metrizable.

 If e is A(X)-LM, then $ is

 4.6. Corollary. Suppose X is absolutely analytic, a < fž, S = (^a(X) ,
 Y is metrizable and that d> T e M, . T k

 (a) If <ļ» e LB , then it is S-LC.
 a

 (bl If <t> e ÜB , then it is S-UC.
 or

 (c) If d> is in LB and UB , then it is S-C.
 a a

 As it is clear from Theorems 3.1 and 3.2, the above results hold also

 for functions.

 It is important to note here that many of the results will be found to

 hold only for S-LC, S-UC or S-C multi functions in general. However, due

 to Theorems 4.3, 4.4 and 4.5, any such result will hold also for an L-LM,

 L-UM or L-M multifunction $ e respectively provided either (i) Y is

 second countable, or (ii) X is absolutely analytic, Y is metrizable and

 L c A(X).

 5 . Properties of L-M and S-C multifunctions

 On account of Theorem 2.1, most of the known results on multifunctions

 in [3], [13], [14] and [15] extend to S-LC, S-UC or S-C (and to

 A-LC, A-UC or A-C) multifunctions, under suitable hypotheses on X and

 Y, where S is any Baire system on X and Y need not be separable. A

 few of these results hold also for L-LM and L-UM multifunctions in

 general, but others follow from the results on S-LC and S-UC multi-

 functions in the two particular cases just mentioned.
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 We present here only two such results as examples, and indicate the
 nature of other results.

 Given any family of multifunctions : i e 1} in M , we define

 the multifunctions u <ķ. and n by
 i 1 i 1

 (y * )(x) = y * (x), (n $.)(*)= n *.(x), x e X.
 i1 i1 i1 i1

 5.1. Theorem. If two multifunctions <¡> , f e M are both L-LM, L-UM, A-LC,

 A-UC, A-C, S-LC, S-UC or S-C, then so is <p u ip.

 Similar results hold for other operations on multifunctions like n ,

 'S cartesian product, vector addition, scalar multiplication, composition,

 restriction and sequential limit.

 Following is an extension of a well-known theorem of Baire [13, p. 394]

 to multifunctions with arbitrary range.

 5.2. Theorem (Baire) . Let X be a topological space and S = (E^ (X) ) .
 If $ e M is S-LC, -S-UC or S-C, then it is LSC, USC or continuous

 respectively at a residual set of points in X.

 This theorem contains Brisac's result [4] on multifunctions in LB^
 and UBļ for second countable Y, and also Hansell's generalization [8]
 of Baire' s theorem on functions to nonseparable range.

 The result on the graph of a multifunction (see e.g. [15]) holds for
 an S-UC multifunction whenever Y is metrizable. Further, the Montgomery's

 version of Lebesgue's result on functions of several variables [13, p. 378]
 also extends to multifunctions.

 6. Some general reduction and selection theorems

 We shall assume from now on that S - (L, A) is a regular Baire

 system on X with kernel S^ = (L^û^). To deal with such a system, some
 other basic tools are needed besides the unstated results of the last section.

 Given a family A c P(X), let a contraction R of A be called a

 reduction of A if it is a disjoint family such that u{A : A c R} = u{A : A e A}.
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 Further, let a base B of R be called an S-base if B € A and B c L.

 When a reduction R of A has some S-base, it will be called an S-reduction.

 6.1. Theorem (Reduction theorem). If a family A c P(X) has an S-base,
 then it has an S-reduction R c 'L.

 On choosing S suitably, many of the known reduction theorems follow

 from this general theorem (see e.g. [13, pp. 279,350], [16, p. 1271 and
 [8]). It also yields a general separation theorem which contains several
 known results.

 6.2. Theorem (Multiple reduction theorem). Suppose is disjoint. If a

 point countable family A c P(X) has an S-base, then it has a sequence of
 S-reductions R = {R. : A e A} c L (n - 1 ,2, . . .) such that A = u R.

 xi a j ri jļ /' ý n
 for each A g A.

 6.3. Theorem (Refinement of partition) . If a partition P of X has an
 S-base, then it has a refined partition u C such that each C is a

 n n n
 contraction of P, C e A, and C c L .

 n k n k

 Following is a general selection theorem which contains similarly the

 selection theorems of [17], [16, p. 458] and [10]. A function f : X Y

 is called here a selection of <)> if f(x) e <í> (x) for each x e X.

 6.4. Theorem (Selection theorem). If Y is metrizable and d> e M* is
 cp

 S-LC, then c|> admits an S-C selection f.

 This theorem leads in turn to generalizations of some of the known

 results on selections of partitions and of point inverses (see e.g. [16,

 pp. 463-472]).
 The results of the remaining sections are not known for multifunctions

 in any particular case. Some of these results were announced earlier in

 [6] for the Baire classes of multifunctions with second countable range.
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 7. Analytical representation of S-LC and S-UC multifunctions

 We present here some representation theorems on multifunctions which

 are similar in spirit to Baire's representation of real-valued LSC and

 USC functions in terms of limits of monotone sequences of continuous
 functions.

 Given a sequence of multifunctions {<1»^} in M , let a multifunction
 <J> € M be called a (pointwise) limit of {<j> } if, for each x e X and for

 each open neighbourhood V of <t>(x) in P(Y) (i.e. V c l'), there exists
 %

 an integer n such that <|> (x) e V for n > n . Here the limit of { <ļ» }
 x n x n

 is not unique in general. However, when Y is T^, this limit is unique
 in M .

 c

 Next, given <f> , 'p e M, we say <J> c ip if <|>(x) c i//(x) for each x e X.

 The sequence will be called nendeoreasing or noninoreasing if

 <(>n c <j>n+ļ or => ^n+1 resPectively f°r eac^ n*
 Let us first state a general result on limits which holds for an

 arbitrary Baire system S on X .

 7.1. Theorem, (a) If {<1^} is nondecreasing, then u <tin is a limit of
 and it is further 1-LM, A-LC or S-LC if each 4>n is so.
 (b) If (4> } is nonincreasing and e M then n <p is a limit

 n I R ļļ n
 of (<j> }, ' and it is further L-UM, A-UC or S-UC if each <P is so. n ' n

 n

 When a multifunction <t> e M is of the form u where
 i*l i

 {f^ : i » l,2,...,n} is any finite set of functions from X to Y, 4> will
 be called an elementary multifunction and will be called the elements

 of (ļ> . It should be noted here that an elementary multifunction <|> is S-C
 whenever each of its elements is so (see Theorem 5.1).

 7.2. Theorem. Suppose A^ is disjoint, Y is metri zab le and iļ> e M* .
 Then <{• is S-LC iff it is a limit of a nondecreasing sequence of

 elementary multifunctions whose elements are S-continuous.

 The above theorem does not hold for the ordinary continuity in general.

 But when <t> is convex-valued, we obtain the following result with the help
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 of two selection theorems of Michael [19] which are in turn contained in

 this result.

 7.3. Theorem. Let Y be a metrizable locally convex space and $ e M*v .
 Suppose either

 (i) X is collectionwise normal and ¡{> e M^, or
 (ii) X is perfectly normal, Y is separable and <ļ> e M

 cp
 Then <p is LSC iff it is a limit of a nondecreasing sequence of

 elementary multi functions {^} whose elements are continuous.

 The Baire's representations of real -valued LSC and USC functions

 follow clearly from this theorem with the help of Theorem 3.2. Theorem 7.2

 yields in turn similar representations of real-valued S-LC and S-UC

 functions, and on choosing S = (Za(X),¿c) these results yield Hausdorff's
 representations [9] of real-valued functions in LBa and UBa (a > 0) .

 The next two theorems deal with the representation of S-UC and

 USC multifunctions , These theorems are quite different from the above

 results since there is no duality between S-LC and S-UC multifunctions.

 Let <p e M be called S-TC ( S-totally continuous ) if it is S-C relative
 to the discrete topology on P(Y) .

 7.4. Theorem. Suppose A^ is disjoint, Y is metrizable and that $ e
 is A-C. Then <ļ> is S-UC iff it is a limit of a nonincreasing sequence
 of S-TC multifunctions

 Moreover, if Y is locally compact, then <j>n e for each n.

 When Y is a topological vector space, we call e M weakly USC

 if it is USC relative to the weak topology of Y, and <ļ> is called weakly

 continuous, or a weak limit of a sequence i° if it is continuous,
 or a limit of relative to the Vietoris topology on P(Y) which is"
 determined by the weak topology of Y. Further, Y* denotes the continuous
 dual of Y.

 7.5. Theorem . Let X be perfectly normal and Y a locally convex Hausdorff

 space. Suppose $ e M*y is weakly USC and that either
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 (i) Y is barrelled, Y* is weak* separable and <p e or

 (ii) Y* is strongly separable.

 If there exists a weakly continuous multifunction ý e such that

 <ļ> c iļ> (or, in particular, X is locally compact and paracompact and 4> e
 then <ļ> is a weak lirait of a nonincreasing sequence of weakly continuous
 multifunctions { <ļ> } in M . .

 n wk .

 8 . Analytical representation of multifunctions in

 We present here two representation theorems on multifunctions in B ,
 01

 with a > 1 and a = 1, in terms of limits of elementary multifunctions in

 lower Baire classes. These results lead in turn to generalized versions of

 the classical Baire-Lebesgue-Hausdorff theorem for multifunctions and

 functions with arbitrary range.

 8.1. Theorem. Suppose X is a perfect space, Y is metrizable, <J> e is

 A -LC and that a > 1. If <j> e Ba, then it is a limit of a sequence of
 elementary multifunctions {<t>n} whose elements are in Baire classes lower
 than a .

 Moreover, if a = X + 1 where X is a limit ordinal, then the

 elements of each <)> are in Baire classes lower than X .
 n

 8.2. Theorem. Suppose X is perfectly normal, Y is a metrizable absolute

 retract and that <J> e M* is A -LC. If 4> e B, , then it is a limit of a
 k S3 1

 sequence of elementary multifunctions {4>n} whose elements are continuous.

 The above theorems yield similar results on functions which generalize

 some of the known results (see e.g. [13, pp. 390, 591], [2] and [8]).
 Now, let the analytic classes of multifunctions be defined by

 transfinite induction as in the case of functions [13, p. 392].

 8.3. Theorem (Baire-Lebesgue-Hausdorff). Suppose X is perfectly normal,
 Y is a metrizable absolute retract and that i> e M,* is A -LC. Then <t k so

 is in analytic class ct iff it is in B^ or Ba+ļ according as a is
 finite or infinite.

 The same holds for a A -C function f : X ■+• Y in terms of its
 s a
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 analytic class as a function.

 Since every convex subset of a metrizable locally convex space is an

 absolute retract, the above theorem generalizes its various known versions

 for functions to nonseparable range (see Baire [1], Lebesgue [18],
 Hausdorff [9], Kuratowski [13, p. 393] and Banach [2]; Hansell [8] gave

 another version of this theorem for nonseparable range but his proof is

 unfortunately incomplete) .

 9. Interposition theorems

 We present here two interposition theorems on multifunctions which

 are similar in spirit to the interposition theorem of Hahn [9, p. 281] on
 real-valued functions.

 9.1. Theorem. Let A^ be disjoint and Y be metrizable. Suppose <ļ> e
 is A-C and S-UC, 'ļ> e M is S-LC and that <}> c <p.

 (a) v If üi Y € M , then there exists an S-C multifunction 8 e M
 v Y s,cp

 SUCh that <J> C 0 C

 (b) If Y is locally compact, then there exists an S-C multi-

 function 0 £ such that $ c 0 c ty.

 Moreover, if ů 1 e M* , then in each case 9 e M*.
 1 cp

 The above theorem does not hold for the ordinary continuity in general.

 In the case of convex-valued multifunctions we have, however,

 9.2. Theorem. Let X be perfectly normal and Y a separable reflexive

 normed space. Suppose <j> e M is USC, 41 € M is LSC and <J> c iļi. If

 either (i) <J> e and 'p e M* , or (ii) <ļ> e M*^ and Y* is separable,
 then there exists a weakly J continuous multifunction 9 e M*, such that J wk,cv
 4 C 0 C Tp .

 Hahn' s interposition theorem follows easily from this theorem with the

 help of Theorem 3.2. Theorem 9.1 yields in turn a similar interposition

 theorem on real-valued functions, and on choosing S = (E^ÍX) ,A ) , a > 0, this
 result yields the interposition theorem of Hausdorff [9, p. 294] on Baire
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 classes a of real-valued functions.

 10. Extension theorems

 We present here some extension theorems on multi functions which yield

 generalizations of known extension theorems on functions to nonseparable

 range .

 Given any Baire system S = (L, A) on X and a set E c X, set

 Lg = {A n E : A e L } and Ag = {A e A : A c P(E)}. Then Sg = (Lg,Ag) is
 clearly a Baire system on E. Further, if S has a kernel = (Lj.,A^),
 then i-s a kernel of Sg . Hence if S is regular, so
 is SE.

 The dispersions A^, Ag, A ^ and A^ are defined, however, in terms
 of a given topology on X. Hence in these cases it is more natural to define

 Ag directly in terms of the relative topology of E. The following results
 hold also for this definition of Ag provided X is metrizable.

 If let (fig denote the restriction of ® to E. The first two
 extension theorems are obtained with the help of the interposition theorems of §9.

 10.1. Theorem. Let A^ be disjoint, Y be metrizable and E X such that
 X ^ E e L. Suppose $ e M^(E,Y) is Sg-C and that either (i) X is
 metrizable or (ii) Y is separable.

 (a) If there exists some S-LC multifunction ^ e M^(X,Y) such
 that <J> c iļig, then <ļ> has an S-C extension <}>* e to X, and in case
 4> , iļ> e M* , then <ļ> * € M* .

 (b) If Y is locally compact, then <j> has an S-C extension

 <J>* e Mk to X. Further, if there exists some A-C and S-UC multifunction
 ô e M£(X,Y) such that 9g c <+> , then <ļ>* e M*.

 10.2. Theorem. Let F be a closed subset of a perfectly normal space X, Y

 a separable reflexive normed space and <p e M* (F, Y) be continuous. Suppose

 either (i) <ļ> e , or (ii) (¡> e is separable and there exists some

 USC multifunction <p e M*^ CV(X,Y) such that ii>p <= <j>. Then <ļ> has a
 weakly continuous extension <j>* e M*^ cv to X.
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 Using Theorem 3.1 and S - (sa(X) ,ûd(J) , a > 0, Theorem 10.1 yields a
 generalization of Hausdorff- Kuratowski extension theorem [13, p. 434] on

 functions in to nonseparable range. Theorem 10.2 is in turn a multi-
 functional version of Tietz extension theorem, but the two results are not

 comparable.

 The following theorem generalizes similarly another extension theorem

 of Kuratowski [13, p. 434] on functions to nonseparable range. (Hansell [8]
 stated a partial result in this direction but his proof contains some
 unfortunate errors).

 10.3. Theorem. Suppose X is metrizable, Y a complete metric space, E <= X

 and that a > 0. If a ^sa~C multifunction e M^(E,Y) is in Ba, then
 it has a A -C extension <ļ>* e M. in B to a set in H , (X) , and in so k a o+l ,
 case <ļ> e M*, then <ļ>* e M*.

 Moreover, if X is any first countable space, the same holds for
 a = 0.

 Following is a generalization of Lavrentiev's extension theorem

 [13, p. 436] to nonseparable spaces. A bijection f between X and Y is

 called a homeomorphism of class (ct,ß) if f € and f"1 e B„. Let f
 be called, further, A-biaontinuous if f and f* are both A-C.

 10.4. Theorem (Lavrentiev) . Let X and Y be two complete metric spaces.

 If f is a ¿s(j-bicontinuous homeomorphism of class (a, 3) from a set A c X
 onto a set B c Y, then it has an extension to a A^-bicontinuous homeomorphism
 of the same class between two sets A' e IT „ , ÍX) J and B' e n, , (Y) such a+ß+1 „ , J B+a+1 ,
 that A c A ' and B c B ' .

 11. The invariance of separability and of absolutely Borei sets

 Finally, we present solutions of two problems of Kuratowski and

 A.H. Stone on the invariance of above mentioned properties.

 Kuratowski raised the question in [12, p. 399] whether separability is

 invariant under Borei measurable mappings between metric spaces. The answer

 is known to be affirmative under the continuum hypothesis [13, p. 399].
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 11.1. Theorem . Suppose f maps a separable space X onto a metrizable

 space Y. Then Y is separable iff f is A. -C, or, equivalently, iff

 f 1S AÂfa"C*
 Consequently, if f is Borei measurable and X is absolutely analytic,

 then Y is separable.

 A bijection f between X and Y is called a Borei isomorphism if

 f and f~* are both Borei measurable. A.H. Stone raised the question in
 [22] whether absolutely Borei sets are invariant under Borei isomorphisms

 between metric spaces. The following solution is obtained from Theorem 10.3

 with the help of a result/ of Preiss £21] .

 11.2. Theorem . Suppose f is a Borei isomorphism between two metrizable
 spaces X and Y where X is absolutely Borei. Then Y is absolutely

 Borei iff f"1 is A£¿a-C.
 Consequently, if Y is absolutely analytic, then it is absolutely

 Borei .
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