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 Haiek' s Theorem Does Not Hold for n > 1

 1. In [3], O. Hájek proved that the extreme bilateral

 derivatives of an arbitrary real function of a real variable

 are in the second class of Baire. An analogous theorem for

 extreme strong derivatives of an additive interval function

 defined on E does not hold for n > 1.
 n

 2. Let En be n-dimensional Euclidean space, d (A) the
 diameter of A, and m (A) the Lebesgue outer measure of the

 subset A of E . Let (X , p) be the metric space of all
 n n

 non-degenerate closed intervals in En, where the metric
 p(I,J), I, J £ is defined by the symmetric difference

 I A J of I and J as follows: p(I,J) = m (I A J) .

 Let cp be an additive interval function defined on

 (X » p) (or on some suitable subset of X ) . Then the upper
 n «

 strong derivative čp'(X) of cp at X is defined as follows:

 qj'(X) = inf { sup(^-| jļ : X € I, I € X n» d (I) S : k =

 = 1, 2 , 3, • • » } •

 Proposition. There exists an additive interval function

 defined on (X^,p) whose upper strong derivative is not
 Borei measurable.

 Proof. Let C = ( (x,y) € E2 : x > O, y > 0, x2 + y2 = 1].
 Lét f be the characteristic function of a subset A of C
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 which is not Borei measurable. Let cp : Z •* (-«, ®) be

 defined as follows: cp([a,b] x [c,d]) = f(b,d) - f(a,d) -

 - f(b,c) + f(a,c) for each [a,b] x [c,d] 6 Z 2» where
 a < b and c < d. The function cp is an additive interval

 function defined on Z^>
 Let I = [a,bj x [c,d] be sufficiently small. Let

 X € A. If X = (a,c) or X = (b,d), then cp(I) = 1;

 if X « (a,d) or X = (b,c), then cp (I) = -1 or

 cp (I) = -2. Therefore cp'(X) = •• Let X ¿ A. If X = (a,c)

 or X = (b,d), then cp(I) =0; if X = (a,d) or X = (b,c),

 then cp (I) =0 or cp(I) = -1. Therefore 5'(X) = 0. Therefore

 ¿p' is not Borei measurable.

 3. In the paper [5], it is proved that the upper

 strong derivative of each continuous additive interval

 function defined on t*10 second class of Baire.

 Let T be the set of all (i, , . . . , i ) , where
 1 n

 ij € (-1, 1) for all j = 1,2, n. Let E* «
 = C (hļ# . . . ,hR) € Er : h . > 0 for j = 1, 2, . . . , n} .
 Let i = (i-,...#i ) € T, X, Y 6 E and Ac e . Then

 in n n

 we define X + iY = (x,+i.,y, , . . . , x +i y ) and X + 1 r*l , . . . , n nJn y

 + iA = {x + iZ : Z 6 A). We can define extreme "unilateral"

 strong derivatives. Let cp be an interval function defined

 on (Z^, p) and let i € T. Then the upper i-strong
 derivative ćp^ (x) of cp at X is defined as follows:
 5^ (X) = inf { I « < min (X,Y) , max(X,Y) >,
 Y e X + i E* d (I) s : k = 1,2,3, ...}. By min (X,Y)

 il K

 or max (X,Y) we understand the point
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 (min (x^y^) , . . . , min (xn»yn) ) or (max (x, ,yŁ) , . . . ,max(xn,yn) ) ,

 respectively and min(X,Y) and max(X,Y) are the principal

 vertices of the interval I.

 A function f : E -» (-•»•) will be called lower T-semi-
 n

 continuous iff for each X € E and for each a Ç (-»# <»)
 n

 satisfying the condition f (X) > a there exists an i 6 T

 and Y € X + iE+ such that f (Z) > a for all Z of the
 n

 closed interval I = <min(X,Y), max(X,Y) >.

 In [5], it is also proved that (i) the upper i-strong

 derivative of a continuous interval function defined on

 ( Zn , p) is the limit of a non -increa sing sequence of lower
 semicontinuous functions and hence it is in the second class

 of Baire; (ii) the upper strong derivative of a subadditive

 interval function is the limit of a non-increasing sequence

 of lower T- semicontinuous functions. Each lower T-semicon-

 tinuous function is Lebesgue measurable. This is a consequence

 of the known assertion that the union of an arbitrary system

 of closed intervals is a Lebesgue measurable set (Lemma 4.1

 of [2], p. 112, or [6], p. 177.)

 From our Proposition and (ii) we have that there are

 lower T- semicontinuous functions which are not Borei measurable.

 4. In Banach's proof, [1] (as in my proof, [4]), that

 extreme unilateral derivatives of each bounded (arbitrary)

 Borei function of a real variable of the class a are Borei

 functions of the class a + 2, the following assertion plays

 a key role: Let f be a real Borei function of a real vari-

 able of the class a, where a > 0, let 0<a<b (let
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 0<a<b and k a natural number). Then the function

 cp(x;a,b) = sup(f(x + h) - f(x) : a h 3 b} (cp^(x;a,b) =
 =sup{f(x + h) - f (x) : ' f (x + h)-ļ ^ k, a S h S b)) is a

 Borei function of the class a ([1], ([4])).

 To prove the last mentioned assertion, S. Banach proved

 first that the function f(x) + cp(x;a,b) has left and right

 limits at every real number. From the asymmetry theorem

 of W.H. Young it follows that f(x) + cp(x;a,b) is of the

 first class of Baire. In E^ the asymmetry is related

 to countability, but in En for n > 1 it is related
 to sets of the first category and of Lebesgue measure

 zero.

 Open questions:

 1. Does there exist a Borei additive interval

 function cp defined on (^n#p) of the first class for
 which the upper strong derivative ¿p' is not a Borei

 function?

 2. Let n > 1# let cp be a Borei additive interval

 function defined on (£ , p) of the class a, a > 0,

 A = (a.,..., a ) and B = (b1#...,b ) € E+ such that In inn

 a^ < b^ for i = 1, 2, ...» n. Let cp^(X;A, B) =
 = sup{cp(<X,X + H>) : jcp (< X# X + H>) 1 * k, H =

 = (hļ#...,hn), a^ ā h^ ē b^ for i = 1, 2, . . . , n} . Is
 cp^(X;A,B) a Borei function of the class a?

 3. Is it true that čp^ is a Borei function of the
 class a + 2 if cp is a Borei additive interval function

 of the class a? We assume n > 1. For n = 1, this
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 assertion is true.
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