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ON THE FIRST AND THE FIFTH CLASS OF Z2AHORSKI

Introduction. For & real-valued function of & real

variable £, the associated sets of £ are the sets
EX(£) = {x: £(x) < r} eand Er(f) = {x: £(x) > r} where
r 1is real., It is well-known that £ is in the first
Baire class ( 61) if and only if every associated set
of £ is of type F,. In [8], Zahorski considered

a hierarchy {mi}gw of subclasses of @, (mi_1 :mi).
Each of these classes is defined in terms of associated
gets: £ ds in My if and only if every associated set
of £ is in Mi where Hi is a certain family of F,
sets. Zahorski showed that My = m1 = .0!31 (the class of
21l Darboux-Baire 1 functions) and ‘m5 = A (the class
of all approximately continuous functions).

Let #® denote the class of all homeomorphisme of the
real line R onto itself. A theorem of Maximof? (5]
asserts that for any function fem, there exists hel
such that £fe¢h ems. Gorman (2] showed that a set analogue
of this theorem holds: IZf EeM.}, then there exists heX®
such that h(E)éMs.

In Theorem 1 of this paper we characterize all count-
able collections S<M, for which there exists he¥
gsuch that {h(B): EeS} c Mg. The idea is based on a lemma

due to Preiss [7] ([7] contains a proof of Maximoff’s
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theorem). Maximoff’s theorem is then stated as a simple
corollary of Theorem 1.

It is known that & =‘m5 is exactly the clsass
of continuous functions reletive to a certain topology
(the density topology) in the domain space. Thus a number
of results concerning ‘m5~tunctions can be obtained by
topological methods. No such topology exists for 361 = T,.
Applying Thecrem 1, we show that some of these results
(two ilemmas of Zahorski [8], extension theorems [6], [4])

have valid analogues in M.,

Notations. In what follows, all sets dealt with are
subsets of R and ell functions, unless otherwise specifi-
ed, have R as domain, N denotes the set of all natural
numbers, A the Lebesgue measure on R, E and E°
the closure and interior of the set E, U(F,e) the
¢-neighbourhood of the set F, f/E the restriction o2
the function £ %o the domain E, and (x,y) the oﬁen
interval from x to y where x<y or x>y. For
hed, n~! denotes the inverse of h. F; and Gg
denotes the collection of all sets of type F; and G;,

respectively.

Homeomorphic transformation of M,-sets into Msgsets.'
In this section, by & measure we mean a ndnnegative
locally finite non-atomic Borel regular measure on R.
A measure u 1is called positive if ‘n(I) > 0 for evéry
open interval I.
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Definition. Let E e Fo\{f} and let n be

& positive measure. We shall say that E belongs to class

M, if ENI 4is infinite whenever I is a closed
interval intersecting E (i.e., E 1s bilaterally
dense-in-itself)

4 if ENI is uncountable whenever I is a closed
interval intersecting E (i.e., E 1is bilaterally
c-dense-in-itsel?)

Mg if W(ENI) > 0 whenever I is & closed interval

intersecting E

Mg‘ if every point of E is a voint of density of E

reletive to l.e., Q,(E,x) = 1im &ELxy)) _
@ (L.e., Q. (E,x) Ho =)

for every xeR).

The empily set is considered to belong to each of these

classes,

Remark 1. It is easy to verify that the following
asgsertions are vaiid for any positive measure Ao
(a) HOID M1 :>M :)Ms. Any open set E Ybelongs to MS‘
(b) It E€M1, he¥, then h(E)€M1.
(c) Eech of the defined classes is closed under the
formation of countable unions. Mg is closed under the
formetion of finite intersections, but none of the other .
classes is. To see this; put

A-(10]UU( -—-),B~(10]UU( —1.

=1 4n+1’ 2n n=1 2n’ 2n-1

Then A and B are in Mg, but ANB = (-1,0] ¢ Mge
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Lemma 1. Let {Gm}meN € My. Then there exists
a positive measure u such that p(=00,0) = p(0,0) = oo

A

Proof. For any uncountable Borel set B there exists
e finite measure y such that ¥(B) > 0 (see
(7, p. 1011). |

Let {],:n} be a sequence of all closed intervals with
rational endpoints. Put M = {(m,n): G, NI, # #}. It
(myn)e M, then Gmﬂ I, is uncountable, and we may find
& measure y, ., such that y, (G NI) >0 and

R) = 278, we get pEat Z .

Km,n( (myn)eM Xm,n

Lemmea 2. Suppose that
(a) € >0, n is a positive measure
(b)Y P is a nonempty compact nowhere dense set
(¢) EeM), FCE.
Then there exists a measure ¥ such that
(1) y(RN(ENU(F,¢))) =0
(2) y(R) <¢

(3) 12 x€P, then 1im LUXYINE) _ o |
y—x  §(x,¥)

Proof, This is a corollary of [7, Lemma 2]: Under the
hypotheses (a), (b), (c¢) there exists a Borel measurable

nonnegative functicn g such that
(1) {=x: g(x) £ 0} € (ENPF)NU(F,¢)

(27) fgdn<e
R
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(3*) if xe€P, then lim 7({(=x,y)\F).( f gdn)"1=o,
y—=x (x,¥)

It suffices to put y(B) = 3}; g dn1 for every Borel set B.

Lemma 3. Suppose that
(a) ¢ >0, » and 7 are pogsitive measures
(b) A and B are compact nowhere dense sets
(¢c) EeM], ACE.
Then there exists a measure ) such that
(4) y(R\E) =0
(5) y(R) <¢

(6) if xe€ANB, then 1im LXIINE) _ g
y—Xx X(xvy)

(7) if xe¢B and y # x, then y(x,y) <« 5(‘u(x,y))2.
Proof. If ANB =g, put y=0. If A#4d, B=4¢g,
apply Lemma 2 with P = A, Now, let AN\B and B be non-
empty. We can write ANB = U A’n where An are nonempty
n=1

compact nowhere dense sets. For each n find § n > 0 such

that BﬂU(An,Bn) = @ and put
g, = min{e2™, &, £27(inf{a(x,7): x€B, ye UZAn,an)})z}.
Apply Lemma 2 with € = En’ P = An to obtain a measure n

with properties (1), (2), (3). Set ¥ = E:; In*
n=

Statements (4), (5) are easy consequences of (1), (2).
Let x€A cANB. BSince y(x,y) & (X, y) for eny 'y # x,
(6) follows from (3). To prove (7), let =x¢B, y # x.
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If xn(x,y) > 0 for some n, then (1) implies
(x,y)N U(An,en) £ #. Pick ze(x,7)N U(An,en). Ve have

(=) E x (R < e S e27(u(x,2))? < e2X(u(x,7))?

which implies (7).

Theorem 1. Let {E|} . be & countable collection
of sets. Then the following conditions are equivalent.

(1) jﬂM Ej € M, whenever McN is finite.
¢

(ii) There exists a positive measure v such that
¥(-e,0) = v(0,0) = oo and (B} .x
(iii) There exists h e such that ({h(E))}

v
CM5.

>
neN < MS'

Proof., (i)=>(ii)., By Lemma 1, we may find a positive
measure p such that wu(-ee,0) = ,u(o,c-o) = oo and

jnM EJ € M whenever MCN is finite.
€

We shall suppose that all the sets H En\ Eg are
nonempty (if H = @, then E , being open, is in M;
for any positive measure Vv ). Since for each n, Hnchr
and RO = g, we may write B_ = kgn HE where {HS}..
is a sequence of compact nowhere dense sets such that
g # Hg c B**! for every k 2 n.

Let Pn denote the collection of all nonempty subsets

of N, = {1,24+.0e4n}. For each ne€N and each MeP put

£ = 2"(2“'1), - N H , By = U

n " jem jeNam 3

(if M

]

N, then BMn = @). Note that AchM.
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We shell construct & sequence {y }— ., of measures.
Ve set 3‘0 = M. Assume that XO’ ;{1, eeey Xn—-T have
already been defined. Put

Yn-1 = Yo * ¥q F see +¥p g
For each set MePn apply Lemma 3 with £

]
o

N o= Vn_p

n!
A= Aﬁ, B = Bﬁ, E = EM fo obtain a measure X;;; such that
(47) ¥yu(R\Ey) = 0

(5°) X;E(R) < e

STIN
(6’) if x€Ay\By, then lim Vn"’(ix DB
=X ¥u(x3)

0

(7°) it IGBE, vy # x, then Xﬁ(x,ﬂ < &n(';n(x,:sr))2 .
Put

Having defined the sequence {Xn};c\’ set

b S

n=0

Fix meN, erm. We need to show that d,,(Em,x) = 1,
I er;, then it is obvious. Suppose that xéEm.

Choose 1 2 m so that z:’:Hé. For y # X we can write

\’((xsy)\Em) = Vi_1((1,y)\Em) + Zi Xn((x’y)\Em) .
=

Let n 2 i, M€P . If meM, then E,CE, and (4’)
ylelds yy(RNE;) = 0. If néM, then xcH. < HD cBE,

hence yu((X,¥)NE ) = yi(x,3) < En(ﬁ(XJ))z, by (7).
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Putting PJ = {MeP : m¢M), we obtain ¥ ((x,7)NE)) =

= ME* SRCEmTINE) < 2% e (u(x,yN? = 2 (ulx,y))5,

consequently

o0

n=3i

Z In((X,¥INE ) < (:.»(x,y))2 g w(zy)v(xy) .

Put Q= {J: xeH}}. Then meQ and x€AL\B}. Since

EQCEm, we have

vi_1((x,7) N Ey)

vi_1((X,¥INE Y £ v, ((x,7)\E,)
i-1 m i-1 Q Xé(x’y)

Thus

y ’ E
V() NE) § (A=l FQ)

+ a(x,¥))
Xé(XJ) (u

v(x,¥) .

V(x':Y)

YINE,)

v((x,
and (6') proves that d,.(Em,x) = 1 - 1lim

(1i) = (iii). Define a function h by
v{0,x) if x>0
n(x) = { , h(0) =
~-V(x,0) if < O

Then he¥d. Since v(I) = a(h(I)) =for every o

X,7)

0.

pen inter-

vel I, we have VY(B) = a(h(B)) for every Borel set B.

Let a = h(u), U€E, = E. Then
h(E)N (a,b
14im 2:&.5._)__&_4.12.:

b—a 3(3sb)

= ovae a(E) N (h(w),h(v))) _
= 3 a(h(u),h(v)) -

dg(h(E)’a)

"

v-—-u v(u,v)

1im MEOWLYI) | g (gu) = 1.

{(i1ii) = (1i). We have ﬂ E ~h"1(3qﬂ h(Ej)) for
€

jeM J -
every finite set MCN. Apply Remark 1.
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Classes m1 and 'ms. The only measure which will be

used throughout the rest of this paper is the Lebesgue
measure 2. So we shall write simply M‘)" d(E,x) instead
of M;, d.(E,x).

Definition. A function f is said to be in class 'mi
(1 = 1,5) if every associated set of f is in Mi. (The
aggsoclated sets of f are the sets Er(f) = {x: £(x) < r}

and E_(£) = {x: 2(x) > r} where T€R.)

Remark 2, Referring to Remark 1, we immediately derive
the following facts.
(¢) For a function £ and p,q€R put

]

*

{{x:p<f(x)<q} it p<gq
) if p= q

&

q W Q oy .
Ep(f) = Bp(f)ﬂE (£)

It IE’mS, then Eg(f)ém5 for all p,q€R. Conversely,

if {Eg(f): P,q rational}CM5, then feMs.

If :em1 y 1t is not immediately clear whether or not
Eg(f)em1 for all p,q€R (see Remark 1.c). To give an

affirmetive answer to this gquestion, we need the following

Lemme 4. Suppose that A and B are in M,\{#},
AUB = R. Then ANB € M,\{B).

Proof (cf. (3, Lemma 3.2.1)]). By [8, Lemma 7], |
no open interval ICR can be expressed as the union

of two nonempty disjoint Mo-sets. Therefore ANB # @.
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Let I be an open interval such that ANBNI # #.
Then ANI and BN I are uncountable, We show that
ANBNI is uncountable. If ICA or I<B, +then it is
obvious., Suppose INA # @, INB ¥ J. Since RNACB,
RNA€G;, B<F,, there is a set E€F,( G; such that
RNA CE c B, Using [8, Lerma 7] again, we obtain
{ENI, I\E}Q‘:MO. Assume EﬂI¢M0, the other case
being similar. Then there is an open interval J<I with
ENT #¢% end ENJ = P, Since BcB, we have BNJ # d,
so BNJ is uncocuntable., Furthermore, J < R\E C A,

Thus ANBNI DANBNJI = BNJ which implies the result.

Corollary. If f£eT,, then Eg(f)em1 for all
P,a€R. (Proof: If p <q, then Ep(f)UEq(f) = R.)

Definition. A function £ is said to be approximately
continuous (fef) if for each x€R there exists a mea-
surable set E, such that =x€E,, d(Ez,x) = 1 and f/Ex
is continuous at x.

A measurable set E d1is said to be D-open provided that

d(E,x) = 1 for every x€E.

Remerk 3. The collection D of all D-open sets forms
a topology (see e.g. [1, P. 20]1). A function £ belongs
to A if and only if every associated set of £ belongs '
to D (see e.g. [1, Chap. II, Theorem 5.6]1). Thus £ is
exactly the class of all D-continuous functions. Consequen-
tly, it £, g, h are in 4, h(x) # 0 for all x€R,
then f+g, f..g,é are in A&.
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The class 2B, of all Darboux Baire 1 functions does
not behave well with respect to the algebraic operations.
':}E’ g(x) =-sin-;-: if x # 0,
£(0) = g(0) = 1. Then £, g are in .061, but neither

To see this, put £(x) = sin

f4+g nor f.g 1is. So, for any topology 7t on R, &31
camot coincide with the class of all T-continuous
functions., Hence there is no topology T on R for which

53, is the class of all T-continuous functions.

Remark 4. Since Mg = F;ND and since A<fH, (see
e.g. [1, Chap. II, Theorem 5.5]), we conclude that m; = 4.

Zahorski proved that m = 59, ({8, Theorem 11]).

Maximoff’s theorem.

Theorem 2 (Maximoff (5], Preiss [7]). For any
function £, the foilow:l,ng conditions are equivalent.
(1) zfem,.

(i1) There exists he¥ such that £f-heTg,

Proof. (i) =>(ii). Put S = {Eg(:)z p,q rational}.
By the corollary of Lemma 4, ScCM,. The intersection
of any collection of finitely many sets from S ‘belongs
to S. Applying Theorem 1, we construct a homeomorphism
ged such that {g(E): E€S}C My, Put h= g .

Let p, @ be rational numbers. Then

EJ(£e ) = nTWEX)) = &(EX D) € M.
Hence f- hems, by Remark 2.c.
(i1) = (i). This follows from the equality

£=(feh)s ™! and from Remark 2.a,b.
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Zero sets and separation properties of M. and ms.
First we state two well-known lemmas of Zahorski concerning

m5-functions and their analogues for m1-functions.

Theorem 3.1 (i = 1,5). If EEM,, then there exists
an upper-semicontinuous function fem, such that

0< £(x)S1 1f xeE, #£(x) =06 if x€R\E,

Theorem 3.5 is due to Zahorski ([8, Lemma 11]). Theorem
3.1 is due to Agronsky (see Bruckner (1, p. 28-31]).

Proof of Theorem 3.1. Let E€M,. By Theorem 1 (or by
[(21), there exists he€¥® such that h(E)E MS’ Using Theo-

rem 3.5, we find a function gem5 such that 0 < g(y) £ 1
if yeh(E), gy) =0 if yeR~\h(E). We put f = geoh,

Theorem 4.1 (i = 1,5). Let H, and H, be nonempty

disjoint sets such that R\H1 and R\H2 are in Mi‘

Then there exists a function fe'mi such that
f(x) = 0 if x€H,, f(x) = 1 if =x€H
0 < f(x)< 1 if x€RN(H,UH,).

2’

Theorem 4,5 is due to Zahorski ([ 8, Lemma 12]). We give
the original proof here in order to show that the same
method fails to work in T, (see Remark 3): ‘

Suppose that R\H1 and R\H2 are in MS‘ By Theo-
rem 3,5, there are functions :tke’ms (k = 1,2) such that
0 < fk(x) 21 it xeR\Hk and fk(x) =0 if 'xéﬂk.
£

It suffices to put f = ————  ,
1’1 + f2
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Proof of Theorem 4.1. Let {R\H1, R\Hz} < M,. Simce
(R\H,)U (R\Hz) = R, we have (R\H1)ﬂ (R\HZ) € My,

by Lemma 4. According to Theorem 1, there exists he Y
such that {R\h(H1), R\h(HZ)} < M. Now take a function
ge'm.s from Theorem 4.5 applied to h(H,), h(Hz) and put
£ =g-h.

Definition (Laczkovich [3]). Let i€ {1,5}.

A set H 1is said to be an ‘mi-zero set 1f there exists
e function f€TM; such that H = {x: £(x) = O}.

A set F is said to be ’mi-clos‘ed if F coincides
with the intersection of all ‘mi-zero sets which contein
F.
| A pair G1, G2 of disjoint sets is said to be separa-
ted by 'fﬂ.i 1f there exists a function femi such that

G, < {x: £(x) = 0}, G, < {x: £(x) = 1}.

Remark 5. Let i€ {1,5}. If f€M; and re€R, then
RN{x: #(x) = r} = E(£)U E'(2) € M;. Combining this fact
with Theorem 3.i and Theorem 4.1, we obtain the following
characterizations: ,

(e) A set H is en ‘mi-zero set if and only it R\H&Mi.
(v) A pair G4, G, of disjoint sets is separated by M;
if and only if there is a pair of disjoint sets H,, H2
such that R\H1, R\H2 are in Hi and G1c: H1, GZCHZ'

Remark 6. A set T is ‘ms-closed if and only if
F is D-closed (see [3, p. 408]). ‘
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It remains to characterize all ‘mrclosed sets.

Definition, The class of sets C 1is defined by AE€C

if and only if ANI contains a nonempty perfect set

whenever I is a closed interval intersecting A.

Remark 7. If A€C, then obviously A is bilaterally
c-denge-in-itself, If E is a Borel set, them E is in C
if and only if E is bilaterally c-dense-in-itself (apply
the fact that any uncountable Borel set contains a nonempty

perfect set). Thus M, = F,NC.

Lemma 5., Any set A€C contains a set E of type F,
such that ENI is uncountable whenever I 1is a closed
interval intersecting A (i.e., E is bilaterally c-dense
in. A). (Observe that E€M1.)

Proof. Let {I } be a sequence of all closed inter-
vals with retionel endpoints. Put M = {n€N: ANI # d}.

If neM, then AﬂIn contains a nonempty perfect set

P . Define E= U P..
n neMm n

Lemma 6. A set F is TM,-closed if and only if
RN\FEC.,

Proof. Let F be an TM,~closed set, F # R. Choose
a closed interval I intersecting R\F, =x€INF. There
is an Ty-zero set H such that FCH and x¢H., We have
x e'I\H < INF. Since R\H6M1 by Remark 5.a, there is
a nonempty perfect set P such that P < INH < INTF,

Hence RN\FeC,
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Suppose that RN\FeC, F # R. Choose xX€R\F. By
Lemma 5, RN\F contains a set GeFy which is bilaterally
c-dense in RN\F, Put E = GU{x}. Then E€MN,. Applying
Theorem 3.1, we find & function T€M, such that 2H(y) >0
if yeE, £(y) =0 if yeR\E, So, f£(x) #0 and £
verishes on FCR\E. %This proves that F is M4-closed.

Clearly, if P =R, then F is ‘In.'-closed and
R\F =@ €C.

Remark 8. Let 1i€{1,5}. If E is an T;~closed set
of type G;, then R\H enii (see Lemme 6 and Remark 6).
So, Theorem 4.1 implies that any pair of disjoint
‘mi-closed sets of type .Gg is separated by My This fact
with 1= 1 is due to Laczkovich (see [3, Theorem 3.2.2]).

Extension theorems for M. and m,. This section is
7

devoted to modifications of the classical Tietze’s theorem.

Theorem 5.5 (Petruska, Laczkovich [6, Theorem 3.2]).

For eny set H, the following conditions are equivalent.

(1) »(H) = 0.

(11) PFor each gef, there exists feMg such that
f/H = g/Ho

Theorem 6.5 (Luke3 [4, Theorem 4]). Let F be

a D-closed set and let 36&1. Then the following
conditions are equivalent.

(1) g‘/F is D-continuous on F.

(ii) There exists a function fe'ms such that f/F = g/p.

247



Remark 9. Let g bYe a function, F a set, p,q,r €R.
We introduce the following notations:
E'(g,F) = E(g)U(R\F), E_(gF) = E(g)U(RN\F),

E}(&,F) = E(g) U(RNF).
Let F Ybe D-closed. Then g/F is D-continuous on F
if end only if E"(g,F)€D and E (g,F)€D for ell TrER.

Remark 10. Suppose that A(H) = 0 and geby. ‘Then
H is D-closed and g/y 1is D-continuous on H. Thus
the implication (i) = (ii) of Theorem 5.5 is a corollary
of Theorem 6.5.

Theorem 6.1 Let F be an M,~closed gset (i.e.,
RN\FeC), and let g€pBq. Then the following conditions

are equivalent.

(1) E"(g,F)€C end E(g,F)€C for all re€R.

(11) There exists a function f€T, such that f/5 = g/g.
Proof., (i) = (ii). By Lemma 5, there is a set H

such that FCH, RN\HEF,; Aa.nd RNH is bilaterally

c-dense in RN\F (hence R\HéM,,). It is easy to show

that E7(g,H)EM, end E_(gH)€M,; for all reR. Hence
Eg(g,H) 6M1 for all p,q€R, p <q (apply Lema 4).
If p 2 q, then Eg(g,a) = R\H € M,.

Put S = {Eg(g,ﬂ): p,q rationel}. Obviously, S is
closed under the formation of finite intersections. Uging
Theorem 1, we construct a homeomorphism h€E€H such that

{n(E): E€8S} c Mg. Since RN\B(H) € Mg, h(H) is D-closed.
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Define g* = goh"1. Clearly, g*e¢ &1. For 8ll rational

P, @ we have Eg(g*,h(n)) = h(El(g,H)) € M5. Hence
g“/h(H) is D-continuous on h(H).

According to Theorem 6.5, there exists f*e'ms such
that £ / neE) = 8 /h(H)’ Put £ = £*o h., Then tem,
and f/p = g/, so a fortiori f£/j = g/p.

(i1) = (i). This follows from the equalities
E'(g,F) = E"(g)U (R\F) = E*(£)U (R\F),

E.(gF) = E (g)U (R\F) = E_(£)U (R\F)

and from the fact that ET(Z), E.(f), R\F are in C.

Theorem 5.1 TFor any set H, the following conditions

are equivalent.

(1) For any inteﬁal I, INH contains & nonempty
perfect set.

(11) For each g€B, there exists f€M, such thet
2y = 8/qe.

Proof. (i) = (1i). It is clear that ET(g,H)EC end
Er(g,H)EC for any get&1 and ré€R. The result follows
from Theorem 6.1,

not (i) = not (ii). Suppose that there is an interval I
such that INH does not contain any nonempty perfect set.
Choose x€HNI. Put g(x) =1, gly) =0 for all y # x.
Obviously, 55651. Assume that there exists fem1 such
that 1?/H g/H. Then E = Eo(f) € M,. Since x€ENI,
ENI is uncountable. Therefore (ENI)\{x} contains some
nonempty perfect set P. But (ENI)N{x} < I\H, hence

PCINH -~ & contradiction.

249



I am thankful for the advice I have received from

Professor Luddk Zajifek.

(1]

(2}

(3]

(4]

(5]

(6]

(7]

(8]

References

A, M, Bfuckner, Differentiation of real functions,
Springer, Berlin (1978).

W. Gorman, The homecmorphic transformation of c-sets
into d-gets, Proc. Amer. Math. Soc. 17 (1966),
825-830.

M. Laczkovich, Separation properties of some sub-
classes of Baire 1 functions, Acta Math. Acad. Sci.
Hung. 26 (1975), 405-412.

J. Luke3, The Lusin-lMenchoff property of fine topolo-
gles, Comment. Math. Univ. Carol. 18 (1977), 515-530.

I. Maximoff, Sur la transformation continue de fon-
ctions, Bull. Soc. Phys. Math. Kazan (3) 12 (1940),
9-41.

G. Petruska and M, Laczkovich, Baire 1 functions,
approximately continuous functions and derivatives,

"Acta Math. Acad. Sci., Hung. 25 (1974), 189-212.

D. Preiss, Meximoff’s theorem, Real Analysis Exchange
5 No. 1 (1979-80), 92-104.

%. Zahorski, Sur la premiére dérivée, Trens. Amer.
Meth. Soc. 69 (1950), 1-54.

Recedived August 5, 1983

250



	Contents
	p. 233
	p. 234
	p. 235
	p. 236
	p. 237
	p. 238
	p. 239
	p. 240
	p. 241
	p. 242
	p. 243
	p. 244
	p. 245
	p. 246
	p. 247
	p. 248
	p. 249
	p. 250

	Issue Table of Contents
	Real Analysis Exchange, Vol. 9, No. 1 (1983-84) pp. 1-295
	Front Matter
	EDITORIAL MESSAGE [pp. 2-2]
	Richard Fleissner 1942 - 1983 [pp. 5-8]
	7th Real Analysis Exchange Conference Preliminary Announcement [pp. 9-11]
	PROCEEDINGS OF THE SIXTH SUMMER SYMPOSIUM
	[Introduction] [pp. 12-14]
	Baire 1 functions [pp. 15-28]
	A Report on Globs [pp. 29-31]
	THE MULTIPLE INTERSECTION PROPERTY FOR PATH DERIVATIVES [pp. 32-34]
	Fourier Integral Inequalities and Applications [pp. 35-46]
	PARAMETRIC DERIVATIVES ARE IN BAIRE CLASS ONE [pp. 47-49]
	THE SETS OF CONSTANCY OF FUNCTIONS WITH A VANISHING DERIVATIVE [pp. 50-51]
	Differentiability of Peano type functions - multidimensional case [pp. 52-53]
	QUALITATIVE ASPECTS OF DIFFERENTIATION [pp. 54-62]
	Some New Simple Proofs of Old Difficult Theorems [pp. 63-78]
	Topology for the Spaces of Denjoy Integrable Functions [pp. 79-85]
	On the classification of set-valued functions [pp. 86-93]
	THE APPROXIMATE CONTINUITY OF LP SMOOTH FUNCTIONS [pp. 94-95]
	THE LEBESGUE SYNDROME [pp. 96-110]
	On Locally Bounded Maps of Sequence Spaces [pp. 111-115]
	On a Decomposition of Co(IRn) Functions into Simple Component Pieces [pp. 116-122]
	VARIATIONS ON BLUMBERG'S THEOREM [pp. 123-137]
	The chain rule and change of variable for the Denjoy integral [pp. 138-140]
	MULTIPLIERS OF VARIOUS CLASSES OF DERIVATIVES (Lecture presented at Real Analysis Symposium in Waterloo) [pp. 141-145]
	NEW RESULTS ON FUNCTION CLASSES INVARIANT UNDER CHANGE OF VARIABLE [pp. 146-153]

	TOPICAL SURVEYS
	SYMMETRIC REAL ANALYSIS: A SURVEY [pp. 154-178]
	A SURVEY OF DARBOUX BAIRE 1 FUNCTIONS [pp. 179-194]

	RESEARCH ARTICLES
	ASSOCIATED SETS AND CONTINUITY ROADS [pp. 195-205]
	ON PROJECTIONS OF BIG PLANAR SETS [pp. 206-214]
	ON SEMICONTINUITY POINTS [pp. 215-232]
	ON THE FIRST AND THE FIFTH CLASS OF ZAHORSKI [pp. 233-250]
	SOME PROPERTIES OF MULTIPLIERS OF SUMMABLE DERIVATIVES [pp. 251-257]
	MULTIPLIERS OF NONNEGATIVE DERIVATIVES [pp. 258-272]

	INROADS
	On Generalized Cluster Sets [pp. 273-283]
	Hájek's Theorem Does Not Hold for n > 1 [pp. 284-288]
	A point about ℕ×N matrices and ℓ∞ [pp. 289-293]

	QUERIES [pp. 294-295]



