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 ON THE FIRST AUD THE PIFTH CLASS OP ZAHORSKI

 Introduction, Por a real- valued function of a real

 variable f, the associated sets of f are the sets

 Br(f) = (x: f(x) < r} and Er(f) » {x: f(x) > r} where
 r is real. It is well-known that f is in the first

 Baire class (iL) if and only if every associated set

 of f is of type Fff . In [8] , Zahorski considered

 a hierarchy °* subclasses of 6^ ^i-1
 Each of these classes is defined in terms of associated

 sets: f is in uu if and only if every associated set

 of f is in Mļ where is a certain family of Fff

 sets. Zahorski showed that TTIq = TTl^ = (the class of

 all Darboux-Baire 1 functions) and TTl^ = A (the class
 of all approximately continuous functions).

 Let 26 denote the class of all homeomorphisms of the

 real line R onto itself. A theorem of Maximoff [5]

 asserts that for any function f em^ there exists he#

 such that f c h elTlç. Gorman [2] showed that a set analogue
 of this theorem holds: If E e , then there exists h e t

 such that h(E)£M^.
 In Theorem 1 of this paper we characterize all count-

 able collections SciM^ for which there exists he#
 such that (h(E): Ee.S} c The idea is based on a lemma

 due to Preiss [7] ( [7] contains a proof of Maximof V s
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 theorem). Maximof f*s theorem is then stated as a simple

 corollary of Theorem 1.

 It is known that is exactly the class

 of continuous functions relative to a certain topology

 (the density topology) in the domain space. Thus a number

 of results concerning lîl^- functions can be obtained by

 topological methods. No such topology exists for » Iflj.
 Applying Theorem 1, we show that some of these results

 (two lemmas of Zahorski [83» extension theorems [6], [41)

 hare valid analogues in HL.

 flotations . In what follows, all sets dealt with are

 subsets of R and all functions, unless otherwise specifi-

 ed, have R as domain. H denotes the set of all natural

 numbers, X the Lebesgue measure on R, Ë and E°

 the closure and interior of the set B, U(F, e) the

 e -neighbourhood of the set P, f/E the restriction of
 the function f to the domain E, and (x,y) the open

 interval from x to y where x < y or x > y. Por

 h €3£, h"~^ denotes the inverse of h. Pff and

 denotes the collection of all sets of type P,y and G$ ,

 respectively.

 Homeomorphic transformation of M .j -sets into M^-sets.
 In this section, by a measure we mean a nonnegative

 locally finite non-atomic Borei regular measure on R.

 A measure is called positive if ju(I) > 0 for every
 open interval I.
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 Definition« Let E € and let ^ be

 a positive measure. We shall say that E belongs to class

 M0 if S (I I is infinite whenever I is a closed
 interval intersecting E (i* e., E is bilaterally

 dense-in-itself )

 M j if EOI is uncountable whenever I is a closed
 interval intersecting E (i.e., E is bilaterally

 c-dense-in-itself)

 MÍJ if (u(EfìI) > 0 whenever I is a closed interval
 intersecting E

 if every point of E is a point of density of E

 relative to * (i.e., d.(E,x) s lim ME/K*T¡y) ), -j
 ř y- z ^Ł(x»y)

 for every x ć E) .

 The empty set is considered to belong to each of these
 classes.

 Remark 1 . It is easy to verify that the following

 assertions are valid for any positive measure

 (a) Mg d 3 Any open set E belongs to
 (b) If E € M ļ , he#, then h(E)£Mr
 (c) Each of the defined classes is closed tinder the

 formation of countable unions. MÍ is closed under the

 formation of finite intersections, but none of the other

 classes is. To see this, put

 A ■ U Ü Csk. B - (.1.0] U Q, ¿T).
 Then A and B are in M^, but ÁÍ1B = (-1,0] 4 MQ.
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 Lemma 1 . Let {®m}m€jj c there exists
 a positive measure ^ such that ^(-«*»,0) = ^(0,«*») »
 8114 <GmW c M2*

 Proof. Por any uncountable Borei set B there exists

 a finite measure such that jf CB) > 0 (see

 [7, p. 101]).

 Let {ln} be a sequence of all closed interrala with
 rational endpoints. Put M«{(m,n):G^anin^0>. If
 (m,n) € M, then G^fi IQ is uncountable, and we may find

 a measure ym>n such that In) > 0 and

 t ■ » ♦ ...» •

 Lemma 2. Suppose that

 (a) e > 0, iļ is a positive measure

 (b) P is a nonempty compact nowhere dense set

 (c) EëMg, PCB.
 Then there exists a measure £ such that
 (1) j-(R'(Enu<P,e))) = 0
 (2) y(R) < t
 (3) if x€P, then lim » o .

 y- X ¿TC 3C» y)

 Proof. This is a corollary of [7» Lemma 2]: Under the

 hypotheses (a), (b), (e) there exists a Borei measurable

 nonnegatire function g such that

 d») {x: g(x) 4 o} c (E'p)nucp,s)

 (2») J g diļ < e
 R
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 (3*) if xgP, then lim fl((2:,y)'F).( J g dtt)""1 s o.
 y-*x (x,y)

 It suffices to put Jf(B) « J g diļ for every Borei set B.
 B

 Lemma 3« Suppose that

 (a) e > 0, p and iļ are positive measures

 (b) A and B are compact nowhere dense sets

 (c) E € Mg» ACE.
 Then there exists a measure such that

 (4) » 0

 (5) jf(R) < €

 (6) if x € A'B, then lim s q
 y-x arU,y)

 (7) if x€B and y / x, then ¿*(x,y) < e({a(x,y))2.

 Proof, If A'B = 0, put f = 0. If A 4 0, B = 0,
 apply Lemma 2 with P « A. How, let A'B and B be non-

 oc

 empty. We can write A'B » U where An are nonempty
 compact nowhere dense sets. Por each n find & >0 such

 n

 that ®^U(An, 6n) Ä 0 put

 £n = min{e2"*n, ¿n, £2~n(inf{,u(x,y) : x€B, y€ U(A n,6n)})2}.

 Apply Lemma 2 with £ = e , P = A„ to obtain a measure y
 Xi H o ix

 Op

 with properties (1), (2), (3). Set y « 7"* y .
 n=1

 Statements (4), (5) are easy consequences of (1), (2).

 Let xe^cAxB. Since ¿r<x,y) § rmU,y) for any y 4 x,
 (6) follows from (3). To prove (7), let x€B, y ¿ x.
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 If yn(xfy) > 0 for some n, then (1) implies
 (x,y)n U(An,6n) 4 0. Pick z € (x,y)n U(An,£n). We have

 ¿rn(Zty) * < en - £2~n(fu(x,zs))2 < £2~n(u(x,y))2

 which implies (7).

 Theorem 1, Let {En}néu ®> countable collection
 of sets. Then the following conditions are equivalent,

 (i) il l. € M1 1 whenever Meu is finite, 3éM 3 1
 (ii) There exists a positive measure v such that

 y(-oo,0) = v(0,oo) « oo and {En} nçN c
 (iii) There exists h€# such that {h(En)}n6jj- c: M*.

 Proof. (i)=^-(ii),- By Lemma 1, we may find a positive

 measure p such that ^(-oo,0) = ^(0, <>«) » «*> and
 E., s fi E . € MÍ whenever Meu is finite.

 We shall suppose that all the sets Hn = are
 nonempty (if Hn = 0, then En, being open, is in
 for any positive measure v ). Since for each n, Hn €

 oo

 and H° - 0, we may write Hn = (J where {i£}~n
 K=n

 is a sequence of compact nowhere dense sets such that

 0¿l£cl£+1 for every k » a.
 Let ?n denote the collection of all nonempty subsets

 of Nn « {l,2,...,n}. Por each ne H and each put

 „ 2-C2n-1)ł ^ m = f| H?, 3 M = U Iff 3 n m j6M 3 M j€Un'M 3

 (if M = Nn, then Bg « 0). Kote that c: E^.
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 We shall construct a sequence {¿rn}^-o measures.
 We set }f0 = Assume that jf0, have
 already "been defined* Put

 vn~1 ~ ^0 + + **• + #n-1 *

 Por each set M € P^ apply Lemma 3 with í = ?¡ = ^n_i*

 A » A^, B = E^, E = to obtain a measure ^ such that

 <4') ^(RNEjj) = 0

 (5') jrj|(R> < en

 C 6') if x€aH'B* then lim ^ s 0
 y^X *hCx,7)

 (7') if y / i, then ^(x,y) < £n(fu(z,y))2 .
 Put

 = mS ÍM '
 31

 Having defined the sequence se^

 Fix m€ÎT, x€Em» We need to show that dv(Em,x) = 1.

 If x£E°, then it is obvious. Suppose that xCH^.

 Choose i ^ m so that x€H^ļ. Por y x we can write
 OC

 v((x,y)'Em) = yjL_>1C(x,y)'Em) + X] ¿Tn((x,y)' E^) .
 n=i

 Let n = i, MCP^. If m€M, then (4*)

 yields ^(R'Em> = 0. If miM, then x € c H* c

 hence tfJJCUty) 'Em) á < EnWx»y )>2» (T').
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 Putting P* = {lUPjjJ miM}, we obtain Jfn( (x,y) ' E^) =

 = 2n"1en(ru(x,y))2 = 2"*n(^x,y) )2,
 n

 consequently
 Od

 sr

 2_> JTn((3:,y)'Sin) < Ça(x,y))2 Š ,*(x,y)y (x,y) .
 n-i

 Put Q = {j: xeE^}. Then m€Q and x<=Aq'Bq. Since
 EqCB^, we have

 V4 1((x,y)'B0) 2-
 V4 1(<x,y)NE ) £ V± ļ((x,y)'B0) v Š

 v ^Q^»y)
 Thus

 Vj ^(x^JXEQ) 2-
 v((x,y)'Em) = (

 2rQ(x*y)
 v((x,y)'E )

 and C6») proves that dy(E .x) = 1 - lim

 m y- X V(x,y) .

 (ii)=^(iii). Define a function h by

 ( V(0,x) if X > 0
 h(x) =« ' , h(0) = 0 .

 I- -V(x,0) if X < 0

 Then h€3 (• Since v(I) » :'(h(I)) for every open inter-

 val I, we have v(B) = A(h(B)) for every Borei set B.

 Let a = h(u), uiBń = e. Then

 dx(h(E),a) * « lim n tet.1??,?. « * "b- a *(a,b)

 » iim ftfoffln(Mu)th<;v))) =
 v_»u ^h(u),h(v))

 = lim ?(En fo^?? = dv(E,u) v = 1 . v- u v(u,v) v

 (iii)=>(i). We have H E, = h~1( n h(E .)) for
 j€M 3 -jeM d

 every finite set Men. Apply Remark 1.
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 Classes and The only measure which will be

 used throughout the rest of this paper is the Lebesgue

 measure *. So we shall write simply d(E,x) instead

 of Mg, d»(E,x).

 Definition. A function f is said to he in class

 (i « 1,5) if every associated set of f is in M^. (The
 associated sets of f are the sets Er(f) = {xî f(x) < r}

 and Ep(f) « {xs f(x) > r) where r€R.)

 Remark 2. Referring to Remark 1, we immediately derive

 the following facts.

 (a) m5 cmr
 (b) If f€iar h€tf, then foheUl.,.
 (c) For a function f and p,q€R put

 r {x: p < f(x) < q> if p < q
 BjCf) P = E P (f)flBq(f) = i I ^ . P P I 0 if p ^ = q

 If fclTl^, then E^(f)€Mpj for all p,q€R. Conversely,

 if (Ejļ(f)i p,q rational} c: then f€lTltj.

 If f it is not immediately clear whether or not

 Ep( f ) €Mļ for all p,qeR (see Remark 1.c). To give an
 affirmative answer to this question, we need the following

 Lemma 4» Suppose that A and B are in {0}»

 AU B « R. Then Af1BeM1'{0}.
 Proof (cf. C 3» Lemma 3.2.1]). By [8, Lemma 71»

 no open interval Ich can be expressed as the union

 of two nonempty disjoint Mg-sets. Therefore AfiB 4 0 •
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 Let I "be an open interval such that AflBHĪ 0.

 Then AHI and BfìI are uncountable. We show that

 AOBfll is uncountable. If Ica or IcB, then it is

 obvious. Suppose INA 4 0> I'B ¿ 0 • Since R'Ac:B,

 R'A€G¿t BCPp, there is a set E€Fo-ft&¿ such that

 R'A c E c: B. Using [8, Lennna 7] again, we obtain

 {E fi I, I'E}<£M0. Assume EHI^Mq, the other case
 being similar. Then there is an open interval Jcl with

 Efìì ?f 0 and EflJ = 0, Since BcB, we have BfiJ¿0,

 so BD J is uncoun table* Furthermore, JCR'BCA,

 Thus A fi B H I rjAfiBfij » BOJ which implies the result.

 Corollary. If f€iar then E^(f)€M1 forali
 p,q £ R. (Proof: If p < q, then Ep(f) U Eq(f) = R.)

 Definition. A function f is said to be approximately

 continuous (f^A) if for each x€R there exists a mea-

 surable set Ex such that xeB^, dCE^x) « 1 and f/g
 Jkm

 is continuous at x.

 A measurable set E is said to be D-open provided that

 d(E,x) = 1 for every x€E.

 Remark 3. The collection D of all D-open sets foims

 a topology (see e.g. [1, p. 201). A function f belongs

 to A if and only if every associated set of f belongs

 to D (see e.g. [1, Chap. II, Theorem 5.6]). Thus A is

 exactly the class of all D-continuous functions. Consequen-

 tly, if f, g, h are in A, h(x) j* 0 for all x€R,

 then f+g, f.g, ģ are in A.
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 The class of all Darboux Baire 1 functions does

 not behave well with respect to the algebraic operations.

 To see this, put f(x) = sin g(x) = - sin ^ if x 4 0,
 f(0) « g(0) « 1. Then f, g are in but neither

 f+g nor f.g is# So, for any topology r on R, «0(8^
 cannot coincide with the class of all r -continuous

 functions* Hence there is no topology t on R for which

 JM3, is the class of all T-continuous functions.

 Remark 4. Since M,. = Fa n d and since A (see

 e.g. [I, Chap. II, Theorem 5.5]) , we conclude that

 Zahorski proved that = $3^ ([8, Theorem 1]) .

 Maximo ff s theorem«

 Theorem 2 (Maxdbnoff [53 » Preiss [73). For any

 function f, the following conditions are equivalent#

 (i) feu,.
 (ii) There exists h € t such that foh€Hlg.

 Proof, (i)=£(ii). Put S » {E^(f): p,q rational}.
 By the corollary of Lemma 4, ScM-j. The intersection
 of any collection of finitely many sets from S belongs

 to S. Applying Theorem 1, we construct a homeomorphism

 g€# such that {g(E)s E € S} c Put h » g"*^»
 Let p, q be rational numbers. Then

 E*(f • h) = h-1(B^f)) = sCEp(f)) € Hj.
 Hence f • h€1ïï^, by Remark 2.c.

 (ii) =£ (i)» This follows from the equality

 f m (f« h)» h~^ and from Remark 2.a,b.
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 Zero aeta and separation properties of fflļ and
 First we state two well-known lemmas of Zahorski concerning

 ny- functions and their analogues for Hlj- functions.

 Theorem 3. i (i « 1,5)» If B€Mif then there exists
 an upper-3 emicontinuoua function fe^ such that

 0 < f(x) ś 1 if xeE, f(x) = G if X€R'E.

 Theorem 3*5 is due to Zahorski ([8, Lemma 11]). Theorem

 3.1 is due to Agronsky (see Bruckner [1, p. 28-31])»

 Proof of Theorem 3.1. Let E . By Theorem 1 (or hy

 [2]), there exists h€tf such that h(B)€M^. Using Theo-
 rem 3»5, we find a function g€1ïï^ such that 0 < g(y) ^ 1
 if y€h(E), g(y) = 0 if y€H'h(E). We put f « g • h.

 Theorem 4. i (i « 1>5). Let H.j and Kg be nonempty
 disjoint sets such that RxH-j and RNHg are in

 Then there exists a function fCTTl^ such that
 f(x) « 0 if x6Hr f(x) « 1 if 3C€H2,
 0 < f(x) < 1 if X € R' (HļU Hg) •

 Theoraa 4»5 is due to Zahorski ( t Ö, Lemma 12]). We give

 the original proof here in order to show that the same

 method fails to work in līlļ (see Remark 3) s

 Suppose that R'H^ and RNHg are in By Theo-
 rem 3*5, there are functions f^^g (k ■ 1»2) such that
 0 < ffcix) S 1 if XCRNH^ and f^ix) ** 0 if x€H^.

 f 1
 It suffices to put f = -

 1 + *2
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 Proof of Theorem 4*1» Let {R'H^, RxHglcLI-j, Since

 (RXH^U CR'H2) = R, we have (HnH^ fl (R'H2) € M.,,
 by Lemma 4» According to Theorem 1, there exists h € #

 such that {R'h(H^), RNhCHg)} How take a function
 g€H!(j from Theorem 4*5 applied to h(Hļ), h(H2) and put
 f = g« h.

 Definition (Laczkovich [3]). Let i€{l,5j.

 A set H is said to be an Ulj-zero set if there exists
 a function such that H = {x; f(x) = 0}.

 A set P is said to he H^-closed if F coincides
 with the intersection of all H^-zero sets which contain
 F.

 A pair G<j, G2 of disjoint sets is said to be separa-
 ted by Hlļ if there exists a function f€% such that

 Gļ c {x: f(x) = 0}, G2 c {x: f(x) = 1}.

 Remark 5. Let i € {1,5}. If ^ r€R, then

 R'{x: f(x) » r} = E^fJU^f) € Combining this fact
 with Theorem 3. i and Theorem 4. i» we obtain the following

 characterizations î

 (a) A set H is an mezero set if and only if RvHei^.
 (b) A pair Gļt Gg of disjoint sets is separated by
 if and only if there is a pair of disjoint sets H1f Hg

 such that R'Hļ, R'H2 are in and G^cH^, G2cH2»

 Remark 6. A set F is ny-closed if and only if
 P is D-closed (see [3» p. 408]),
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 It remains to characterize all Hl^-closed sets.

 Definition« The class of sets C is defined by A£C

 if and only if AHI contains a nonempty perfect set

 whenever I is a closed interval intersecting A,

 Remark 7. If A€C, then obviously A is bilaterally

 c-dense-in-itself • If E is a Borei set, then S is in C

 if and only if E is bilaterally c-dense-in-itself (apply

 the fact that any uncountable Borei set contains a nonempty

 perfect set). Thus

 Lemma 5» Any set A€C contains a set E of type ü?a

 such that E H I is uncountable whenever I is a closed

 interval intersecting A (i#e», E is bilaterally c-dense

 in A). (Observe that E€M.j.)

 Proof. Let {ln} he a sequence of all closed inter-
 vals with rational endpoints. Put M = {n€H: Afiln 4 0}*

 If nćM, then AOIn contains a nonempty perfect set

 P . Define E = 1J
 n n€M n

 Lemma 6. A set P is 111,-closed if and only if
 R'P € C.

 Proof. Let F be an IR-j-closed set, Ï / R. Choose
 a closed interval I intersecting R'F, x£l'F. There

 is an THj-zero set H such that PCH and x£H. We have
 X € I'HC I'P. Since RNHéM^ by Remark 5*a, there is
 a nonempty perfect set P such that P c l'H c I'F.
 Hence R'P€C.
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 Suppose that R'F£C, F 4- R. Choose x€R'.F. By

 Lemma 5, R'F contains a set G€F(r which is bilaterally

 c-dense in R'F. Put E = GrU{x}. Then E€H.j. Applying

 Theorem 3.1, we find a function 'fÊTï^ such that f(y) > 0
 if y€E, f(y) « 0 if y£R'E. So, f(x) ^ 0 and f

 vanishes on PcR'E. This proves that F is 1Hj-closed.

 Clearly , if F » R, then F is Tïl^-closed and
 R'F « 0 € C.

 Remark 8. Let i £{1,5}. If H is an Ul^-closed set

 of type G¿ , then R'H€M^ (see Lennna 6 and Remark 6).
 So, Theorem 4 «i implies that any pair of disjoint

 HL-closed sets of type G$ is separated "by lîl^. This fact
 with i « 1 is due to Laczkovich (see [3» Theorem 3.2.2]).

 Extension theorems for Hl^ and . This section is
 devoted to modifications of the classical Tietze's theorem.

 Theorem 5.5 (Petruska, Laczkovich [6, Theorem 3.2]).

 For any set H, the following conditions are equivalent.

 (i) X(H) = 0.

 (ii) For each géfi^ there exists f€ia^ such that

 Theorem 6.5 (Lukeš [4, Theorem 4]). Let F be

 a D-closed set and let g€(B-j. Then the following
 conditions are equivalent.

 (i) g/j, is D-continuous on F.
 (ii) There exists a function f €1ïl^ such that f/j, = s/y
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 Remark 9. Let g be a function, F a set, p,q,r€R.

 We introduce the following notations:

 iřťg.F) = E^gíUCR^F), Vg,P) = Vg)U(RvF)'

 E^(g,ř) - E|(g)U(HxP).
 Let P be D-closed. Then g/p is D-continuous on P
 if and only if Er(g,F)£D and Er(g,F)€i) for all r€R.

 Remark 10« Suppose that A(H) = 0 and g€ß^. Then

 H is D-closed and g/g is D-continuous on H. Thus
 the implication (i) (ii) of Theorem 5.5 is a corollary

 of Theorem 6.5.

 Theorem 6.1 Let P be an Hl-j-closed set (i.e.,
 R'P€C), and let g C (B-ļ • The» the following conditions
 axe equivalent.

 (i) Er(g,P)€C and Er(g,F)€C forall r£R.
 (ii) There exists a function í€TTLj such that f/p » g/p.

 Proof, (i) => (ii). By Lemma 5» there is a set H

 such that PcH, RxHSP^ and R'H is bilaterally

 c-dense in R'P (hence R'H €M^) . It is easy to show

 that Er(g,H)€M1 and Er(g,H)6M1 forali r€R. Hence

 E^(g,H)€M.j for all p,q€R, p < q (apply Lemma 4).

 If p £ q, then Bj(g,H) « R'H €Mr

 Put S « {Ep(g»H) î p,q rational}. Obviously, S is
 closed under the formation of finite intersections. Using

 Theorem 1, we construct a homeomorphism h €. 2C such that

 (h(E) : E€S}cMj. Since R'h(H) € h(H) is D-closed.
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 Define g* = g • h . Clearly, g*€(&ļ. Por all rational

 p, q we have E^(g*,h(H)) = h(Eļ*(g,H)) € M?. Hence
 ^00*1^11110^ 031 h(H).

 According to Theorem 6.5» there exists f*€1Tl^ such

 that Put f = f »h, Then f€1Hj
 and f/H = g/H, so a fortiori f/F = g/p.

 (ii)=£(i). This follows from the equalities

 Er(g,P) » ^(gJUCR^P) » Er(f)U (R'P),

 Er(«»F> 81 Vg)u(RNP) " Vf)u(RNP)

 and from the fact that E^f), Er(f), R'P are in C.

 Theorem 5.1 For any set H, the following conditions

 are equivalent.

 (i) Por any interval I, I'H contains a nonempty

 perfect set.

 (ii) Por each g€(B-j there exists f 61TUj such that
 f/H « g/H.

 Proof. (i)=£(ii). It is clear that Er(g,H)£C and

 Er(g,H)£C for any g€fi-j and r£R. The result follows
 from Theorem 6.1.

 not (i) not (ii) . Suppose that there is an interval I

 such that I'H does not contain any nonempty perfect set.

 Choose x€HfiI. Put g(x) » 1, g(y) » 0 for all y / jc,

 Obviously, g£ßr Assume that there exists f€fllļ such

 that f/H - g/H. Then B s EQ(f) € Mr Since x€Ef1I,
 Efll is uncountable. Therefore (Efll)'{x} contains some

 nonempty perfect set P. But (BOI)'{x}c I'H, hence
 PcrixH - a contradiction.
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