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 ON PROJECTIONS OF BIG PLANAR SETS

 In f4] Steinhaus proved that the set of differences, A-B,
 contains an interval whenever A and B are linear sets of
 positive Lebesgue measure. The same conclusion holds when A

 and B have the property of Baire (Piccard [3]). Para-
 phrasing this result we see that the projection of A x B

 upon the line having equation y = -x contains an interval.

 On the one hand, we strengthen this latter result to apply to
 various kinds of projections. On the other hand, we con-

 sider the general problem of whether or not a projection of

 an arbitrary planar set which is "big" in measure or category

 contains an interval. Our main result with respect to this

 second problem is that there exists a residual planar set no pro-

 jection of which contains an interval. The analogous problem
 for sets of positive or full measure remains unsolved.

 Terminology: If f : R * R and E. c R2 we say that

 the f- project ion of E is the set {c : (f+c) n E ý Çf] ,
 m

 that is the set of all c for which the graph of f+c in-
 tersects E. The f -measure projection of E is the set

 {c: Aļ(dom( (f+c) ft EJ) > 0}. Here denotes Lebesgue
 measure in R1. The f-category projection of E is the set
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 (e: dom((f+c) E) is of second category}. We use the word

 projection to refer to any f-projection where f is linear.

 When f is linear and E has positive measure (resp.

 is of second category) then, as- is well known, the measure

 projection of E (resp. the category projection) fills up

 almost all of the projection of E in the sense of measure

 (resp. category). For Cartesian products this result as well

 as Steinhaus' theorem can be improved to the following

 Theorem 1 . Let A and B be linear sets of positive

 measure. Suppose f maps sets of positive measure onto sets

 of positive measure. Then the f-measure projection of

 A X B contains an interval. Moreover, if A = B and f is

 the identity function, then the interval contains 0.

 Proof : Let D denote the f-measure projection of

 A X B. It suffices to show D H C f 0 for any countable

 set C dense in R.

 To this end fix a countable dense subset C of R. Sup-

 pose D D C = 0. Then for each c € C Xļ({x € A : f(x) +
 c € B} ) =0. Consequently the set E = {x € A : f(x) + c € B,

 c 6 C} also has measure 0. Choose P to be a closed sub-

 set of A - E such that 'ļ(P) > 0. According to Steinhaus'
 result the difference set B - f(P) contains an interval.

 Hence, C fi (B - f(P)) f 0 which means that there exist

 b e B, c € C and p 6 P c A such that b = f(p) + c.
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 Thus p € E which is a contradiction.

 For the second part, assume that A = B and f(x) = x

 for all x. Assume that D does not contain an interval con-

 taining 0. Then there exists a sequence such that

 cÄ -» 0 for which ',({x € A : x + c € A}) = 0. Choose P n l n

 to be a closed subset of A - dom U*=ļ((f+cn) 0 (Ax A))
 with Aļ(P) > 0. According to [4] P - P contains an in-
 terval centered at 0. But P • P c D, a contradiction.

 Corollary 1. If A and B are linear sets of positive

 measure, then each measure projection of A x B, except

 possibly the vertical and horizontal projections, contains an

 interval.

 The exceptions above are necessary if one takes A and

 B to be nowhere dense sets of positive measure. Next we have

 the category analogue of Theorem 1.

 Theorem 2. Let A and B be linear sets having the

 property of Baire. Suppose f maps sets with the property

 of Baire onto sets with the property of Baire. Then the

 f-category projection of A x B contains an interval.

 Moreover, if A = B and f is the identity function, then

 the interval contains 0.

 Proof: The proof is analogous to that of Theorem 1 using
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 instead of Steinhaus* results the corresponding ones found in

 Piccard [3]. Here, the set E is of first category so that

 we can put P = A - E which is a set with the property of

 Baire .

 The category analogue of Corollary 1 can be improved to

 the following:

 Theorem 3 . If A has the property of Baire and B is

 of second category, then any category projection of A x B,

 except possibly the vertical and horizontal projections, con-

 tains an interval.

 Proof: Using the same proof as in Theorem 2 we need to

 show that B - H contains an interval whenever H has the

 property of Baire. For this it suffices to show

 (B-H) n C = 0. We have H = (G U F^) - F2 where G is open
 and F^ and F 2 are of first category. Obviously there
 exists c £ C such that (G+c) n B is of second category.

 It follows that c € B-H.

 The conclusion of Theorem 3 is no longer valid if both

 A and B are just of second category as is shown by the

 following example. Moreover, it is not valid if B is taken

 to be an FQ set c -dense in R -(see Corollary 2 below).
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 Theorem 4. There exists a second category set A such

 that the projection of A x A onto any line with rational

 slope and rational intercept does not contain an interval.

 Proof: Let Q denote the set of rational numbers and

 let {Gala<c be a well-ordering of all residual Gg subsets
 of the line. Choose aQ € GQ - Q. Suppose we have chosen

 aa è Gor ^or < ß *n such a way that a^ $ Qay + Q
 whenever jj , v < ß. Choose aß € - U{Q*a + Q : a < ß} .
 Put A = {ap : ß < c} . The set A is of second category be-
 cause it intersects each residual Gg set. Moreover, no
 line of the form y = rx + s for r,s € Q can intersect

 A X A. It follows that the projection of A x A onto

 any line with rational slope and rational intercept

 contains no rational number and hence no interval.

 Note that the above result also shows that the category-

 projections fail to contain intervals for a dense set of

 directions.

 It is unknown whether or not a second category set A

 can be found such that the (category) projection of A x A

 fails to have a non-empty interior in each direction.

 The foregoing results suggest that arbitrary planar sets,

 not necessarily Cartesian products, will have projections with

 non-empty interiors provided the sets are "big" enough in
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 measure or residual. The next theorem shows that this

 conjecture is invalid at least in the case that the set is

 residual .

 Theorem 5; There exists a residual planar set each

 projection of which has empty interior.

 Proof: For each n let 0 be an open dense subset of

 [0,1] with *ļ(On) = 3~n. Put Gn = {0p + k : k an integer}.
 Then clearly for any sequence (an}*=l *n ^

 h uñ=l(í0'1} n (Gn + an}) š ^lM10'11 n (Gn + an})
 < = y® , 3~n = k
 = n=l ,

 Put PR = R - Gn- Then for any sequence íaníñ=l *n ^
 set [0,1) n fi^=ļ(Pn + an) has measure £ ' and therefore is
 non-empty.

 Let irn^n=i be an enumeration of the set of all ratio-
 nal numbers Q. For x €R define F(x) = [0,1] n

 n*=i(Pn " rnx)* Then for each x 6 R F(x) is a non-empty

 compact set. Define : R2 -> R by n^(x,y) = x. Then for
 any set K {x : F(x) n K f 0} = n1(n^_ļ{ (x,y) : y 6 K fl Pn - rnx}).
 If K is compact this set is clearly compact. This means that

 the mapping F from R into the closed subsets of [0,1]

 is upper-semi-continuous and according to Coban [2] there

 exists a Borei 1 selection for F-j i.e., there exists a Borei

 1 function f such that f(x> 6 F(x) for all x € R.
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 In particular, for all x, f(x) ¿ 0*_ļ(Gn - rnx) so
 that f(x) + rRx ¿ Gn for all n and x. Then the range of
 the function f(x) + rRx is nowhere dense in R for each
 fixed n.

 For m € R and r € Q put L_ = {(x,y) : y = mx +
 m y r

 f(m) + r} . Define n(x,y,m) = (x,y). Then since f is a

 Borei 1 function {(x,y,m) : y = mx + f(m)} is a G^ set.
 Moreover, o : m ^ ^ = reKx»y»®) : y = œx + f(m)}.
 Hence u { L>m q • m 6 R} is the projection of a Borei set and

 therefore analytic. Since Lm r = Lm o + f°H°ws that
 each u{L_ _ : m € R} is also analytic. Therefore,

 IH ) XT

 A = R2-u{L_ : m 6 R, r € Q1 is coanalytic and consequent-
 lii i L

 ly measurable. Obviously A has the property that each pro-

 jection has empty interior.

 It remains to show that each u{Lm r : m € R} is no-
 where dense. Clearly we can take r = 0. Suppose, on the con-

 trary, that it is dense somewhere, so that there exist intervals

 I and J such that I x J c cl u q : m € R} . For each
 n (Gr + r ) n J is a dense open subset of J. Pick an

 rn € I - {0} and an open interval S c (Gn+rn)fi J. Then
 n0 I'm u» a can intersect the vertical segment {r} x S. u» j v n

 Otherwise f(m) + mrR 6 S for some m, which contradicts

 the fact that f(x) + rßx 4 Gn for all x. Moreover, the
 set of intercepts of the lines Lffi q for m € R must lie
 in the interval {0} x [0,1] since 0 % f(x) Š 1 for all

 x. Let T be the open triangle formed by the endpoints of

 {rni x S and the point of intersection of the two lines join-
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 ing the upper (resp. lower) endpoints of {rn} x S and

 {0} X (0,1). Clearly no Lm q can intersect T. On the
 other hand, T intersects 1 x J. Hence, {Lm q : m € R}
 can not be dense in I x J, a contradiction.

 Therefore A is a residual set having no projection with

 non-void interior. Hence, A contains a residual subset

 with the same property.

 Corollary 2 . There exists a residual Gg subset D of
 R and an Fa subset E of R which is c-dense in R such
 that each projection of D x E has empty interior.

 Proof: Let A be the residual G^ set of Theorem 5.
 From [1] we can find such sets D and E for which

 D x E c A. Hence, no projection of D x E has nonempty in-

 terior.

 It is unknown whether any set of full measure (or even

 positive measure) has a projection with non-empty interior.

 A set is of full measure if its complement has measure 0.

 Note that the proof of Theorem 5 contains much more in-

 formation than is necessary for the conclusion. The function

 need not be Borei measurable nor the set A measurable. How-

 ever, we have included this information in the hope that it can

 be useful in ascertaining whether- A has measure 0 or full

 measure.

 We can, however, reduce the above question to the exist-

 ence of a pathological function, as given in the next result.
 71.3



 Theorem 6. (1) If there exists a planar set of full

 measure each projection of which has empty interior, then

 (a) There exists an f : R R such that for almost

 all c '^({f(x) + ex ": x e R} ) = 0.
 and

 (b) There exists a set C of full measure in R and

 a function A from C into the null subsets of

 R such that for each x n{A(c) + ex : c € C} ? 0.

 (2) If there exists a Borei function f : R •* R such that

 for almost all c 'ļ({f(x) + ex : x € R} ) = 0
 then there exists a planar set of full measure each

 projection of which has empty interior.

 A proof of this result can be constructed following

 the arguments in the proof of theorem 5.

 One can also define projections at a point by taking the

 intersections of all lines joining this point and points in the

 set with a circle centered at the given point. Results similar

 to the above can be established by using the log and exp func-

 tions.
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