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 ASSOCIATED SETS AND "CONTINUITY ROADS

 Introduction. For a real valued function of a real variable

 f, the associated sets of f are thé sets Ea{f) = {xjf(x) < a)

 and Ea(f) = ix|f(x) > a) for real a. Many classes of functions
 can be characterized in terms of their associated sets. For

 example f is continuous if and only if all of its associated

 sets are open, and f is in the first Baire class (ßj) if and only
 if all of its associated sets are of type T . A continuity road

 for a function f at a point x in its domain is a set E

 containing x and such that f Ļ- is continuous at x. (fĻ
 denotes the restriction of f to the domain E.) Many classes

 of functions are characterized by having continuity roads of a

 certain type at each point in their domains. For example, f is

 continuous if at each point it has a continuity road which is open,

 and f is approximately continuous if it has at each point a

 continuity road which is an T set having the property that each

 point is a point of Lebesgue density of that set. We thus have

 two types of characterizations - in terms of associated sets and

 in terms of continuity roads. In Theorem 1 of this paper we obtain

 a result relating the two types of characterizations. In [4]

 Zahorski defined a nested sequence of classes of functions , i =

 0,1,..., 5. He then demonstrated that the KL classes are closely related

 to the class of ordinary derivatives A. Specifically (among many

 deep results in [4]) he established the inclusions £ bA § kHg.

 (b denotes bounded.) Tbe 11. classes are defined in terms of associated

 sets and was shown to equal the approximately continuous func-
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 tions. Hence admits both types of characterizations. Me will

 apply Theorem 1 to the other classes and will see that with the exception

 of 11^, all the other 1« 0,1 ,2,3 also admit continuity road

 characterizations» In order to unify the study of the and

 related classes, we introduce some terminology.

 Definitions and Preliminaries. v will denote Lebesgue measure, and all

 sets will be assumed Lebesgue measurable. T will denote the class of

 all sets of type P .
 a

 Definition. Let p be a property of sets (not necessarily

 all sets) with respect to sets containing them. If Ac B, then

 we denote that A has (doesn't have) property p with respect to

 B by A c p B (A .i pB). ix) c pB will be denoted by x e ^B, p
 will be called a strong containment property if

 i) A c p S c E implies A c p E

 ii) A c B c p E implies A c p E

 iii) If for each natural number n, A cnE P , then » « n P n' ,

 ° An n c P D u n=l An n P D n=l "

 Definition. If p is a strong containment property, we

 define the class of functions » bv ^ f e u if and oni v if p ^ p J

 ^(f) c p E (f ) e and Eff(f) cpEa(f) eTa forali a.
 Definition. If p is a strong containment property and x

 is a real number, we define the class of functions M . [x.l by
 ~ P

 f 6 ttpDO if and only if there exists a set E such that

 x e E c pE and fļj. is continuous at x, i.e. E is a
 continuity road for f at x and E c p E .

 Now, 1f A c B, let A c p B mean that every point of A

 is a point of Lebesgue density of B. Then pr is easily seen
 O
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 to be a strong containment property and ttp^ ■ *5. Also, ft Vo
 means that f is approximately continuous at x and so we have

 f e Mg if and only If f e *pg[xj for all x. In order to Inves-
 tigate the analogous statements for the other classes, we

 formulate their definitions 1n terms of strong containment

 properties:

 Definitions. If A c B, then A c p^p p^jB will mean that
 for x e A and e > 0, the sets (x-e,x) n B and (x,x+e) n B are

 infinite (have cardinality c, have positive measure). It is clear

 that Pq, Pj and are strong containment properties and Mp^ = Mq,

 ttp^ = and Mp^ = Ì&2' Zahorski showed that Mq « = t)^ (Darboux-
 Baire 1 functions).

 Definition. If Ac B, then A cn B will mean that for x e A

 and each k = 1,2,...» there exists e(x,k) > 0 such that u(I n B)

 > 0 for all intervals I such that and y(I) + d(x,I)

 < e(x,k) (d(x,I) denotes the distance from x to I). It is clear

 that Pg is a strong containment property and Mp^ =
 Definition. If As F and A c B, then Ac b will mean that there exists

 o P4

 a sequence of closed sets An and a sequence of positive numbers rin
 00

 such that A c u A_ and for each x g An a and k = 1,2,... there
 n=l n n

 exists c(x,k) > 0 such that y( I n B) > nnu(I) for all intervals I

 for which > ' and y(I) + d(x,I) < e(x,k). Clearly p4 is
 a strong containment property and

 All functions, unless otherwise specified, will be defined on

 [0,13. In the sequel where properties are defined bilaterally, we

 make the necessary modifications at 0 and 1.
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 Main Results.

 THEOREM 1. Let p be a strong containment property satis-

 fying the three additional conditions;

 a ) if E c pE and G is open, then E n 6 c p E n G;

 b) p is defined pointwise, i.e., A c pB if and only if

 X e p B for all x e A;
 c ) suppose {E } isa sequence of sets such that

 CD

 E„x1 n+1 c E c dE„ P for all n and n £ n = {x}. Then n+1 n P n n

 there exist sequences of points (an) increasing to x

 and {bn> decreasing to x such that x c- p {x} u
 oo

 u (Wl)3 " En-
 Then, for a Baire 1 function ft the following are equivalent:

 1) f e *yX3 for all x e [0,1];
 r

 2) f~^(G)c pf"*(G) for all open sets G;

 3) g o f e Mp for all continuous functions g.

 PROOF: 1) implies 2). Let G be open, and let xef^lG). Since

 f e ttp[x], there exists a set E such that x e E c p E and fļE
 is continuous at x. Hence there exists e > 0 such that

 (x-e, x+e) n E c f"1^). But by hypothesis a ) we have (x-e> x+e)

 n E c p (x-c,x+c) n E c f1 (G) and so x e pf'^G). Hence
 since p is defined pointwise, we have f^CG) c pf Hg).

 2) implies 1). Let x € [0,1] and we show f e »p£x3. Let

 E = (*4. x + ^) n f^Ufíx)-^ "" f(x)+i-)î. ■' Then from a) and 2) fļ lì "" ■'
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 oe

 we see £n+ļ c Efi cpEn and n En » {x}. Hence by c) there

 exist sequences {anJ Increasing to x and {bR) decreasing to

 x such that x e p (x) [(bn+ļ,bn) u (an,an+ļ)] n En - E. By
 111) In the definition of strong containment property and a) above,

 we see that E CpE and evidently fj^ 1s continuous at x.
 2) implies 3). Let g be continuous and a be a real number.

 We need to show Eot(g o f) c Ea(g o f) e F and E (g o f) c
 p a a P

 Ea(g o f) e F . But Ea(g o f ) = {x : g o f(x) < a} = where
 H « {x : g(x) < a). Since g 1s continuous, H is open and so by

 hypothesis f~*(H) Cpf"^(H). Since f is Baire 1, f~^(H) e F^.
 Similarly, E (g o f) c E (g o f) e F

 a P öl o

 3) implies 2). Let f e 6 be open and we want to show

 f"^(G) * ' c f'^(G). We write G = u (a_.b n ) and then f~*(G) = u * ' p n=ļ n n n= !

 f_1(antbn). Now fix n and we show f~"*(an»bn) c "F""1 ^an*bn^ " Let

 m be the midpoint of Un»bn) and let g(x) s j ļļļ ^ 2 . Then g(x) is

 continuous and (an«bn) « {x :g(x) < 1). So {x : g o f(x) < 1}

 ■ {x : f(x) e (an,bn)} = f"1 (an,bn). But by hypothesis, go f e *p

 and so {xígof(x)<l)cp {xigof(x)<l}» i »e. , f (a^»b^)
 cpf~* ian»bn)' Thus by condition Hi) 1n the definition of a

 strong containment property, we have f~^(G)c pf (G). This

 completes the proof.

 We observe that hypothesis c) was needed only in establishing

 2) implies 1). Hence if p is any strong containment property

 satisfying a) and b) above, then by letting g (x ) = x in 3)

 of Theorem 1, we see that f e *pC*] "f°r * Implies f e
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 We have thus established the following:

 COROLLARY 1. If p 1s any of the properties Pg» pļt p¿»

 P3, and If f fs any Balre 1 function such that f e for
 all X e [0,1], then f e M .

 r

 It 1s worthwhile to note that many other classes of functions

 related to the derivatives can be defined in terms of strong

 containment properties. We give 2 examples:

 Definition. If Ac B, then A c B will mean that for

 each X e A, there exists n > 0 such that for each k ■ 1,2,...

 there exists e(x,k) > 0 such that y(I o B) > 'v{l) for all

 intervals I for which y(I) + d(x,I) <_ c(x.k) and > £ •

 Zahorski [4 pg. 52] asked if (this author's notation) is

 the same as Lipiński [2] later answered in the negative

 showing Hp* g However, it is evident that p* satisfies

 hypotheses a} and b) of Theorem 1 and so for a Bai re 1 function f,

 f e Mp#[x] for all X e. [0,1] implies f e

 Definition. If A c B, then Ac Pa B will mean for each
 X e A, lim . ? ^ ln ' = 0 for all sequences of intervals {I } for

 n-*x> Qix,ir(;

 which In n B = 4> for all n and In -»■ x. Un ^ * means every

 neighborhood of x contains all but finitely many of the intervals

 V
 We remark that p, and p are similar to what has been 0 d

 called "non porosity" by some recent authors. See, for example,

 [1] for a definition.

 It is easily seen that M, 3 c M c L and *1 n 11 2 = » 3 Pa • Pa 2 3
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 Again» p satisfies a) and b) of Theorem 1 and so for
 m

 Balre 1 functions f, f « M [xjļ for all x € £0,1] Implies
 * ft

 f e r .
 Pa

 We note that the property p^ does not satisfy b) of Theorem 1.

 To see this, observe that *ep^ B if and only if xep^ B. Then since
 p* satisfies b), p^ cannot for otherwise, p4 and p* would be

 equivalent. It is still undetermined whether or not f e Mp [x] for

 all x « [0,1] implies f e Mp^.
 We now investigate the converse of Corollary 1.

 COROLLARY 2. If f e then f e *pļDG for all xe [0,1],

 PROOF: p^ evidently satisfies the hypotheses of Theorem 1.
 Since M a Dßi and this class Is closed under composition on the

 Pi 1
 left by continuous functions, the result follows- from Theorem 1.

 COROLLARY 3. If fe» , then f e M [x] for all xe[0,l].
 PO "0

 PROOF: * s (see [4]) and clearly *Pļ[x] c «PDW-
 so the result follows from Corollary 2.

 THEOREM 2. If f e M , then f e H £x] for all x e [0,1].
 P2 P2

 PROOF: P2 evidently satisfies the hypotheses of Theorem 1. Since

 *n * and anv ~ fea, is known to possess the Denjoy-Clarkson Mo Z ~ ¿
 -1 -1

 property (see [3]), we have f" (G) c f (G) for all open sets 6.

 The result follows from Theorem 1.
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 THEOREH 3. If f e * , then f € m [x] for all xelO.l].
 P3 , p3

 PROOF: P3 evidently satisfies a) and b} of Theorem 1.

 We wish to use Theorem 1 and so must verify that pg satisfies c).

 So suppose {En> is a sequence of sets, En+ļ c En c En and
 CO

 n E * (x). We construct the sequence- {b " }, the construction * n "
 nsl *

 of (an) being analogous. We choose brļ by induction to satisfy:

 1) x< b„<*łi
 2> bn < Vi

 3) V Vi
 4) v(l n E„) > 0 for all 1 for which > ļf »"d

 y(I) + d(x,I) < bn - X.

 Since x e E2 c E-j cp^ E-j, there exists b^ e E2 such that x < b-j < x + j,

 and y (I n E-j) > 0 for all I for which j'y > ^ an<* vi ( I ) + d(x,I) < b-j - x.

 Assume b.| ,b2,. . . ,bk have been chosen to satisfy 1), 2), 3), and 4) above.

 Since x e Ek+2 c ER+1 c p3 Ek+r there exists bfc+ì e Ek+2 such that

 x < bk+ļ < x + -y, bk+ļ < bk and y(I n Ek+ļ ) > 0 for all Ī for which

 > _L and u(I) + d(x,I) < b.+1 ' - x. This completes the induction. 0 (X 9 1 / K+ 1 '

 CO

 Now let Fn « (bn+ļ»bn) ft En and F = u F^. Then evidently
 n=l

 F c F and we need to show that x e Fu {x}. Given k, we

 P3 m P3
 choose e < bk - x and then 3^,1) m > -ç and y(I) + d(x,I) < e

 imply u(I) + d(x,I) < bk - x, Hence either I c (bn+ļ,bn) or

 1 contains bR for some n > k. In either case y(I ft Fn) > 0

 or y(I ft F ^ ) > O and so y(I ft F) > 0. Thus p3 satisfies
 hypothesis c) 1n Theorem 1.

 Suppose f e » but f f M [x] for some x e £0,13- By using
 P3 P3

 Theorem 1 and the fact that is defined pointwise, there exists an interval

 (a,b) and a point xQ e f'^a.b) such that *0*p3 f'^a.b). Thus there
 exists a sequence of intervals {I } such that xn t I , I > x„,

 n 0 n , n 0
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 M(In) .1
 •^x ļ > n > 0 for ail n and y(In n f (a,b)) * 0 for all n.

 Now» for any n, f|t e * » Hence, by Theorai» Z, f|T € * £z]
 -fln P2 ,ln "2

 for all z e iß and so IR n f"^(a,b) c In n f~'(a,b) for all

 n. But pUnft f"^(a,b)) « 0 for all n, and so In n f"^(a,b)
 = fi for all n. Since f is Darboux, we must have that for each

 n, either f(z) > b for all z e I or f(z) < a for all ze In.
 Hence» there exists a subsequence {I } of {I } such that

 nk n

 I xn u and f(z) >_ b for all z e I and all k (or f(z) nk u nk

 < a for all z e I and all k). Thus either xn ü t _ (x ; f(x) k ü _ p3

 < b) or Xq ^ p -fx : f(x) > a) contradicting f e . This

 proves the theorem.

 It is worth noting that by combining Theorems 2 and 3 with Theorem 1,

 we obtain a proof of the fact that Hg afìd *1^ are closed under outside
 composition with continuous functions.

 We now construct a function f defined on (-1,1) such that

 f e Mp but f í Mp {O]. For each n = 0,1,2,..., let

 * xn < "I ( xn < <xí " pr be a Petition of ļ
 into congruent subintervals. Now let (a^,b^), i = l,2,...»4n>

 be a set of non-overlapping intervals of equal lengths such that:

 1) the midpoint of (aj»bj) * x^;
 OO 4n

 2) u u Ul»bl) n has zero density at the origin. nxl i=l n n
 4n+l n

 For notational convenience, we say bn+ļ = bjļ.

 Now define f on (0,1) by:
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 1 on If 1 is odd;

 -1 on fbi,a*+M If 1 1s even;
 f m < I n n J

 extended linearly between 1 and -1 on (a„»b*)

 so as to make f continuous on (0,1).

 Let f(x) = f(-x) for x e (-1,0), and let f (0) « 0. We first

 show that f is the derivative of its integral. For x / 0, f(x)

 1 fx
 is continuous and so it remains to show lim -r-r- f(t)dt * 0.

 x-»0 lxI '0

 Now, if |x| - -ļr , itis clear by the construction of f that
 2

 rX 11
 f (t )dt = 0 so suppose ļxļ e (~rrr * ~r) • Then by the symmetry
 j0 2 2
 of f, we have

 1

 x 2n+1 x x
 J x f(t)dt « ļ f (t)dt + ļ x f (t)dt = j x f (t)dt . And

 gn+H ' 2n+^

 fx l
 f(t)dt < - - by the construction of f. Now, since

 J 1 4

 2n+1 '

 M > ~¿T» «e have < 2n+1 and so [ ļ f(t)dt
 ļ 2n+1

 <

 4n 2 x-M) 'xl J0

 So f is bounded and everywhere the derivative of its integral,

 and since bounded derivatives are all in the class we have
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 OD 4n

 f e M 4 But 1t 1s easy to see f « MD [0], Let A a u u (a*,b*) and 4 easy p4 n-1 1=1 n n
 -A » {x:-x e A). We observe that 0 e f~^(-l,l) = A u -A which has zero

 density at 0 and hence there is no set E such that Oe EcD Ec f~^(-l,l).
 4

 Thus there 1s no set E such that 0 e Ecp^ E for which f|^ is
 continuous at 0.
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