
 Andrew Bruckner, Department of Mathematics, University of California,
 Santa Barbara, CA 93106

 Some New Simple Proofs of Old Difficult Theorems

 1. Introduction.

 In his doctoral dissertation published in 1799, Gauss gave

 the first formal proof of what we now call the Fundamental

 Theorem of Algebra. The result had been conjectured much earlier

 by Girard and various 18th century mathematicians had spent

 considerable effort in attempts to prove it. In fact, D'Alembert

 put such an effort into settling it that the theorem is still

 widely known in France as D' Alembert' s Theorem. (D'Alembert

 actually provided a proof in 1743, but it wouldn't meet today's

 standards of rigor). Gauss actually published several proofs

 of this theorem (one as late as 1850, when he was in his

 seventies) in an attempt to find one which is entirely algebraic.

 He didn't succeed. In fact, the first algebraic proof may be

 due to Perron in 1951! (See Zassenhaus (28)).

 Today, most students of mathematics learn proofs based on

 Liouville's theorem, Rouche's theorem, or on various other

 standard theorems in analytic function theory. Because of the

 simplicity of these proofs, many students have no idea of the

 difficulties encountered by Gauss and his predecessors in

 proving the theorem.
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 The foregoing provides a celebrated instance of a situation

 that often occurs in mathematics. A problem is solved with

 great difficulty and much ingenuity and after a long period

 of time. Later, when more machinery is available, the solution

 flows easily from the new machinery, which may have been created

 with entirely different objectives in mind.

 The purpose of this article is to discuss two related

 problems of this type in differentation theory. We also discuss

 a third such problem which the new machinery failed to solve.

 Instead, it succeeded in indicating "why" the problem was so

 difficult. This in itself was no easy task at the time.

 We show it could have been!

 Specialists in differentiation theory will be familiar with

 all these problems, though not necessarily with their histories

 or with all the new proofs.

 2. Differentiable nowhere monotonie functions.

 Slightly over one hundred years ago Du Bois-Reymond

 expressed the view that a nowhere monotonie function cannot

 be differentiable. Dini, on the other hand, believed the

 existence of such functions highly probable [12 : p. 412].

 In 1887 Kopeke provided a construction of such a functiou.

 In discussing Kopeke1 s work, Denjoy wrote in 1915 (8 : p. 228]

 "In 1887, Kopeke gave in Hath-Annalen an example of a function

 possessing in each point (or so he thought) a derivative which

 vanished and took both signs in every interval contained in

 64



 its domain of definition. This geometor returned to this subject

 on several occasions [references], correcting each time the

 errors contained in the previous proofs. This question of

 dif ferentiable , nowhere monotonie functions has also provoked

 many other works [references]."

 The various constructions Denpy referred to were quite

 complicated. At this point in Denjoy's paper [8], he had already

 given three separate constructions. He was about to give a

 Köpcke-type construction, but before doing so he alerted the

 reader to the "clarity and simplicity" of his construction

 made possible by borrowing ideas from "Borei and Lebesque on

 the measure of sets." To Denjoy, his constructions were

 simple and clear. We would probably find them horrendous.

 Hobson modifies Pereno' s modification of Köpchke's construction

 in his book [12]. This was published about forty years after

 Köpchke's first correction, thirty years after Pereno' s

 modification and fifteen years after Denjoy's "simple and clear"

 development. It required ten pages!

 Today a number of proofs are available. Sosne are constructive

 in nature - Zahorski's well-known construction [26], and recent

 relatively elementary constructions by Katznelson and Stromberg

 [17] and by Blažek, Borak and Maly [3]. The others depend

 on machinery not available to Hopson or bis predecessors.

 We discuss briefly several such proofs. We mention that some

 of the proofs are based on theorems which, directly or

 indirectly, depend on results obtained by Zahorski in [26].
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 a) Ba i re Category Theorem [25]. Weil's proof of the existence

 of dif ferentiable nowhere monotonie functions has a special

 appeal. It does not rely on difficult constructions; nor

 does it depend on other theorems which were difficult to prove

 and whose proofs depend on other theorems, which were also

 difficult to prove. In short, it can be presented to students

 who have seen the Bai re Category Theorem, know that the

 uniform limits of derivatives are derivatives, and who believe

 the Pompeiu construction of a strictly increasing differentiable

 function whose derivative vanishes on a dense set. Of all the

 known proofs, it is the one which can be read and understood

 with confidence of the correctness of the result more easily

 than any other.

 Let A' be the Banach space of bounded derivatives

 on 10,1] furnished with the sup norm. Let Aģ = {f€A' : f - 0

 on a dense set}. It is easy to verify that A¿ is closed
 under addition and is complete. Straightforward use of

 Pompeiu derivatives establishes that for each interval

 lc(0,l], {f€Aģ : f > 0 on 1} is nowhere dense in Aģ .
 The result follows readily from the Baire Category Theorem.

 Here is a plausible approach to constructing a nowhere

 monotonie differentiable function. First construct two

 derivatives gj and g^ in Aq such that the sets

 {x : gj(x) > 0 and g2(x) = °)

 and {x : g ^ (x) > 0 and g^(x) = 0} are dense.

 Let g s g j - g^. Then g€Ag. The function
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 G(x) = Jq g(t)dt has the desired properties.
 i* t

 To construct such a pair (g^, g2) "from scratch is t

 not an easy task. Recent works in differentiation theory have

 provided theorems which permit almost obvious uses of this

 approach.

 b) Density Topology. Goffman [111 made clever use of properties

 of the density topology to construct such a pair (gj, g^)*

 This topology is completely regular, countable sets are

 closed, and the continuous functions (with density topology

 as domain and euclidean topology as range) are the approximately

 continuous functions. Let A and B be disjoint countable

 dense subsets of R : A = {a^, a-, •••}, B = {bj, b£, ...}.

 For each n = 1,2,..., let fQ be approximately continuous

 on R, 0 < fQ < 1, *n^8n^ ~ * " 0 on Choose gR

 approximately continuous on R^ 0 < g„ < 1, 8n0>n) = 1
 and g = 0 on A. Since the uniform sum of a series of

 approximately continuous functions is also approximately

 continuous , the function

 ® f » O
 _ T n v n g _ = I T - - ¿ v -
 n=l 2 o=l 2

 is a bounded approximately continuous function. It clearly

 has the desired properties.

 c) Extensions to derivatives {211. Petruska and Laczkovich*

 proved that if Z is a null set contained in [0,1], then
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 the restriction of any Baire 1 function to Z can be extended

 to a derivative on (0,1].

 Let

 1 P
 - if X = S q even
 q <1

 f(x) = - - if X = q odd
 q q

 I 0 elsewhere

 with p and q relatively prime. Then f is Baire 1 and

 its restriction to the rationals in [0,1] can be extended
 A A

 to a derivative f on [0,1}. Any primative of f is

 nowhere monotonie.

 d) Products of derivatives. Marik and Weil [7] have proved,

 (with only minor assistance from me), that every Baire 1

 function that vanishes almost everywhere is a product of two

 derivatives. Let f be the function of example c). Write

 f = gh, (g, h€A').

 Let A = {x : g(x) > 0, h(x) > 0}

 B = {x : g(x) > 0, h(x) < 0}

 C = {x : g(x) < 0, h(x) > 0}

 and D = {x : g(x) < 0, h(x) < 0}

 Since f is positive on a dense set, the set AUD

 is dense. Thus there exists an interval lc(0,l) on which A
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 is dense or D is dense. Similar reasoning leads to an

 interval Jcl on which B is dense or C is dense. On J,

 we have both members of one of the pairs (A,B), (A,C), (D,B)

 and (D,C) dense. Each of these cases leads to one of the

 derivatives g or h taking both signs on J. A primitive of

 this function has the desired properties on J.

 Another approach has surfaced in recent years. One first

 obtains ą function with the desired oscillatory behavior. This

 function need not be differentiable. One then transforms this

 function via a transformation which creates differentiability

 without destroying the desired oscillatary behavior. One can

 use a similar approach to create derivatives which take both

 signs in every interval. The three examples following use one

 of these approaches.

 e) Change of Variable, and changes of scale.

 (i) Let EclO,l] be measurable and together with its

 complement have positive measure in every subinterval of 10,1]

 1 if x€ E

 Let f(x) « and let F(x) = JgfCOdt.
 -1 if xg E

 Then F is absolutely continuous. Fleissner and Foran [9],

 Bruckner and Goffman [6], and Kaplan and Slobodnick [15] have

 all established theorems which show that there exists a

 homeomorphism h of [0,1] onto itself such that F«h is
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 differentiable. It is clear that F is nowhere monotonie so the

 same is true of the differentiable function F©h.

 (ii) A similar proof can be based on another theorem of Fleissner

 and Foran [10]. This theorem guarantees the existence of a

 homeomorphism H of R onto R such that HoF is differentiable

 (F as above). Again, it is clear that HoF is nowhere monotonie

 These proofs were articulated in Kaplan and Slobodnick (IS]

 (iii) The two preceding proofs involved changes of variables

 or of scale that created differentiable functions with the

 desired properties. One can also call for a proof which

 creates derivatives having the desired properties without

 introducing the primitives. Such a proof is easy to devise

 using the Maximof f-Preiss Theorem (22] which asserts that

 every Darboux-Baire 1 function can be transformed into a

 derivative via a homomorphic change of scale.
 Oft

 Let {Aq}0 be a sequence of pairwise disjoint, perfect
 OB

 subsets of [0,1] such that 'J A~ has positive measure in
 0=0 ®

 every subinterval of [0,1] and U A0 . 1 has positive measure n=0 1
 in every subinterval of [0,1]. Define function f on [0,1] by

 Q if ,eA2ntl

 fOO » Ì If *€A2n
 0 elsewhere
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 It is easy to verify that f is a Baire 1 function.

 There exists [5] a Darboux-Baire 1 function g such that g s f

 a.e. In particular, g takes both signs in every interval.

 An application of the Maximoff-Preiss theorea gives the desired

 derivative.

 It may be of interest to note that no comparable proof

 based on outside compositions with homeomorphisms is readily

 available. This is so because the class of functions of the

 form Hof (H a homeomorphism of R onto R, f€&') has

 not been characterized. It is clearly a proper subset of the

 first Baire class (in fact, it is clearly contained in

 Zahorski 's class #^), but we know of no simple-to-construct

 function f such that H«f has the desired properties for

 some R.

 We turn now to a related problem. In 1882 Hankel (see [12})

 tried to construct a differentiable function with dense sets

 of strict maxima and strict minima. He did not succeed. (A

 solution to this problem would automatically provide a solution

 to the previous problem as well). Somewhat later Zalcwasser

 [27} solved a more difficult problem: given two countable,

 disjoint sets A and B, does there exist a differentiable

 function with strict maxima on A, strict minima on B, and

 no other extrema? He answered this question affirmatively

 in bis lengthy paper [27]. Recently Kelar [16} provided a

 simpler proof. He constructed a Lipschitz function with the

 desired extrema properties. An application of the Fleissner^Foran

 theorem noted in c ii) above completes the proof.
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 A possibly simpler proof can take the following form.

 (Here we assume A and 8 are both dense - Zalcwasser

 showed the general case reduces to this one readily). It

 is not difficult to show (4) that if A and B are disjoint,

 dense, and denumerable subsets of (0,1], and A' and B'

 have the same properties, then there exists a homeomorphism g

 of (0,1} onto itself such that g(A) = A', g(B) = B' and

 1/2 < • < 2. for all x ý y in (0,1). It is easy
 y • X -

 to verify that the set of derivatives in Weil's class which

 have primitives all of whose local extrema are strict, is

 rendual in . Let F be a primitive of such a derivative

 and let A' and B' be its set of strict maxima and strict

 minima respectively. Let g be the homeomorphism described

 above. Then Fog is a Łipschitz function and has the

 desired extrema properties. The Fleissner - Foran theorem

 produces a homeomorphism of R onto R such that h » (F » g)

 is differentiable. This function has all required properties.

 Remark: One can actually take g differentiable, so Fog

 has the desired properties. We can thus assert that the typical

 differentiable nowhere monotonie Lipschitz function F

 with F(0) = 0 (relative to the norm jļFjļ - sup ļF'(t)ļ)
 t€ (0,1]

 has the property that given A and B denumerable, dense,

 disjoint, there exists a diffeomorphism G such that F® G

 achieves strict local maxima on A, strict local minima on

 B, and no other local extrema.
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 The previous problems dealt with the pathological behavior

 of differentiable functions. We turn now to a discussion of a

 question cencerning pathology with respect to dif ferentiative of

 continuous functions.

 The fact that there exist continuous nowhere differentiable

 functions has been known for over a century. The early proofs

 by Weierstrass and others were by example. It wasn't until

 1931 that Banach [1] and Mazurkiewicz [18) gave existence proofs

 via the Baire Category Theorem.

 Weierstrass' example W has the property that unilateral

 derivatives Wļ and W I exist, but are infinite, on dense

 sets. The question arose whether there exists a continuous

 function f such that fļ and fļ exist nowhere (finite or

 infinite). It took many years before Besicovitch (2] gave an

 example of a continuous function B such that D+B < D+B

 and D_B < D B everywhere. His example was simplified by

 Pepper [20], a modified version appearing in Jefferey [14].

 Later, Morse [19] provided another example based on arithmetic

 rather than geometric considerations. Needless to say, all

 these examples are very complicated - even Jefferey' s required

 almost ten pages of his book. And in reviewing earlier works

 on the subject, Morse points out that some doubt still remained

 about the existence of such functions.

 While visiting Harward, Saks [23] approached the problem

 via the Baire Category Theorem. He observed that straightforward

 proofs indicated that continuous functions typically have
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 finite or infinite derivatives or unilateral finite derivatives

 nowhere. He then proved, however, that they do have unilateral

 infinite derivatives on sets of cardinality of the continuum.

 (By a "typical" property, we mean, as usual, that the functions

 exhibiting that property form a residual subset of C[0,1]).

 Saks* proof was far from elementary. It involved showing that

 such functions form a subset of C[a,b) which is second

 category in every sphere and which is analytic. This implies

 that the class of such functions is residual in C[a,b].

 Saks made use of some results that Tarski sad Kuratowski had

 recently obtained.

 Thus Saks did not find a simple proof of the existence of

 Besicovitch-type functions. Some mathematicians view his

 result as showing why examples of such functions may be so

 difficult to provide. They are atypical (Undergraduates may

 have difficulty accepting this viewpoint - they have no difficulty

 providing examples of integers or of differentiable functions).

 A very simple proof of Saks' result was communicated by

 Laczkovich who attributed it to Preiss. Oddly, this proof uses

 only results which were available in 1934 - not at the time

 Saks wrote his paper (23), but surely at the time he wrote his

 book [24] .

 Lemma. Every continuous function F has a unilateral

 approximate derivative (finite or infinite) on some set having

 the cardinality of the continuum.
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 Proof: Let A = {x : D+F = - »}

 B = {x : - » < D+F < 0}

 C = {x : 0 < D*F <

 If A t then for every xgA, Fļap(*) s " 08 • Thus,
 if A has cardinality of the continuum, it provides the required

 set. On B, F is VBG and therefore approximately differentiable

 a.e. Thus, if B has positive measure, it provides the

 required set. Finally, if the cardinality of A is less

 than that of the continuum (so A is denumerable since it

 is a Borei set) and B has measure 0, then F is nondecreasing

 by a standard theorem. In that case F is differentiable

 almost everywhere.

 Theorem: (Saks) The typical continuous function F has

 infinite unilateral derivatives on sets of cardnality of the

 continuum.

 Proof. (Laczkovich attributed to Preiss)

 The typical continuous function is nowhere approximately

 differentiable [13]. Thus, with A, B and C as in the lemma,

 B has measure zero. If A has cardinality less than that

 of the continuum, then (as in the proof of the lemma) F is

 nondecreasing. It isn't!

 Thus, the typical continuous function has infinite

 unilateral derivatives over sets of cardinality of the

 contimium; but every continuous function has unilateral
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 approximate derivatives on such sets.

 The foregoing provides a very simple proof of a difficult

 theorem of Saks. But it does not provide a simple proof of

 the existence of Bes icovitch- type functions. Does there

 exist a complete matric p on the continuous functions with

 respect to which the Besicovitch-type functions are residual?
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